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Enhanced electromagnetic pressure in a sandwiched reflection grating
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We suggest that strongly enhanced electromagnetic pressure can be induced at the boundary of a sandwiched
reflection grating due to a special kind of deep subwavelength Fabry-Perot (FP)-like resonance. A theoretical
formula will be derived and employed to study this effect at both the infrared and microwave regimes. The
magnitude or sign of the electromagnetic force can be tuned by adjusting the system parameters, which in turn
adjust the balance between the electric and magnetic energies stored in the system. In the infrared regime, a strong
attractive pressure was found, which is controllable by the FP cavity length. In the microwave band, a repulsive
pressure can be realized in most situations. What is rather amazing is that a strong attractive electromagnetic
pressure, which has not been found previously, can also be demonstrated in some geometries in the microwave
regime.
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I. INTRODUCTION

It is well known that charged particles can be manipulated
by static electric or magnetic field gradients. With scattering
or gradient forces, the optical fields of visible or infrared
radiations can also exert optical forces on the small particles.1

One advantage of using optical fields is that the light intensity
and thus the resulting forces can be greatly enhanced by using
focused laser beams or by employing the resonances. The
optical force due to the radiations may be utilized to push,
trap, or even pull the small objects.2,3 In recent years there are
also significant advances in the study of the optical force in
the resonant cavities, where a strong optomechanical coupling
between the trapped optical modes and the mechanical motion
of oscillators can be established.4–9 The coupling effect may
find useful applications in the amplification or cooling of the
mechanical resonators.

The optical force of cavities can be boosted significantly
in the plasmonic systems due to the excitation of strong
plasmonic resonance modes.10–15 Interestingly, the optical
fields confined by a plasmonic cavity, e.g., a simple cavity
composed of two flat unstructured parallel metal plates, may
serve to reduce rather than to expand the cavity size.13

Moreover, the near-field interaction between the dielectric or
metal surface and a metal film, which is perforated with a
periodic array of subwavelength holes, can also give rise to
an attractive force.15 The unusual negative optical pressure
in optical frequencies stems from the kinetic energy of free
electrons, which can suppress the repulsive force due to
the magnetic field in the plasmonic cavity.13 Nonetheless, the
dominance of internal inductance over Faraday inductance
can happen only in the high frequency regime, and as
such, the electromagnetic pressure in the microwave band is
usually positive because of the repulsive effect in a resonant
cavity.14 The combination of electromagnetic, electronic, and
mechanical degrees of freedom in the plasmonic systems may
enrich the study of cavity optomechanics, leading to interesting
physical properties.

Recently, we have shown that by employing the open-ended
slit cavities within a simple sandwiched reflection grating, a

deep subwavelength Fabry-Perot (FP)-like resonance in the
metallic slits can be realized.16 The resonance wavelength
can be two orders of magnitude larger than the cavity length.
In this paper we suggest that such a resonance can induce
an extraordinary electromagnetic pressure in the system.
Theoretical formula will be derived and used to study the
effect in different frequency bands. Compared with a single
plasmonic cavity,13,14 more electromagnetic energy can be
trapped in our periodic structure and thus may generate a
stronger electromagnetic force. Moreover, our structure and
results differ significantly from those of Ref. 15, where the
subwavelength holes have a cutoff and the system response
is dominated by the horizontal “magnetic resonance.” But the
metallic slits employed here have no cutoff frequency and
thus a vertical FP-like resonance in the slits can be supported
at very long wavelengths. Besides an efficient control of the
magnitude of the electromagnetic pressure, the effect can even
produce a strong negative pressure in the microwave band,
depending on the amount of electric or magnetic energy stored
in the slit FP cavities. The paper is organized as follows. In
Sec. II the theoretical formula for the electromagnetic pressure
will be deduced. In Sec. III we employ the formula to study
the electromagnetic pressure in both the infrared and the
microwave regimes, and the underlying mechanism will be
discussed. A short summary is given in Sec. IV.

II. THEORETICAL FORMULA

The schematic view of the structure under study is shown
in Fig. 1. Here, a dielectric-filled metallic-slit grating and a
planar metal film (the thickness of metals is much larger than
the skin depth) are separated by a thin dielectric spacer with
a thickness of t . The slit grating has a periodicity of d, a
narrow slit-width of a, and a thickness of h (here we call h

the slit length). The structure is illuminated by a transverse
magnetically (TM) polarized electromagnetic wave with an
incident angle of ϕ, and the magnetic field is aligned along the
z axis. We assume that the permittivity of the incident side, the
slit inside, the dielectric spacer, and the metal is ε1, εs , ε3, and
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FIG. 1. (Color online) Schematic view of the sandwiched reflec-
tion grating. A thin dielectric spacer with the thickness t separates a
planar metal film and a metallic slit grating (the metal thickness is
much larger than the skin depth). The incident light is TM-polarized
with the magnetic field along the z axis. The dashed line represents a
cubic box for calculating the electromagnetic pressure.

εM , respectively. Note that similar structures have been studied
previously in the regime h � t ,17–20 where the spacer region
below the metal stripes is dominant and a series of horizontal
FP-like resonances in the spacer can be supported. In the
following we focus on the opposite regime h � t and λ � h,
where deep subwavelength FP-like resonances in the metallic
slits can be established.16 To deduce the electromagnetic
pressure, we employ the Maxwell-stress-tensor method, which
requires a determination of electromagnetic fields in the spacer.

A. Field expansions

1. Incident side

The incident electromagnetic wave will be scattered by
the periodic interface and the electromagnetic fields on the
incident side, including the incoming light and scattering
components, can be expressed with the Fourier expansion as
follows:

H in
3 = eik0(γ0x+u0y) +

∑
m

Rmeik0(γmx−umy),

(1)

Ein
1 = 1

ε0ε1c

(
−u0e

ik0(γ0x+u0y) +
∑
m

Rmumeik0(γmx−umy)

)
.

Here and in the following, the subscripts 1, 2, and 3 in
the electromagnetic fields indicates x, y, and z components,
respectively; Rm is the amplitude of the mth-order diffraction
mode on the incident side; γm = √

ε1 sin ϕ + mλ/d, um =√
ε1 − γ 2

m, and k0 = ω/c is the wavevector in free space.

2. Metallic slits

We are interested in those narrow slits that satisfy the
conditions a � λ and h � a. In this case, the high-order
waveguide modes are rapidly decaying and can be neglected.21

Thus we only consider the fundamental slit mode:

Hsl
3 = (Aeiq0y + Be−iq0y) cos βx,

Esl
1 = q0

ε0εsω
(−Aeiq0y + Be−iq0y) cos βx, (2)

Esl
2 = iβ

ε0εsω
(Aeiq0y + Be−iq0y) sin βx.

Here, A and B are the amplitudes of the downward and
upward waves in the slits, q0 =

√
k2

0εs − β2 is the longitudinal
propagation constant of the slit mode, and β is the transverse
eigenwave vector, which will be determined below. The single
mode approximation can also be justified in Sec. III, where
an excellent agreement between the analytical treatment and
rigorous simulation is achieved.

In the infrared and low-frequency band, the surface of
a metal film (with the thickness much larger than the skin
depth) can be treated by using the surface- impedance

boundary condition (SIBC)
⇀

Et = Z
⇀
n × ⇀

Ht .22 Here
⇀

Et and
⇀

Ht are the tangential components of electromagnetic fields,

Z = μ0c/
√

εM is the surface impedance of metals, and
⇀
n

denotes the unit vector along the outgoing normal of the metal
surface. By using Eq. (2) and imposing the SIBC on the slit
walls (x = ±a/2), we obtain tan(βa/2) = k0εs/iβ

√
εM . For

the narrow slits, this equation leads to β ≈
√

2k0εs/iaε
1/2
M .

Because of the negative value of metal permittivity in the
optical regime (neglecting the absorption of metal), β will
become a purely imaginary number (the wave is evanescent
in the x direction due to the coupling between the photons
and surface charges). This suggests the fundamental slit mode
is a surface-plasmon polariton (SPP) wave bounded to the
slit walls. The propagation constant can thus be deduced as

q0 = k0nh, where nh =
√
εs(1 + 2i/k0aε

1/2
M ) is the effective

index of slits. In the near- and mid-infrared frequency range
where εM ≈ −ω2

p/ω2, the effective index can be reduced to
nh = √

εs(1 + 2δ/a), where δ = c/ωp is the skin depth of
metal. This agrees with the result obtained by Collin et al.23

Also, at the microwave frequencies where εM ≈ iσ/ε0ω,
the effective index becomes nh ≈ √

εs(1 + δ/2a) (here the
imaginary part has been neglected), where δ = √

2/μ0ωσ is
the skin depth in the microwave band. Generally, the plasmonic
regime is considered to be at the visible and the near-infrared
band. However, the modified index, as mentioned previously,
suggests that the field penetration effect has physical conse-
quences in the mid-infrared or even microwave region.23,24

3. Spacer region

The electromagnetic fields entering the spacer region will
not only be scattered by the periodic structure but will also be
reflected by the bottom planar metal film. The fields are thus
expanded as follows:

H
sp

3 =
∑
m

Tm(eik0vm(y−h) − ρme−ik0vm(y−h−2t))eik0γmx,

E
sp

1 = −1

ε0ε3c

∑
m

vmTm(eik0vm(y−h)+ρme−ik0vm(y−h−2t))eik0γmx,

E
sp

2 = 1

ε0ε3c

∑
m

γmTm(eik0vm(y−h)−ρme−ik0vm(y−h−2t))eik0γmx.

(3)

Here, Tm is the amplitude of the mth-order diffraction mode
in the spacer, vm = √

ε3 − γ 2
m, and ρm is the unknown mode-

reflection coefficient at the surface of planar metal film.
By using Eq. (3) and applying the SIBC on the planar

metal surface (y = h + t), the mode-reflection coefficient can
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be determined as

ρm = (1 − τm)/(1 + τm), (4)

where τm = vm

√
εM/ε3. Here we recall the Fresnel formula,

which shows that the field reflection coefficient at the
semi-infinite dielectric/metal (ε3/εM ) interface reads ρ =
(
√

ε3 cos θr − √
εM cos θi)/(

√
ε3 cos θr + √

εM cos θi). Such a
reflection coefficient |ρ| is usually equal to or less than
unity. If we have an imaginary value of cos θi , |ρ| could be
larger than unity (note that εM is negative and large, and,
according to the Snell’s law, the refraction angle θr is close
to zero). In the “periodic” spacer region, one can write down
cos θi = vm/

√
ε3. Accordingly, Eq. (4) can be recovered by

using the Fresnel formula. Moreover, when the mth-order
diffraction mode is evanescent, cos θi becomes imaginary (and
τm is negative). This means, due to the excitation of surface
charges, an evanescent incident wave may be enhanced when
“reflecting” from a metal surface.

B. Enhanced fields due to the FP-like effect

The electromagnetic fields in the space can be determined
by using four boundary conditions.25,26 The first two condi-
tions lie in the continuous of magnetic field H3 at the upper and
lower slit openings (y = 0, h; −a/2 � x � a/2). By using
Eqs. (1)–(3), one obtains

A + B = g0 +
∑
m

gmRm,

(5)
Aeiq0h + Be−iq0h =

∑
m

(1 − ρme2ik0vmt )gmTm,

where gm = sin c(k0γma/2). The second two conditions are
continuous of (E1 + ZH3)y=0 and (E1 − ZH3)y=h at the upper
and lower zone boundaries (y = 0, h; −d/2 � x � d/2).
Note that these two boundary conditions result from a match-
ing of electromagnetic fields at the slit openings and the SIBCs
at the horizontal metal surfaces of the slit grating (in the calcu-
lation, E1 ± ZH3 is set as zero inside the metal surface, accord-
ing to the SIBC). By further utilizing Eqs. (1)–(3) and the or-
thogonal condition (1/d)

∫ d/2
−d/2 eik0(γm−γn)xdx = δmn, we have

Rm = κδm0 − αgm

1 + σm

(A − B),
(6)

Tm = αgm(Aeiq0h − Be−iq0h)

(1 + τm)
(
1 − ρ2

me2ik0vmt
) .

Here, σm = um

√
εM/ε1, κ = (σ0 − 1)/(σ0 + 1), and α =

(anh/dεs)
√

εM . By combining Eqs. (5) and (6) the fields in
the space can thus be determined.

One of the most important quantities is the zero-order
reflection r0 = |R0|2, which can be derived as follows:16

r0 =
∣∣∣∣κ − η (1 + r3e

2iq0h)

(1 + θ1)(1 − r1r3e2iq0h)

∣∣∣∣
2

. (7)

Here, η = 2g2
0ασ0/(1 + σ0)2, and rj=1,3 = (1 − θj )/(1 + θj )

is the equivalent reflection coefficient of the slit mode at
the slit openings (the slit outside behaves like an effective
medium with a relative impedance of 1/θj ), where θ1 =
α

∑
m g2

m/(1 + σm), θ3 = α
∑

m μmg2
m/(1 + τm), and μm =

(1 − ρme2ik0vmt )/(1 − ρ2
me2ik0vmt ).
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FIG. 2. (Color online) (a) Normalized electromagnetic pressure
in the infrared regime for different slit length (h = 80, 300, and
500 nm). The lines and symbols represent the analytical and numerical
results, respectively. The inset shows the dependence of the phase
shift ϕj on the wavelength (the arrows indicate the positions of deep
subwavelength FP-like resonances for h = 300 nm). (b) Normalized
electromagnetic pressure in the infrared regime as a function of
wavelength and slit length. Here, the structure parameters are fixed
as d = 1500 nm, a = 50 nm, and t = 20 nm.

The reflection of wave is related to an FP-like resonance
factor fp = (1 − r1r3e

2iq0h)−1, suggesting that the open-ended
metallic slits may act as resonant cavities when the condition
ϕ1 + ϕ3 + 2q0h = 2πm is satisfied (here ϕ1 and ϕ3 represent
the phase shift of the slit mode at the upper and lower slit
openings, respectively). We have shown previously that, by
using the unusual phase shifts ϕ1 and ϕ3, a deep subwavelength,
typically zero-order FP-like resonance in the slits may be
realized.16 The inset of Fig. 2 gives an example of the phase
shift for this scenario. There, the phase jump near point B,
corresponding to the poles of μm and θ3, is due to the extended
SPP mode on the planar metal film.27 And, the zero-phase point
A, corresponding to a near-zero θ3 [Im(θ3) = 0], is correlated
with the horizontal FP-like resonance beneath the metal stripes
[the spectral positions can be approximated by 2nt (d − a) =
mλ, where nt =

√
ε3(1 + 2i/k0tε

1/2
M ) is the effective index of

the metal-dielectric-metal region]. The wavelength of the slit
FP-like resonance is strongly dependent on, but can be two
orders of magnitude larger than, the cavity length.16 At the res-
onance, the reflection of wave will be strongly suppressed, and
a significant portion of energy can be stored in the slit cavity.

Another most important quantity is the amplitude of the
mth-order diffraction mode in the dielectric spacer, which can
be expressed as

Tm = gm[(1 + θ1)(1 + θ3)]−1

(1 + τm)
(
1 − ρ2

me2ik0vmt
)χfpeiq0h, (8)
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where χ = 4αg0/(1 + σ−1
0 ). Equation (8) suggests that the

electromagnetic fields in the dielectric spacer are also propor-
tional to the FP-like resonance factor fp. This demonstrates,
due to the coupling effect, that the fields in the spacer will be
enhanced at the vertical slit FP-like resonance but not at their
inherent horizontal resonance. This is not difficult to under-
stand. The entrance channels of the electromagnetic wave are
controlled now by the vertical FP effect, and the nonresonant
FP cavities will block the incident photons. Only near the
vertical FP-like resonance can the electromagnetic wave be
“grasped” efficiently by the subwavelength slits and then com-
pressed into the dielectric spacer. In the following, Eq. (8) will
be employed for the calculation of electromagnetic pressure.

C. Electromagnetic pressure

The deep subwavelength FP-like resonance and the strong
field-enhancement in the metallic slit cavities as well as in
the spacer region may induce an enhanced electromagnetic
pressure on the planar metal film. This enhanced pressure
can transfer the energy efficiently from the electromagnetic
motion to the mechanical counterpart. For simplicity, here we
assume that the dielectric of the spacer region is air with a
permittivity of unity (ε3 = 1). To derive the electromagnetic
pressure analytically, we choose a cubic box just enclosing
the planar metal film (see the dash line in Fig. 1) and
integrate the Maxwell stress tensor over the whole box.28

As the electromagnetic fields inside/below the metal film
are very weak and can be neglected, the surface integral
only needs to run over the top surface of the cubic box.
Thus the y component of electromagnetic force exerted
on the planar metal film becomes F2 = − ∫

T22ds, where
T22 = ε0(E2

2 − E2/2) + μ0(H 2
2 − H 2/2) is the element of the

Maxwell stress tensor. By further neglecting the x component
of electric field (which is very small near the metal surface)
and making a time-average over an oscillating period, the
time-averaged electromagnetic pressure can be written as

Pa = (4d)−1
∫ d/2

−d/2
(−ε0|E2|2 + μ0|H3|2)dx, (9)

where E2 and H3 are the electromagnetic fields in the
spacer (near the planar metal surface). One can see that
the electromagnetic pressure in this structure is related to
the electromagnetic energy densities, where the electric part
contributes a negative (attractive) force and the magnetic part a
positive (repulsive) force. The difference between the average
electric and magnetic energy in the spacer has two origins: one
is the kinetic energy shared by the free electrons due to the
plasmonic resonance, and the other is a “leakage” of electric
or magnetic energy from the spacer to the surrounding envi-
ronment, especially the metallic slits acting as the FP cavities.

By using Eq. (3), the space average of |E2|2 near the metal
surface (y ∼ h + t) can be determined in the following way:

|E2|2av = (1/d)
∫ d/2

−d/2
E2E

∗
2dx

= 1

ε2
0c

2d

∫ d/2

−d/2

∑
m

γm[Tm(1 − ρm)eik0vmt ]

× eik0γmx
∑

n

γn[Tn(1 − ρn)eik0vnt ]∗e−ik0γnxdx

= 1

ε2
0c

2d

∫ d/2

−d/2

∑
mn

γmγn[Tm(1 − ρm)eik0vmt ]

× [Tn(1 − ρn)eik0vnt ]∗eik0(γm−γn)xdx

= 1

ε2
0c

2

∑
m

γ 2
m|Tm(1 − ρm)eik0vmt |2. (10)

Here the superscript ∗ denotes the complex conjuga-
tion. In the calculation the mode orthogonal condition
(1/d)

∫ d/2
−d/2 eik0(γm−γn)xdx = δmn has been used. Similarly, the

space average of |H3|2 can also be calculated as

|H3|2av =
∑
m

|Tm(1 − ρm)eik0vmt |2. (11)

To show the order of magnitude or the efficiency of
electromagnetic pressure enhancement, we normalize the
electromagnetic pressure in our system to the pressure acting
on an unstructured perfect metal surface by the same source.
By substituting Eqs. (10) and (11) into Eq. (9), the normalized
electromagnetic pressure can thus be deduced as

Pa

P0
= 1

4

∑
m

(
1 − γ 2

m

) |Tm(1 − ρm)eik0vmt |2, (12)

where P0 = μ0 is the common electromagnetic pressure of a
normally incident wave exerted on the flat surface of a perfect
electric conductor (the incident magnetic field H3 is set as
unity). Equation (12) suggests that each diffraction component
in the air spacer will give a contribution to the electromagnetic
pressure. As can be seen from Eq. (8), the amplitude of the
diffraction mode in the spacer, Tm, is proportional to the FP-
like resonance factor fp. Thus, the electromagnetic pressure
will be greatly enhanced at the reflection minimum or the deep
subwavelength FP-like resonance.

III. RESULTS AND DISCUSSIONS

A. Electromagnetic pressure in the infrared regime

In the infrared regime the structure parameters are fixed
as d = 1500 nm and a = 50 nm. The relative permittivity
of the incident side, the slit inside, and the spacer region
were assumed to be unity, and the metal (gold) was modeled
with a Drude dispersion εm = 1 − ω2

p/ω(ω + iγ ), where
ωp = 1.37 × 1016 rad/s and γ = 5 × 1013 rad/s.29 In the
following we will calculate the electromagnetic pressure by
using Eqs. (8) and (12). And, as a comparison, we also simu-
lated the electromagnetic pressure employing the commercial
software package COMSOL Multiphysics. Figure 2(a) shows
the analytically calculated (lines) and numerically simulated
(symbols) normalized electromagnetic pressure for different
slit lengths h = 80, 300, and 500 nm (here the spacer thickness
is set as t = 20 nm). One can see that an excellent agreement
between them can be achieved. Thus, our theoretical formula
may provide an accurate and very efficient tool for exploring
the electromagnetic force in the structure.

Figure 2(a) shows that strong and negative electromagnetic
pressure can be induced at the (deep) subwavelength FP-like
resonances. For the slit-cavity length h = 80 nm, for example,
the normalized electromagnetic pressure reaches −90 and −94
at the two resonance wavelengths around 2000 and 6000 nm,
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FIG. 3. (Color online) (a) Current and (b) electric field |E| dis-
tribution for the deep subwavelength FP-like resonance at 7180 nm;
(c) current and (d) magnetic-field |H | distribution for the FP-like
resonance at 2400 nm. Here, h = 300 nm and t = 20 nm.

respectively. As we are normalizing the electromagnetic
pressure to that of a flat metal surface, the value is nearly
two orders of magnitude larger than that achieved on an
unstructured metal surface. With the increase of h, the spectral
positions of the two resonances shift significantly to the
longer wavelength.16 Meanwhile, the electromagnetic pressure
changes accordingly: the pressure at the long wavelength is
reduced and that at the short wavelength increases instead.
This character can also be seen clearly from Fig. 2(b),
where the normalized electromagnetic pressure is determined
analytically and mapped as a function of wavelength and slit
length. The dark or blue-colored part in the figure highlights
the strong and negative electromagnetic pressure induced by
the subwavelength FP-like resonances.

To understand the previous effects, we have plotted the
current density and electromagnetic field distributions for the
subwavelength FP-like resonances. Taking h = 300 nm as
an example, Fig. 3 presents the simulation results obtained
by using the commercial software CST Microwave Studios.
One can see from both Figs. 3(a) (λ = 7180 nm) and 3(c)
(λ = 2400 nm) that antiparallel currents (along the x direction)
are excited above and below the air spacer, which induce a
repulsive (positive) force on the planar metal film. Simultane-
ously, the positive and negative charges accumulate near the air
spacer, thus giving rise to an attractive or negative force. This
competition of positive and negative force can also be seen
from Eq. (9), where the electric-field energy is related to the

attractive force and the magnetic-field energy to the repulsive
force. If there is no electric field penetration (the kinetic energy
of electrons is zero) and if edge effects can be ignored, the
attractive force due to electric field and the repulsive force due
to magnetic field essentially cancel each other. However, field
penetration in the plasmonic regime suppresses the magnetic
field, as the inductance is dominated by the kinetic inductance
rather than Faraday inductance.13 Such an effect may hold
from the visible to mid-infrared frequencies.30 Therefore, a
lot of energy is stored as the kinetic energy of free electrons,
and thus the magnetic energy is less than the electric one.
Consequently, a net negative force can be observed here.

To explain the different evolution behaviors of electro-
magnetic force at the short and long resonance wavelengths,
we resort to the current and field distributions around the
subwavelength slits. For the long-wavelength excitation, the
current near the metal slit is very weak [see Fig. 3(a)], and a lot
of electric field energy can be stored in the slits because of the
deep subwavelength FP-like resonance [Fig. 3(b)]. However,
for the short-wavelength resonance, the current near the metal
slit becomes relatively strong due to larger phase retardation
in the slit [Fig. 3(c)]; correspondingly, a lot of magnetic field
energy is stored in the slits [Fig. 3(d)]. This suggests that
the subwavelength slits may act as a capacitor of electric or
magnetic field energy, and that the “leakage” of electric or
magnetic energy from the spacer to the slits can be employed to
modulate the electromagnetic force efficiently. The leakage of
electric field energy into the slit can reduce the attractive force.
Thus with the increase of slit length, more and more electric
field energy is localized in the slit, and the net electromagnetic
force is decreased (see Fig. 2). On the contrary, the leakage
of magnetic field energy into the slit can reduce the repulsive
force. Consequently, with the increase of slit length, more and
more magnetic field energy is confined in the slit, and the total
electromagnetic force will be increased instead.

Figure 4(a) presents the normalized electromagnetic pres-
sure as a function of wavelength and spacer thickness (the slit
length is set as h = 80 nm) in the infrared regime. With the
decrease of spacer thickness, the zero-phase point A [refer to
inset of Fig. 2(a)] will shift to a longer wavelength. Corre-
spondingly, the associated subwavelength FP-like resonance
in the slits also red shifts significantly. In addition, Fig. 4(a)
suggests that the electromagnetic pressure is very sensitive to
the spacer thickness: the smaller the thickness, the larger the
electromagnetic pressure. This is mainly due to the fact that
the energy density of electromagnetic fields in the spacer will
increase as the spacer thickness decreases. Thus, according to
Eq. (9), the electromagnetic force will be enhanced. We expect
that the electromagnetic field will induce an oscillating force
in the system. Suppose that the metallic slit grating is fixed
and the planar metal film is connected to a spring or a soft
medium, then the net attractive force caused by the incident
light can drive the planar metal film. The motion of planar
film will change the spacer thickness, and then the resonance
wavelength will be shifted. Consequently, the reflection of light
and the electromagnetic force are modulated dynamically. This
feature may be utilized to drive the mechanical oscillations or
excite the elastic waves. The mechanical oscillation and elastic
waves can also be excited efficiently by a pulsed light beam or
incident light with a modulated intensity.
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FIG. 4. (Color online) Normalized electromagnetic pressure in
the infrared regime as a function of wavelength and (a) spacer
thickness t (ϕ = 0) or (b) incident angle ϕ (t = 20 nm). Here,
d = 1500 nm, a = 50 nm, and h = 80 nm.

The normalized electromagnetic pressure as a function
of wavelength and incident angle has also been calculated
analytically (where t = 20 nm), as shown in Fig. 4(b). With
the increase of incident angle ϕ, the deep subwavelength FP-
like resonance around 6000 nm blueshifts slightly; however,
the electromagnetic pressure reduces obviously, especially
for the larger incident angle (note that the incident photon
momentum in the surface-normal direction also reduces with
ϕ). By calculation, we found that the FP-like resonance factor
fp and the electromagnetic fields in the slits and spacer
decrease with the incident angle, which further reduces the
electromagnetic pressure. Additionally, with the increase of ϕ,
another deep subwavelength FP-like resonance near 3000 nm
also appears in the slits. The presence of this resonance
mode is correlated with the second-order FP resonance in
the spacer (which is inactive at normal incidence).16 The
FP-like resonance factor and field amplitudes were found
to increase first with ϕ, but it then degenerates for the
larger incident angle. This agrees with the variation character
of electromagnetic pressure around 3000 nm. These results
provide the opportunity for manipulating the electromagnetic
pressure with the incident angle.

B. Electromagnetic pressure in the microwave regime

In the microwave band the penetration depth of electro-
magnetic fields into the metal becomes large, and the role of
electron kinetic energy is reduced.30 Thus the electromagnetic
pressure here will be different from that observed in the
infrared regime. Here, without loss of generality, the structure
parameters are fixed as d = 20 mm and a = 1 mm. The relative
permittivity of the incident side, the slit inside, and the spacer
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FIG. 5. (Color online) (a) Normalized electromagnetic pressure
in the microwave band for different slit lengths (h = 1, 5, and
9 mm). The lines and symbols represent the analytical and numerical
results, respectively. (b) Normalized electromagnetic pressure in the
microwave band as a function of wavelength and slit length. Here,
the structure parameters are fixed as d = 20 mm, a = 1 mm, and
t = 0.1 mm.

region were still set as unity; the permittivity of gold was
modeled as εm = 1 + iσ/ε0ω, where σ = 4.1 × 107 S/m is
the conductivity of a real metal.31

Figure 5(a) presents the analytically calculated (lines) and
numerically simulated (symbols) normalized electromagnetic
pressure for different slit lengths h = 1, 5, and 9 mm (here the
spacer thickness is set as t = 0.1 mm). Again, a good agreement
between them can be obtained. Figure 5(a) suggests that, for
the slit length h = 1 mm, a positive peak of electromagnetic
pressure (with a normalized value of ∼125) appears around
the wavelength 41 mm. With the increase of h, this peak
red shifts with the magnitude growing significantly. This
is just opposite to the result in the infrared regime, where
the electromagnetic pressure reduces with h (see Fig. 2).
For the slit length h = 9 mm, the electromagnetic pressure
reaches ∼465 at the wavelength 54 mm, which is one order
of magnitude larger than that obtained with a single patch
cavity.14 More interestingly, with the variation of slit length,
a negative electromagnetic pressure also appears, which red
shifts and grows in magnitude as h increases. For h = 9 mm, a
negative pressure up to −300 can be achieved at the wavelength
31 mm. Such strong negative pressure in the microwave band
has not been found previously. For clarity, the normalized
electromagnetic pressure as a function of wavelength and slit
thickness is shown in Fig. 5(b), where the (upper) purple- and
(lower) blue-colored part highlights the positive and negative
pressure, respectively. We also would like to point out that,
here, the sign of electromagnetic pressure may change at a
specific wavelength, which depends on the details such as
the geometrical parameters. For example, for h = 9 mm, the
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FIG. 6. (Color online) Normalized electromagnetic pressure in
the microwave band as a function of wavelength and (a) spacer
thickness t (ϕ = 0) or (b) incident angle ϕ (t = 0.1 mm). Here,
d = 20 mm, a = 1 mm, and h = 9 mm (the thickness of planar film
was set as 3 mm in the simulation).

electromagnetic pressure is nearly zero and changes the sign
at around the wavelength of 40 mm. At that point, the system
is off resonance, and the electromagnetic fields only weakly
penetrate into the air spacer. Moreover, the averaged electric
energy density in the spacer is balanced by the magnetic
counterpart, thus giving rise to a null electromagnetic pressure.

In the microwave regime, as the role of the kinetic energy of
oscillating free electrons is not significant, the electromagnetic
pressure is usually positive (in a single metal patch cavity,
a weak leakage of electric field around the cavity edge
suppresses the attractive force).14 But here, the subwavelength
slits, which can store electromagnetic energy, may give rise to
a significant modulation of electromagnetic pressure. At the
longer wavelength (λ > 40 mm), the positive peak of pressure
is due to the zero-order deep subwavelength FP-like resonance
of the slits. In this case the current on the slit walls is very weak,
and a lot of electric field energy is confined in the slits [similar
to Figs. 3(a) and 3(b)]. Thus, the electromagnetic pressure is
positive and increases with the slit length because more and
more electric energy will be trapped in the slits as h gets
larger. Nonetheless, at the shorter wavelength, the enhanced

pressure is due to the first-order FP-like resonance of the slits
[which is located between the zero-phase point A and point B;
refer to the inset of Fig. 2(a)]. In this case strong antiparallel
currents are also generated on the slit walls, thus producing
the magnetic energy in the slits [which also increases with the
slit length h; similar to Figs. 3(c) and 3(d)]. This accounts for
the appearance and increase of the strong negative force in the
microwave regime.

The normalized electromagnetic pressure in the microwave
band as a function of wavelength and spacer thickness is
calculated and shown in Fig. 6(a) (the slit length is set
as h = 9 mm). Different from the infrared regime [see
Fig. 4(a)], here an increase of spacer thickness t leads to
a significant red shift of the longer FP-like resonance.16

The electromagnetic pressure is found to decrease with t ,
in accordance with that of the infrared regime. In addition,
Fig. 6(b) presents the calculated normalized electromagnetic
pressure as a function of wavelength and incident angle (where
t = 0.1 mm). With the increase of incident angle, the zero-
order and first-order subwavelength FP-like resonance shifts to
the shorter and longer wavelength, respectively. Moreover, the
electromagnetic pressure also decreases with the incident angle
significantly. This angle dependence may be useful for the ma-
nipulation of electromagnetic pressure in the microwave band.

IV. CONCLUSION

In summary the electromagnetic pressure in a sandwiched
reflection grating has been investigated. The plasmonic struc-
ture can support deep subwavelength FP-like resonances
and hence induce a strong electromagnetic pressure. A
theoretical formula has been derived and used to study
the effect in different frequency bands. We found that the
deep-subwavelength FP cavities can provide a new degree of
freedom for manipulating the electromagnetic force. In the
infrared regime the pressure is negative and controllable with
the FP cavity length. In the microwave band, in addition to
a commonly observed positive pressure, a strong negative
electromagnetic pressure was also demonstrated.
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