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Trapping effects in wave-packet scattering in a double-quantum-dot
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Roberto Romo,1,* Jorge Villavicencio,1 and M. L. Ladrón de Guevara2

1Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 1880,22800 Ensenada, Baja California, México
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An exact analytical solution for the time evolution of cutoff Gaussian wave packets scattered by a double-
quantum-dot Aharonov-Bohm interferometer is derived to analyze the trapping effects of the molecular states of
the system. Our analysis reveals that the formation and decay of a quasistationary state at the Fano resonance
produces a monochromatic emission embedded in the transmitted packet, characterized by a dominant frequency
�av = εn/h̄ with a finite time duration, where εn is the Fano resonance energy. We demonstrate that the duration
of this coherent emission can be extended by narrowing the Fano resonance with appropriate variations of the
Aharonov-Bohm phase. This emission is switched off in the limit of zero width, where the localization of the
associated molecular state occurs.
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I. INTRODUCTION

The stationary properties of the electron transport in arti-
ficial molecules formed by special arrangements of quantum
dots (QDs) has been the subject of intense research in the
last years.1–6 Special attention has been paid recently on the
study of the dynamical aspects of the electron transport in
these kind of systems, such as the effects of time-dependent
perturbations7 and analysis of transient phenomena.8 A dis-
tinctive feature of these structures is the retention of the
quantum phase coherence,9,10 where the Fano effect is one of
the most remarkable evidences.11 A system that has attracted
much attention for the richness and variety of the exhibited
phenomena is the double-QD molecule embedded in an
Aharonov-Bohm (AB) interferometer.2–5,12 The existence of
two different pathways for the electron transport allows the
features of bonding and antibonding states of the molecule to
manifest themselves in the conductance as Breit-Wigner and
Fano resonances,2,6 as well as in an asymmetrical density of
states (DOS) characterized by two peaks of different heights
and widths.3,6 In these time-independent studies it has been
established that there is a correspondence between the sharpest
(widest) peak in the DOS and the Fano (Breit-Wigner) line of
the conductance, where the narrowing of the sharpest DOS
peak was interpreted as an increase of the lifetime of the
corresponding molecular state. The aim of this work is to
investigate, from a dynamical point of view, the effects of the
formation and decay of this long-lived quasistationary state
on the transient behavior of scattered Gaussian wave packets.
The use of Gaussian wave packets has been a valuable tool
to explore the effects of the transmission profile on the time
evolution of scattering in systems whose resonance spectrum
involves Fano resonances.13,14 Here we use the approach based
on cutoff Gaussian wave packets introduced in Ref. 15 to
explore the behavior of the wave packet scattered by the
double-QD structure in an AB interferometer. We perform
a time-frequency analysis on the exact analytical solution for
the transmitted wave packet, establishing a close link between
its transient structure and the parameters of the two molecular
resonances.

The paper is organized as follows. In Sec. II we present
a description of the solution of the problem, which involves
an exact analytical time-dependent solution of Schrödinger’s
equation for cutoff Gaussian wave packets in a quantum shutter
setup. This approach takes into account explicit formulas of the
transmission amplitude of the double-dot AB interferometer
derived from the equation of motion method for the Green’s
function. Section III presents the main results, where we
analyze the dynamics of the transmitted pulses, particularly
the trapping effects of the Fano resonance of the system in the
time evolution of scattered wave packets. Finally, in Sec. IV
we present the concluding remarks.

II. MODEL

We first describe the quantum shutter approach used in tun-
neling of Gaussian wave packets across a resonant structure.
This method allows us to obtain analytical solutions of the
time-dependent Schrödinger equation at the transmitted side
of the system, provided that the transmission amplitude t(k) of
the problem is known.15 This approach deals with an incident
cutoff wave packet ψ(x,t = 0) = Ae−(x−x0)2/4σ 2

eik0x�(−x)
of effective width σ and incidence energy E0 = h̄2k2

0/2m

and initially centered at a position x = x0, impinging on the
left edge of the resonant structure at t = 0, where A is the
corresponding normalization constant. The time-dependent
solution along the transmission region is given by15

ψ(x,t) = 1

(2π )3/4

√
σ

w(iz0)

∫ ∞

−∞
dk w(iz) t(k) eiφ(k), (1)

where φ(k) = kx − h̄k2t/2m and t(k) is the transmission
amplitude of the problem. The w(z) function in Eq. (1)
is the known complex error function,16 with arguments
z0 = (x0/

√
2σ ), and z = (x0/2σ ) + i(k0 − k)σ . In the small

truncation regime, that is, when |x0/2σ | � 1, w(iz) � 2ez2
,

which, introduced in Eq. (1), gives

ψ(x,t) =
√

σ

π
√

2π

∫ ∞

−∞
dk T (k) ei[φ(k)−(k−k0)x0], (2)
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FIG. 1. (Color online) Double-QD AB interferometer where the
tunnel matrix elements in the presence of a magnetic flux 	 are
represented by V

L(R)
i (i = 1,2) and tc is the interdot tunneling

coupling. Just one energy level is assumed relevant in each of the
dots, their energies being ε0.

where T (k) ≡ t(k)e−(k−k0)2σ 2
. The relevant input for Eq. (2) is

the transmission amplitude t(k) of the system in the momentum
k space.

The resonant structure under consideration is a double-QD
molecule embedded in an AB interferometer, the scheme of
which is shown in Fig. 1. Only one level of energy ε0 is
assumed to be relevant in each of the QDs, the constant tc is the
tunnel coupling strength between dots, and V

L(R)
i (i = 1,2) is

the coupling between the ith dot and the left (right) lead. A net
magnetic flux 	 is enclosed by the interferometer. The system
is modeled by a noninteracting Anderson Hamiltonian, which
is given, for instance, in Ref. 2. The transmission amplitude
t(ε) can be obtained by the equation of motion method for
the Green’s function.2,6 In the basis which diagonalizes the
molecule Hamiltonian, the retarded Green’s function Gr is
given by

Gr = 1




(
ε − ε̃1 + i�̃1 0

0 ε − ε̃2 + i�̃2

)
, (3)

where ε̃1 = ε0 − tc and ε̃2 = ε0 + tc are the energies of the
bonding and antibonding states, respectively, and

�̃1 = 2� cos2 (φ/4) and �̃2 = 2� sin2 (φ/4) (4)

are their corresponding widths, where � = 2π |V |2ρ, ρ being
the DOS in the leads at the Fermi level. The constant 
 is de-
fined as 
 = (ε − ε̃1 + i�̃1)(ε − ε̃2 + i�̃2). The transmission
amplitude can be deduced from the electron retarded Green’s
function from the relation17

t(ε) =
∑
n,m

V̄ R
i Gr

n,m(ε)V̄ L∗
m , (5)

where V̄ L(R)
n = [2ρL(R)]1/2Ṽ L(R)

n , with Ṽ L(R)
n the coupling

matrix elements between the nth molecular state and the left
(right) lead and ρL(R) the DOS in the left (right) lead at the
Fermi energy. Those matrix elements are

Ṽ
L,R

1 = 1√
2

(V L,R
1 + V

L,R
2 ), (6a)

Ṽ
L,R

2 = 1√
2

(V L,R
1 − V

L,R
2 ), (6b)

where V
L,R

1,2 = V
L,R

1,2 (φ) are given by V L
1 = V eiφ/4, V R

1 =
V e−iφ/4, V L

2 = V e−iφ/4, and V R
2 = V eiφ/4, with φ =

2π	/	0, the AB phase, where 	0 = h/e is the flux quantum.

Evaluating Eq. (5) we obtain

t(ε) = �̃1

ε − ε̃1 + i�̃1
− �̃2

ε − ε̃2 + i�̃2
. (7)

In order to properly evaluate the integral given by Eq. (2), the
transmission amplitude must be expressed as a function of k.
With the help of ε = h̄2k2/2m we obtain

t(k) = χ1

k2 − ε1 + iχ1
− χ2

k2 − ε2 + iχ2
, (8)

where εn = (2m/h̄2)ε̃n and χn = (2m/h̄2)�̃n. We rewrite the
above expression by decomposing each of the terms into partial
fractions by using the Mittag-Leffler theorem.18 This results
in

t(k) = 1

2
[ζ1f1(k) − ζ2f2(k)], (9)

where

fn(k) = 1

k − κn + iϒn

− 1

k − κn − iϒn

(10)

and

ζn = χn

κn − iϒn

, (11)

with

κn = 1√
2

[(
ε2
n + χ2

n

)1/2 + εn

]1/2
, (12a)

ϒn = 1√
2

[(
ε2
n + χ2

n

)1/2 − εn

]1/2
. (12b)

Inserting Eqs. (9)–(12b) into Eq. (2) and following the
analytic procedure along the lines of Ref. 15, we obtain the
solution of the problem, namely,

ψ(x,t) = ei(k0x−h̄k2
0 t/2m)

2∑
n=1

ζ̃n[M(y−
n ) + M(y+

n )], (13)

where ζ̃n = (−1)ni(σπ/
√

2π )1/2ζn, and

M(y±
n ) = 1

2
eimX2/2h̄T w(iy±

n ) (14)

is the Moshinsky function, with

y±
n (x,t) = e−iπ/4

√
m

2h̄T

[
∓X ± h̄Q±

n

m
T

]
, (15)

where Q±
n = −k0 ∓ κn ± iϒn, X = x − x0 − v0t , and T =

t − iτ , with v0 = h̄k0/m, and τ = 2mσ 2/h̄. With the analytic
expression of ψ(x,t) given by Eq. (13) we are ready to
calculate the probability density |ψ(x,t)|2 as a function of
both position and time at any place on the transmitted side of
the system.

III. RESULTS

One of the main features of our model is that we can explore,
based on an exact analytical formula [Eq. (13)], a wide range of
dynamical features of the probability density |ψ(x,t)|2 from
the transient to the stationary regime. In our work we are
interested in analyzing the effects of Gaussian wave packet
scattering by a double-dot AB interferometer, particularly how
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the trapping effects of the molecular states of the system are
manifested on the time-dependent features of the scattered
wave packet.

A. Effects of the width of the initial wave packet
and the incidence energy

An important aspect that cannot be ignored in our dynam-
ical analysis of wave-packet scattering is the relationship of
both the energy E0 and the spectral width of the incident
packet with the separation of the molecular states of the
AB interferometer. Therefore, we find it natural to define
the ratio r = �k/�k2,1, where �k = 1/2σ is the width of
the incident packet in the k space (in the small truncation
regime) and �k2,1 ≡ k2 − k1 (with kn = √

2mε̃n/h̄) is the
separation of the molecular states in momentum k space,
where the effective mass is given by m = 0.067 me, me being
the electron mass. Since the scattering of the wave packet
may be highly sensitive to variations of the incidence energy
depending on the value of r , lets us briefly analyze the effects
of the incidence energy. Figure 2(a) displays a scattered wave
packet that is spectrally wide (r = 11.6) for three different
incidence energies chosen in the region around the molecular

FIG. 2. (Color online) Probability density |�|2 =
|ψ |2√1 + (t/τ )2 as a function of the distance χ = x/(σ

√
1 + (t/τ )2)

for different values of energy of the incident packet at t = 5 ns,
with φ = π/4, x0 = −20σ , for (a) σ = 2.5 nm (r = 11.6) and
(b) σ = 20.0 nm (r = 1.4). Just for comparison, the calculation using
Eq. (1) integrating numerically over the finite interval 0 � k � 0.02
is included in the case E = ε0 (dashed-dotted green line). The
resulting graph is undistinguishable from the analytical calculation
from Eq. (13) (solid line).

resonances: E0 = ε0 (solid line), E0 = 0.2ε0 (blue dashed
line), and E0 = 2 ε0 (red dotted line). The parameters of the
molecule are � = 1 meV, ε0 = 6�, and tc = �, and we use
these values throughout the paper, as well as the relation
x0 = −20σ (which guarantees the small truncation regime).
As is evident from the graphs of Fig. 2(a), the three plots
are essentially the same and completely overlap. This occurs
because the incident packet is so broad in momentum space
that it has k components that can interact with both system’s
resonances for the three chosen incidence energies. However,
this is not the case for smaller values of the ratio r as shown
in Fig. 2(b) for r = 1.4. This packet is relatively narrow in
momentum space, implying that most of its k components are
packed in a relatively short interval around k0. For an incidence
energy below ε0, most of these components are shifted below
the system’s resonances, so that only a few components of the
upper tail of the packet (in k space) have the chance to match
those resonances. As a result, the transmission is considerably
reduced, as shown in the corresponding curve in Fig. 2(b), for
E0 = 0.2ε0 (blue dashed line). A similar situation occurs for
an incidence energy above ε0; only components in the lower
tail of the incident packet are allowed to transmit through
the resonances of the system, while the main bunch of k

components are reflected. As a consequence the corresponding
transmitted packet is dramatically reduced, as seen in 2(b)
when E0 = 2ε0 (red dotted line). Only with the choice with
E0 = ε0 can an important amount of the k components of the
incident wave packet be placed into both resonance windows
of the system, and hence the transmitted packet, represented
by the black solid line in Fig. 2(b), becomes strong and similar
in shape to the cases displayed in panel (a).

In the present study, we are interested in situations where
the incident wave packet can interact with both resonances.
According to the previous analysis, this is guaranteed when
the wave packet is spectrally wide, but for spectrally narrow
wave packets the incidence energy should be chosen near both
resonances. Therefore, we use E0 = ε0 in the rest of the paper
since we consider cases with r of the order of unity. We also
show in Fig. 2(b) that the numerical integration in Eq. (1)
performed over an appropriate finite positive interval gives
essentially the same result as the analytical solution.

B. Transient and trapping effects

Since we are interested in the analyzing the transient effects
of the scattered wave packet, we conduct our study in the time
domain at a selected position in space. Figure 3(a) shows a |ψ |2
vs t graph for a cutoff wave packet with spatial width σ = 2.91
nm (x0 = −58.2 nm) incident on the AB interferometer. An
oscillating transient appears embedded in the wave packet,
whose shape and involved frequencies contain relevant in-
formation of the internal dynamics occurred in the molecule
during the tunneling process. This information “travels”
embedded in the transmitted wave packet so that it can be
seen outside the system as shown in this figure at the indicated
position, and hence may exhibit characteristic features of
the molecular spectrum. One such feature that is obvious in
Fig. 3(a) is the evolution of the Fano-zero characteristic, whose
time of arrival at the position x can actually be analytically
calculated from the formal solution [Eq. (13)], using the
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FIG. 3. (Color online) (a) Transient behavior of the probability
density as a function of time at a fixed position x = 3.0 × 104 nm.
The arrow indicates the time tF

0 calculated by Eq. (16). (b) Average
frequency �av for the same fixed position. The inset shows more
detail of the graph in the enclosed area. Here, φ = π/4 and r = 10.

stationary-phase method.19 Such expression is given by20

tF0 (x) = x − x0√
2
m

[ε0 + tc sec (φ/2)]
. (16)

The above expression also establishes an explicit relation
between the position of the Fano profile in the time domain and
the AB phase φ, allowing us to easily manipulate its location
just by varying the magnetic flux. The position of tF0 calculated
with this formula is indicated with an arrow in Fig. 3(a) and
perfectly coincides with the minimum of the characteristic
Fano line. Notice that the Fano-zero characteristic is still
in formation at this position (x = 3.0 × 104 nm) and the
characteristic minimum is still different from zero; it reaches
the zero value for long-enough distances when the scattered
wave packet reaches its final shape.

To explore more closely the internal dynamics in the AB
interferometer, we perform a time-frequency analysis, which
is a useful tool that relies on the study of the spectrograms.21

The spectrograms correspond to plots of the dominant or
average frequency �av as a function of time, where �av =
−Im [(∂ψ/∂t)/ψ]. The corresponding spectrogram for the
wave packet of Fig. 3(a) is shown in Fig. 3(b). As we can
see in this case, the dominant frequency is a monotonically
decreasing function of time, except in the amplified region

shown in the inset, where it exhibits an oscillatory structure
in the band defined by the frequencies ω1 = ε̃1/h̄ and ω2 =
ε̃2/h̄. Note also that the crossovers of the spectrogram with
the horizontal green dotted lines (corresponding to ω1 and
ω2) occur at the “times of flight” defined by the classical
kinematical relations t1 = (x − x0)/v1 = 185 ps and t2 =
(x − x0)/v2 = 156 ps, respectively, where vn ≡ √

2ε̃n/m. The
above is a clear evidence that the observed structure on the
graph is a signature of the molecular states ε̃1 and ε̃2 on
the transmitted packet.

The wave packet considered in Fig. 3 is spectrally wide in
comparison to the separation of the molecular states (r = 10)
and hence a small percentage of their k components lie in
the vicinity of the system’s resonances. Let us now consider
narrower wave packets in the k space (�k � �k2,1). The
reduction of r to a fraction of unity produces dramatic effects
as we can see in Fig. 4(a), where we show spectrograms for
different values of φ (within the interval 0 < φ < π ) for the
case r = 0.3 (left panel). Notice that the dominant frequency
�av , instead of being a monotonically decreasing function of
time as in Fig. 3, here is retained at the value of ω2 during
a finite time interval (which we call here retention time). The
chosen variation of φ in this sequence of graphs illustrates how
this retention time can be further increased, in such a way that
the AB interferometer acts as a source of coherent emission
with a well-defined frequency. The corresponding DOS curves
(computed as in Refs. 3 and 6) are included in the figure (right
panel) as a visual aid that allows us to relate the progressive
narrowing of the Fano peak with the increase of the retention
time. In contrast to the sharp (long-lived) Fano resonance, the
broad (short-lived) Breit-Wigner peak is so small and broad
in comparison that it can barely be appreciated in the DOS
curves (see insets for more detail). If the Fano resonance is
not sharp enough, no retention will occur at this position. For
example, for φ = π/2 (red dashed line) the spectrogram looks
quite similar to the case of Fig. 3 (monotonically decreasing).
For the sake of comparison, we include this case in the three
graphs of Fig. 4(a).

As is well known, when the AB phase is changed to the
interval π < φ < 2π , the roles of the molecular states are
interchanged in such a way that ε̃1 is now the (narrow) Fano
line, and ε̃2 is the (broad) Breit-Wigner resonance.3 Therefore,
it is expected that the retention of �av will occur at the value
of ω1 instead of ω2. This is exactly what occurs as we can
see in the spectrograms of Fig. 4(b) (left panel), illustrating
how this device can work as a frequency selector, switching
the frequencies just by properly manipulating φ [note also
that this switching also occurs automatically in the time scale
tF0 given by Eq. (16)]. As we can also note in Fig. 4(b), the
retention time of �av at the frequency ω1 is gradually increased
as φ tends to 2π (with a concomitant narrowing of the Fano
DOS peak as shown in the right panel).

If we continue to reduce the width of the Fano resonance
by taking φ → 0 but finite as in Fig. 4(a), the retention
time can be further extended, as shown in the spectrogram
for φ = π/100 in Fig. 5. However, in the limit φ = 0 this
situation is suddenly switched off, as we can see in Fig. 5
where the spectrogram coincides with the case φ = π/2. This
result shows that the antibonding state, which in this limit has
become a localized state,6 is no longer capable of producing
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FIG. 4. (Color online) The spectrograms show the trapping effects of the Fano resonance at the fixed position x = 3.0 × 104 nm, for
different values of φ where (a) ε̃2 plays the role of the Fano resonance (solid blue lines), and (b) ε̃1 plays the role of the Fano resonance
(solid blue lines). The cases φ = π/2 and φ = 3π/2 are included for comparison in (a) and (b), respectively (dashed red lines). The green
short-dashed lines represent the same as in Fig. 3(b). The right panels show the corresponding DOS curves. In the insets of cases φ = π/4 and
φ = 7π/4 we include amplifications that allow us to see the Breit-Wigner peaks.

the capture and release effects observed for finite width Fano
resonances.

We end this section with a remark concerning the start of
the retention periods observed in the spectrograms of Fig. 4.
As we can see, in all cases displayed in Fig. 4(b) the retention
interval starts roughly at the time t1, which corresponds to the
crossover of the decaying �av vs t graph of the packet with the
horizontal green short-dashed line sketched at the frequency
ω1 [this time is indicated more clearly with an arrow in the
inset of Fig. 3(b)]. In the cases of Fig. 4(a), on the other hand,
no retention is observed from the time t2 onwards. Instead
of this, the retention starts a little after t1 as is evident by
simple visual inspection of the spectrograms. This delay is
due to the fact that for 0 < φ < π the Fano structure travels
in the front of the wave packet [as illustrated for example in
Fig. 2(a)], arriving at the fixed point x before the main body
of the wave packet. Once the Fano structure reaches the fixed
point x approximately at the time t2 (and exactly at the time
tF0 ), so does the rest of the packet, and consequently the Fano
contribution to the �av frequency is “contaminated” by other
frequencies during the passage of this bulk by x, producing
the observed delay. The oscillatory structures observed in the

spectrogram result from the fact that the Fano frequency is
competing strongly with these other frequencies of the packet.
It is not until the end of the passage of the main body of the
packet that the Fano frequency ω2 begins to dominate.

C. Exponential decay of the Fano resonance

The physical explanation by which the value of �av is
retained at the Fano frequency for a finite period of time
relies on the trapping of wave packet components by the Fano
resonance. During the scattering process, the k components of
the incident packet with energies around the Fano resonance
are temporarily trapped by the interferometer contributing
to the formation of a quasistationary state. The trapped
components are not released immediately by the molecule;
they instead escape from the system obeying the exponential
decay law at a rate dictated by the lifetime of the Fano
resonance. The delayed components travel embedded in the
wave packet arriving at a fixed position as a monochromatic
wave. In order to illustrate the above, in Fig. 6 we show a
graph of the logarithm of the probability density for the case
φ = π/6 (solid blue line). As is clearly appreciated, a portion
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FIG. 5. (Color online) The same as in Fig. 4(a) for a very sharp
Fano resonance (top graph) where the inset shows an amplified region
at short times, and for the ghost Fano limit (bottom graph). The case
φ = π/2 is included in both graphs for comparison (dashed red line).
Both the blue solid and the red dashed curves are indistinguishable
here.

of the Ln|�|2 vs t graph is a straight line segment that occurs
in a time interval that has the same duration as the retention
time of �av at ω2 in the corresponding spectrogram of Fig. 4(a)
(bottom graph in left panel). Moreover, the slope of this straight
segment obtained by numerical inspection is −103 ns−1, which
coincides exactly with the value computed using the width of
the Fano resonance of the case φ = π/6, that is, −2�̃2/h̄.
The case φ = π/2 (without retention) is also included for
comparison (dashed red line). In contrast to the above case, the
corresponding Ln|�|2 vs t graph does not exhibit exponential
decay. Just to help the eye, we also include in Fig. 6 two
straight lines with slopes −103 ns−1 and −891 ns−1 (green
short-dashed lines), calculated from −2�̃2/h̄ using the widths
�̃2 associated to the cases φ = π/6 and φ = π/2, respectively.
In the former case, the line has the same slope of the straight
segment of the corresponding Ln|�|2 vs t graph, while in the
latter case the straight line is so pronounced that it lies well
below the tail of the wave packet, and as a consequence, the
exponential decay of the Fano resonant state becomes eclipsed
by the nonexponential contributions of the wave packet, and
the decaying part of the Ln|�|2 vs t graph is predominantly
nonexponential (dashed red line).

In a given fixed position, what determines that the trans-
mitted wave packet exhibits or does not exhibit exponential
decay is a proper combination of the values of the parameters

FIG. 6. (Color online) Logarithm of the probability density as a
function of time at a fixed position x = 3.0 × 104 nm, with r = 0.3,
for φ = π/6 (solid blue line) and φ = π/2 (dashed red line). Notice in
the case φ = π/6 the exponential decay occurring during an interval
that coincides with the retention time exhibited in the corresponding
spectrogram of Fig. 4(a). On the other hand, the case φ = π/2 does
not exhibit exponential decay. We also included two straight lines
(short-dashed green lines) with slopes −2�̃2/h̄ using the values of �̃2

corresponding to φ = π/6 and φ = π/2.

r and φ, which can be varied independently to control the
existence and duration of the exponential regime. If we keep
r constant (say r = 0.3) and let φ to take different values (say
φ = π/2,π/4,π/5,π/6), the width of the Fano resonance is

FIG. 7. (Color online) Logarithm of the probability density as a
function of time at a fixed position x = 3.0 × 104 nm, for (a) r = 0.3
and different values of φ and (b) φ = π/6 and different values of r .
The case φ = π/2 in (a) does not exhibit exponential decay and it is
included for comparison (solid line). The same occurs in (b) for the
case r = 0.6.
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FIG. 8. (Color online) (a) Logarithm of the probability density as
a function of time for different positions x (in nm) at r = 0.3 and
φ = π/6. (b) Spectrograms for the cases shown in (a). The different
positions are indicated in the graphs in nm. The case x = 1.0 × 105

nm does not exhibit exponential decay in (a) and retention in (b).

gradually reduced, increasing in this way the lifetime of the
corresponding quasistationary state. As a consequence, the
trapped k components of the incident wave packet escape at
a slower rate, which is manifested as an increase of the slope
−2�̃2/h̄. The above can be appreciated in Fig. 7(a), where the
duration of the exponential part of the curve is increased as
φ goes from π/4 to π/6. For φ = π/2 the transmitted wave
packet does not exhibit exponential decay, since the decay
rate of the Fano quasistationary state is faster than the decay
rate of the rest of the packet, as a consequence, the slope
of the corresponding straight line is so pronounced that the
exponential contribution is totally concealed by the rest of
the transmitted wave packet, and therefore the nonexponential
decay dominates in the whole time domain.

If we now vary r keeping φ fixed, the width of the Fano
resonance is constant (hence the slope −2�̃2/h̄) and only
the nonexponential part of the packet is modified. This is

illustrated in Fig. 7(b) for φ = π/6 and r taking the values
indicated in the graph. For r = 0.6 the nonexponential decay
rate of the packet is slower than the exponential decay
associated to the Fano resonance, and hence there is no
exponential regime in this case [similarly as in the case
φ = π/2 with r = 0.3 shown in Fig. 7(a)]. For r = 0.4, 0.3,
and 0.28 there are finite time intervals where the exponential
portion of the Ln|�|2 vs t graph (straight line) dominates.

In order to complete our analysis, we now explore the
effects of variations on the position x on both the duration of the
exponential regime and the retention time in the corresponding
spectrograms. Figure 8(a) shows the values of Ln|�|2 as a
function of time for different positions indicated in the graph
(with r and φ fixed). Since r and φ are fixed, the width �k of the
initial packet and the width of the Fano resonance are constant,
and hence the effects shown in Fig. 7 do not occur. However, as
the transmitted packet propagates it becomes broader, and as a
consequence, the exponential regime is gradually suppressed,
which is manifested in the Ln|�|2 vs t graphs of Fig. 8(a)
as a dramatic reduction of the length of the straight segment
of the graph, until it collapses into a single point where the
exponential regime disappears. The case x = 1.0 × 105 nm
shown in Fig. 8 does not exhibit exponential decay because
the transmitted wave packet at this position is so broad that
the nonexponential decay rate of its tail dominates over the
exponential decay of the Fano quasistationary state.

IV. CONCLUDING REMARKS

In summary, the trapping effects of the molecular states in
a double-QD AB interferometer on the transient behavior of
scattered Gaussian wave packets has been analyzed by means
an exact analytical solution of the problem. We have found that
a coherent emission embedded in the transmitted wave packet
is produced during a finite time interval as a consequence
of the formation and decay of a long-lived quasistationary
state at the Fano resonance. This emission is characterized
by a dominant frequency that is unequivocally related to the
molecular state n that plays the role of the Fano resonance,
�av = ε̃n/h̄. The retention time of the dominant frequency at
this value can be arbitrarily extended by reducing the width of
the Fano resonance through manipulations of the AB phase φ.
However, in the limit of zero width, the coherent emission is
switched off since the long-lived state is totally localized.
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