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Spontaneous spin-triplet exciton condensation in ABC-stacked trilayer graphene
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We study the neutral filling ABC-stacked trilayer graphene with a long-range Coulomb interaction. The
extremely large density of states near Dirac points leads to more plausible formation of spin ferromagnets, and
our calculation indicates that the spin split energy approximates to 32 meV. Electron and hole carriers coexist
in this spontaneous ferromagnetic system. The Coulomb interaction between carriers with opposite charge leads
to triplet exciton condensation, namely, a spin superconductor. Using a BCS-type self-consistent calculation, we
demonstrate the exciton condensation energy gap is about 7.8 meV. Further, we consider the thermal fluctuations
and determine the Berezinskii-Kosterlitz-Thouless critical temperature to be around 11 K.
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I. INTRODUCTION

Recent experimental realization of monolayer and multi-
layer graphene have opened the possibility of exploring their
intriguing electronic properties,1 which depend dramatically
on the number of layers and the stacking sequence. Under
low-energy approximation, the ABC-stacked trilayer graphene
possesses two cubic bands while that of ABA-stacked trilayer
graphene possesses two massless bands and two massive
bands around half filling.2–4 Previous studies have shown
that the system is unstable toward the formation of weak
ferromagnetic states in graphene multilayers with long-range
Coulomb interactions.5 Such arguments rely on a variational
calculation of the ground-state energy.5 In ABC-stacked
trilayer graphene, the density of states (DOS) is extremely
large around half-filling,4 which more plausibly leads to the
formation of ferromagnetic states with electron and hole
pockets. Our results show that the spin splits energy is
approximately about 32 meV.

Researchers have shown that the exciton condensation
could be realized in systems with both electrons and holes
carrier.6–8 The Coulomb interaction between spatially sepa-
rated holes and electrons guarantee the exciton condensation
and superfluid states present in such systems. There are
also exciton condensations in bilayer electron systems in the
quantum Hall regime.9 Recently, many studies have focused
on the exciton condensation in biased graphene bilayers
separated by an insulating layer.10–14 The excitons in these
systems are spin unpolarized. By contrast, our former studies
have demonstrated the spin-triplet exciton states exist in
ferromagnetic (FM) graphene.15 In FM graphene, the energy
and spin difference between electrons and holes prevent the
electron-hole (E-H) recombination and ensure the stability
of spin-triplet excitons. At low temperature, such a system
exhibits spin superconductivity. Accordingly, a crucial issue is
to find a ferromagnetic gapless system with large spin split.

Our study indicates ABC-stacked trilayer graphene is a
good candidate for spin superconductivity. In this work we
show that a noninteracting spin degenerate state is fragile to
the longe-range Coulomb interaction. Due to the large DOS
around the nodal points, the energy bands can easily spilt
into spin ferromagnetic bands. For the neutral filling case, the
electron and hole pocket sizes are deduced by a variational
method. The spin split energy approximates to 32 meV in this
system. Furthermore, we consider the exciton condensation
formed by electron and hole carriers with opposite spin
configurations. We carry out a BCS-type calculation and obtain
the condensation energy gap, which is about 7.8 meV. At
low temperature T < TC , the spin-triplet exciton condensation
leads to spin superconductivity.15 Further, we consider the
thermal fluctuations and calculate the Berezinskii-Kosterlitz-
Thouless (BKT) critical temperature TBKT.

The paper is organized as follows. In Sec. II the model
is introduced. In Sec. III we carry out the variational
calculation of electron-hole pocket sizes and estimate the
superconductivity energy gap by BCS-type formulas. The
calculation of BKT temperature is also given in Sec. III.
The conclusion is in Sec. IV. Some mathematical details are
included in the appendixes.

II. MODEL HAMILTONIAN

The lattice structure for ABC-stacked trilayer graphene is
depicted in Fig. 1. For simplicity, we consider the nearest-
neighbor coupling between carbon atoms in one layer and
only take into account the vertical atoms coupling between the
neighboring layers. The low-energy Hamiltonian can be writ-
ten as: Hk = ∑

�+
k,σH (k)�k,σ , in which �k,σ = (a1k,σ ,b1k,σ ,

a2k,σ ,b2k,σ ,a3k,σ ,b3k,σ ) and aik,σ (bik,σ ) annihilates an elec-
tron with momentum k on sublattice a(b) in the ith layer (i =
1,2,3) with spin σ . The low-energy Hamiltonian for ABC-
stacked trilayer graphene around the Dirac point

−→
K reads16

H (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 vF |k| eiφk 0 0 0 0
vF |k| e−iφk 0 −γ1 0 0 0
0 −γ1 0 vF |k| eiφk 0 0
0 0 vF |k| e−iφk 0 −γ1 0
0 0 0 −γ1 0 vF |k| eiφk

0 0 0 0 vF |k| e−iφk 0

⎤
⎥⎥⎥⎥⎥⎥⎦ . (1)
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FIG. 1. (Color online) Schematic lattice structure of ABC-
stacked trilayer graphene.

Here tan φk = − ky

kx
, γ1 � 0.35 eV is the interlayer coupling

strength, vF = 3
2at is the Fermi velocity in Eq. (1), and t ≈

3 eV is the nearest-neighbor coupling strength in same layer,
the lattice constants a = 0.142 nm.

The low-energy dispersion can be obtained by a unitary
transformation: �k = Mk�k, and the explicit form of Mk is
given in Appendix A. After the unitary transformation, the
Hamiltonian becomes diagonalized and the six energy bands
are depicted in Fig. 2. From now on, we focus on the low-
energy bands 1 and 2 (labeled by the same index as shown
in Fig. 2) around half filling. The energy differences between
bands 1 and 2 and bands 3–6 is approximately γ1.

Around the half filling, the low-energy band denotes the
states that mostly occupy sites A on layer 1 and sites B
on layer 3. The low-energy Hamiltonian has been given
formerly as4,16

Ha1b3 (k) =
⎛
⎝0 v3

F (kx−iky )3

γ 2
1

v3
F (kx+iky )3

γ 2
1

0

⎞
⎠ . (2)

As shown by Zhang et al.,4,17 a trilayer graphene is the chiral
generalization of a monolayer graphene and a bilayer graphene
with N = 3 and the density of states D (E) ∼ E

2−N
N diverges

when E approximates to zero. In according with the Stoner
criteria, such nearly flat bands make the gapless system very
fragile to the electron-electron interaction and susceptible to
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FIG. 2. (Color online) Band dispersion of ABC-stacked trilayer
graphene. The bands are labeled by 1–6 corresponding to labels in
the context.

form spin split bands. Under the low-energy approximation,
the electrons are mostly located on layer 1 and layer 3. The
Coulomb interaction can be conveniently written in terms of
intralayer and interlayer Coulomb interaction denoted by layer
densities in k space as follows:

ρi(q) =
∑
k,σ

(
�a+

k+q,i,σ�a
k,i,σ + �b+

k+q,i,σ�b
k,i,σ

)
. (3)

Under the long wave limit, the Coulomb term can be
expressed as

HCoul = 1

2S

∑
q �=0

∑
i,j

ρi (q) Vij (q) ρj (−q) . (4)

Here i,j = 1,3 denotes the layer index and Vij (q) =
2πe2

ε0q
e−αij qd denotes the Coulomb interaction in k space with

α11 = α33 = 0 and α13 = α31 = 2, d ≈ 0.34 nm is the layer
distance. In the following section, we will give out detailed
proof that in the neutral filling case the ground state will
be ferromagnetic. For convenience, we express the density
operators in the diagonalized basis

ρi (q) =
∑

p,σ,m,n

�+
p+q,m,σ Xi

mn (p + q,p) �p,n,σ , (5)

where i denotes the layer index and m,n denote the column
indexes corresponding to bands in Fig. 2. Thus the Coulomb
interaction can be expressed as5

HCoul = S

2

∫∫
d2pd2q

(2π )4

∑
ijσσ ′mn

Xi
mn (q,p) Xj

nm

× (p,q) nm,σ (q) nn,σ ′ (p) Vij (p − q) . (6)

Here nm,σ (q) denotes the occupancy and the explicit form of
Xi (p,q) is given in Appendix B.

III. SPONTANEOUS SPIN SPLIT AND SPIN
SUPERCONDUCTIVITY

A. Band ferromagnetism in ABC-stacked trilayer graphene

We consider the neutral filling case and represent the
spin split states around each K point by one electron
pocket with spin ↑ and one hole pocket with spin ↓.
Under the band ferromagnetic condition, the variational states
can be expressed as: n1,↑ (k) = � (Q − k) ,n1,↓ (k) = 0, and
n2,↑ (k) = 1,n2↓ (k) = 1 − � (Q − k), as depicted in Fig. 3.
The parameter Q needs to be calculated by the lowest-energy
condition. With the formation of electron and hole pockets,
the kinetic energy cost can be expressed by

�Ekin = 2
∫ E(Q)

0
εkρ (εk) dεk = Sv3

F Q5

5πγ 2
1

. (7)

Here S denotes the surface area and we assume h̄ = 1. The
expression for the Coulomb interaction is very lengthy and we
give out the leading term as follows:

�ECoul = −e2SQ3

4πε0(2π )3
(C1 − C2 + C3Q

2d2), (8)

where C1 ≈ 1.33, C2 ≈ 0.56, and C3 ≈ 0.38. It is easy to
verify that Qd 
 1. The explicit expressions for Coulomb
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(a)

(b)

FIG. 3. (Color online) Sketch map of (a) noninteracting bands
and (b) spin ferromagnetism bands.

integrals are given in Appendix B. Thus when we consider the
energy change by including Eq. (7) and Eq. (8), the variational

parameter Q satisfies the relation vF Q ∼
√

3e2(C1−C2)
2πε0vF

γ1 ≈
0.09γ1 ≈ 32 meV. We need to emphasize that such spin split
pockets are much larger than those in bilayer graphene and
ABA-stacked trilayer graphene.5 This large spin split pockets
lead to more carriers of spin fluid. In the previous calculation
we neglect the Coulomb interaction between different Dirac
points. Generally, the Coulomb interaction between different
valleys can lead to the pseudospin split. However, the Coulomb
interaction strength is very small and expressed by V ∼ 2πe2

2|K|ε0
,

thus the pseudospin split is very small compared to real spin
split.

B. Exciton condensation and spin superconductivity

Naturally, in such a system with both electron and hole
carriers, there might be exciton condensation. For simplicity,
we assume the critical energy scale for exciton condensation
Tc 
 vF Q, thus the formation of exciton condensation will
not change the spin split mechanism in general. In this way,
we can formulate the low-energy Hamiltonian for different
spin as follows:

H0 =
∑
k,σ

ψ+
k,σ

(
σvF Q v3

F (kx − iky)3

v3
F (kx + iky)3 σvF Q

)
ψk,σ .

(9)
Uc =

∑
s,s ′;i,j ;σ,σ ′

Uss ′
ij ns

iσ ns ′
jσ ′ ,

where ψk,σ = (a1kσ ,b3kσ )T , s/s ′ = a,b is the lattice index, ns
iσ

is the local electron number operator on sublattice s of ith site
with spin σ . The σvF Q term with σ = ±1 indicates the band
spin splits. For the noninteracting Hamiltonian in Eq. (9), the
low-energy bands consist of a spin ↑ band ε+↑ with electron
carrier and a spin ↓ band ε−↓ with hole carrier as depicted in
Fig. 3(b). We can regard the annihilation operator αk−↓ as the

creation operator of spin ↑ hole. Thus, we can define operators
αke↑ = αk+↑ and α+

kh↑ = αk−↓.15 In this way, the interaction
between electron and hole can be decoupled by mean-field
approximation: U ≈ ∑

k �kα
+
ke↑α+

kh↑ + H.c. with the E-H
exciton condensation parameter �k ≡ −∑

k Ukk′ 〈αk′e↑αk′h↑〉,
where Ukk′ denotes the Coulomb interaction in k space.

The energy gap � can be estimated self-consistently as
follows:

�k =
∑
k′

Ukk′�k′

2ξk

tanh

(
1

2
βξk

)
. (10)

Here β = 1
kBT

and the quasiparticle dispersion ξk =√
(vF Q − v3

F k3

γ 2
1

)2 + �2
k′ . We consider the major contribution

of the on-site Coulomb interaction and thus Ukk′ = U�(kD −
|k − k′|), where vF kD ∼ γ1 represents the energy cut-off for
low-energy bands. The estimation of U is given out as follows.
Taking the screening effect into account, we consider the
short-range exciton condensation on nearby lattices, thus the
Coulomb interaction can be easily represented in discrete form,

Uab
kk′ =

∑
jδ

Uab
0j e−i(k−k′)(rj +�δ) ≈

∑
δ

Uab
00 e−i(k−k′)�δ,

(11)
Uaa

kk′ =
∑
jδ

Uaa
0j e−i(k−k′)rj ≈ Uaa

00 .

In Eq. (11) Uab
0j and Uaa

0j represent the Coulomb interaction

between carbon atoms (a,b) on site 0 and site j and �δ denote
the three nearest-neighbor vectors connecting A/B sublattices.
In the ferromagnetic bands with electron and hole pockets
approximating to vF Q ∼ 32 meV, the averaged occupancies
over sites can be easily calculated as nf ≈ 0.03. Given the
occupancy number, we obtain the on-site and nearest-neighbor

Coulomb energy as Uaa
00 = n2

f e2

4πε0dcarbon
≈ 1.5 eV and Uab

00 =
n2

f e2

4πε0a
≈ 0.1 eV, where dcarbon ∼ 10−11 m is of the order of

carbon atom diameter and a = 1.42 × 10−10m is the lattice
constant. In the self-consistent calculation, we mainly consider
the on-site Coulomb energy and set U = Uaa

00 . We solve the
self-consistent equation numerically and obtain � ≈ 7.8 meV.
We need to emphasize the exciton condensation gap � is
very small compared with the spin split energy vF Q, thus
the formation of excitons only slightly change the size of
the spin split pockets. As for the experimental aspects, recent
transportation measurements show that there is a spontaneous
gap opening at about 6 meV in charge neutral ABC-stacked
trilayer graphene,3 which is consistent with our calculations.

C. Thermal fluctuations and Berezinskii-Kosterlitz-Thouless
critical temperature

The BCS-type results obtained above are based on mean-
field analysis. In two-dimensional (2D) systems, the ther-
mal fluctuations can significantly induce the BKT phase
transition.12,18 In general, the order parameter can be repre-
sented by �(τ,r1,r2). We take the assumption that the modulus
of order parameter hardly differs from the mean-field value and
only consider the thermal phase fluctuation (we also neglect
the quantum fluctuations). Thus the order parameter can be
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expressed as the mean-field order parameter multiplied by
a location-dependent phase �(τ,r1,r2) ≈ �(r1 − r2)e−i2θ(R).
Under this approximation, the Gor’kov Green’s function can
be deduced and the effective action can be obtained. The details
are given in Appendix C.

The Eq. (C6) in Appendix C corresponds to 2D XY
model H = Js

2

∫
d2r (∇θ )2. The self-consistent equation for

BKT temperature is readily obtained by using the relation
TBKT = π

2 Js
19, which reads

TBKT = 9πv3
F

4γ 2
1

∫∫
d2kk

(2π )2

[
1 − εk − vF Q

ξk

tanh

(
ξk

2kBT

)]

− 9πv6
F

4γ 4
1

∫∫
d2k

(2π )2

k4

kBT cosh2
(

ξk

2kBT

) . (12)

Here, εk = v3
F k3

γ 2
1

is the dispersion of ABC-stacked trilayer
graphene. We consider the low-energy bands with energy
cutoff � (γ1 − εk), and the numerical results show TBKT =
11 K. This type of spin conductivity differ from exciton BEC in
biased graphene bilayers10–14 and the experimental condition
is under the ability of present techniques.

IV. CONCLUSION

In summary, we have studied the neutral filling ABC-
stacked trilayer graphene with a long-range Coulomb inter-
action. We have shown that the noninteracting ground state is
unstable towards forming a spin ferromagnet. The energy of
electron and hole pockets are deduced by a variational method.
The extremely large DOS near Dirac points leads to more
plausible formation of spin ferromagnets. Our calculation
indicates the spin split energy approximates to 32 meV. This
spontaneous ferromagnetic trilayer graphene possesses both
electron and hole carriers. According to a previous study,15

the Coulomb interaction between electron and hole carriers
leads to spin-triplet exciton condensation. Using a BCS-type
self-consistent calculation, we have obtained the energy gap is
about 7.8 meV. Furthermore, we take into account the thermal
fluctuations and determine the BKT critical temperature
in this system. Such spin superconductor can be detected
experimentally.15
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APPENDIX A: UNITARY TRANSFORM MATRIX

The eigenmatrix of H (k) can be written as Mk =
M1 (k) M2M3 (k) M4, where

M1(k) = diag[ 1 e−iφk 1 e−iφk 1 e−iφk ] (A1)

is a gauge transformation, and

M2 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (A2)

is a redistribution of basis vectors. After unitary transformation
by M1 (k) M2, the Hamiltonian reads,

H2 (k) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 vF k 0 0 0
0 0 0 0 0 vF k

vF k 0 0 −γ1 0 0
0 0 −γ1 0 vF k 0
0 0 0 vF k 0 −γ1

0 vF k 0 0 −γ1 0

⎤
⎥⎥⎥⎥⎥⎦ . (A3)

The matrix H2 (k) can be decoupled into two parts: the block
diagonal part HI

2 and block off-diagonal part HII
2

HI
2 (k) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −γ1 0 0
0 0 −γ1 0 vF k 0
0 0 0 vF k 0 −γ1

0 0 0 0 −γ1 0

⎤
⎥⎥⎥⎥⎥⎦ , (A4)

HII
2 (k) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 vF k 0 0 0
0 0 0 0 0 vF k

vF k 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 vF k 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (A5)

Thus, the coupling between the low-energy part and the high-
energy part in H2(k) can be transformed by Lowdin partition-
ing uniform transformation:20 e−SH2e

S ≈ HI
2 + [HII

2 , S] +
HII

2 + [HI
2 , S], where

S =
[

0 χ

−χT 0

]
, (A6)

χ =
⎛
⎝0 − vF k

γ1
0 − v2

F k2

γ 2
1

− v2
F k2

γ 2
1

0 − vF k
γ1

0

⎞
⎠ . (A7)

Thus the unitary matrix M3 = eS reads

M3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 − vF k
γ1

0 − v2
F k2

γ 2
1

0 1 − v2
F k2

γ 2
1

0 − vF k
γ1

0

0 v2
F k2

γ 2
1

1 0 0 0
vF k
γ1

0 0 1 0 0
0 vF k

γ1
0 0 1 0

v2
F k2

γ 2
1

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A8)

Finally, the Hamiltonian needs to recombine to form the
symmetric and antisymmetric bands by

M4 = 1√
2

[
1 1
1 −1

]
⊗ I3×3.
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Thus, the overall unitary transform matrix can be given out by the following relation:

Mk = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 − vF k
γ1

vF k
γ1

− v2
F k2

γ 2
1

v2
F k2

γ 2
1

e−iφk v2
F k2

γ 2
1

−e−iφk v2
F k2

γ 2
1

e−iφk e−iφk 0 0
vF k
γ1

vF k
γ1

1 −1 0 0

e−iφk vF k
γ1

−e−iφk k
γ1

0 0 e−iφk e−iφk

v2
F k2

γ 2
1

v2
F k2

γ 2
1

0 0 1 −1

e−iφk −e−iφk −e−iφk v2
F k2

γ 2
1

−e−iφk v2
F k2

γ 2
1

−e−iφk vF k
γ1

−e−iφk vF k
γ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A9)

APPENDIX B: COULOMB INTERACTION INTEGRAL

In Eq. (5), the matrix that associates carriers in layer 1 or layer 3 with different band indexes can be expressed as follows:

X1 (q,p) = M+
q

[
I2×2 0
0 04×4

]
Mp (B1)

X3(q,p) = M+
q

[
04×4 0
0 I2×2

]
Mp. (B2)

With the variational ground states that �n1,↑ (k) = � (Q − k) and �n2↓ (k) = −� (Q − k), we just need to calculate the matrix
elements that represent coupling between band 1 and band 2 in X1 (q,p) and X3 (q,p),

X1
12 (q,p) = 1

2
− ei(φq−φp)v4

F p2q2

2γ 4
1

, X3
12 (q,p) = −ei(φq−φp)X1

12 (q,p) . (B3)

Thus the Coulomb interaction can be easily expressed as

ECoul

S
= 1

2

∫
d2pd2q

(2π )2

[
2
∣∣X1

pq (1,2)
∣∣2 � (Q − p) � (Q − q) V11 (q − p) + 2Re

∣∣X1
pq (1,2) X3

pq (1,2)
∣∣

×� (Q − p) � (Q − q) V13 (q − p)
]
, (B4)

and tan(φp) = −py

px
, the first integration in Eq. (B2) denotes the intralayer Coulomb interaction and can be expressed as∫∫

d2pd2q
(2π )4

[
1

4
− cos[φq − φp]

p2q2

2γ 4
1

+ 1

4

(
p2q2

γ 4
1

)2
]

−1

|p − q|
2πe

ε0

= −
∫∫∫

dθdpdq

(2π )3 pq

[
1

2
− cos θ

p2q2

γ 4
1

+ 1

2

(
p2q2

γ 4
1

)2
]

1√
p2 + q2 − 2pq cos θ

πe

ε0
. (B5)

We assume that p

Q
= x and q

Q
= y then Eq. (B5) is expressed by the following parts:

−
∫∫∫

dθdpdq

(2π )3 pq
1

2
√

p2 + q2 − 2pqcosθ
≈ − Q3

2 (2π )3 × 1.33, (B6)

∫∫∫
dθdpdq

(2π )3 pq
p2q2

γ 4
1

cos θ√
p2 + q2 − 2pqcosθ

≈ Q3

(2π )3

Q4

γ 4
1

× 0.16,. (B7)

∫∫∫
dθdpdq

(2π )3 pq

(
p2q2

γ 4
1

)2
1

2
√

p2 + q2 − 2pqcosθ
≈ −Q3

2 (2π )3

(
Q4

γ 4
1

)2

× 0.14. (B8)

In the next step, we calculate the interlayer Coulomb interaction in Eq. (B2) denoted by integrals in Eq. (B9). Assuming the
carrier pocket is small, thus we have Qd 
 1, one can expand e−2|p−q|d by its Taylor series and keep the leading terms. The
interlayer Coulomb interaction is given in Eq. (B9) and expressed by Eqs. (B9)–(B11).

1

2

∫∫∫
dθdpdq

(2π )3 pq

[
−1

2
cosθ + p2q2

γ 4
1

− 1

2

(
p2q2

γ 4
1

)2

cos(φq − φp)

]
−e−2|p−q|d

|p − q|
2πe

ε0
, (B9)

1

2

Q3

(2π )3

∫ π

0

∫ 1

0

∫ 1

0

dθdxdy xycosθ [1 + 2Q2d2(x2 + y2 − 2xycosθ )]√
x2 + y2 − 2xycosθ

≈ 1

2

Q3

(2π )3 [0.56 − 0.38Q2d2], (B10)
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− Q3

(2π )3

Q4

γ 4
1

∫ π

0

∫ 1

0

∫ 1

0

dθdxdy x3y3√
x2 + y2 − 2xycosθ

≈ − Q3

(2π )3

Q4

γ 4
1

× 0.32, (B11)

1

2

(
Q4

γ 4
1

)2
Q3

(2π )3

∫ π

0

∫ 1

0

∫ 1

0

dθdxdy x5y5cosθ√
x2 + y2 − 2xycosθ

≈ 1

2

(
Q4

γ 4
1

)2
Q3

(2π )3 × 0.08. (B12)

APPENDIX C: DERIVATION OF SUPERFLUID DENSITY Js

In general, the quantum partition function of superconductor has the formal expression after integration of the Grassmann fields19

Z =
∫

D(�∗,�)exp

[
− 1

U

∫
dτd2r |�|2 + ln det Ĝ−1

]
. (C1)

The full Gor’kov Green’s function coupled with electromagnetic potential takes the form

Ĝ−1 =
(

−∂τ − iφ − εk (−i∇ − A) + μ �ei2θ

�e−i2θ −∂τ + iφ + εk (−i∇ + A) − μ

)
. (C2)

After gauge transformation Û = (e−iθ 0
0 eiθ

), the Gor’kov Green’s function can be expressed as

Ĝ−1 =
(

−∂τ − i (φ + ∂τ θ ) − εk (−i∇ − A − ∇θ ) + μ �

� −∂τ + i (φ + ∂τ θ ) + εk (−i∇ + A + ∇θ ) − μ

)
. (C3)

For cubic band dispersion case with εk (−i∇) = m |−i∇|3 and m = v3
F

γ 2
1

, we assume the field and its gradient are weak. Thus,
one can expand the Gor’kov Green’s function in Taylor series

Ĝ−1 = −σ0∂τ − σ3 [εk (−i∇) − μ] + σ1�︸ ︷︷ ︸
Ĝ0

−1

−iσ3 (φ + ∂τ θ ) + 3σ0m[| − i∇|(−i∇) · (A + ∇θ )]︸ ︷︷ ︸
X1

×−9

4
σ3m[| − i∇|(A + ∇θ )2]︸ ︷︷ ︸

X2

+ · · · . (C4)

The system action can be expressed by the Taylor series,

S = − ln det Ĝ−1 = −tr ln(Ĝ−1) = −tr ln
(
Ĝ0

−1) + tr(Ĝ0X1) + tr
(
Ĝ0X2 + 1

2 Ĝ0X1Ĝ0X1
) + · · · . (C5)

In Eq. (C5), the first part denotes the superfluid action without coupling with electromagnetic fields, and the second part
denotes the electronic and magnetic static coupling with superfluid and can be eliminated by static coupling with the positive
charge irons. The third term in Eq. (C5) represents the Goldstone mode action. From now on, we neglect the electromagnetic
field and only retain the phase fluctuation part, thus the Goldstone action can be expressed as

S[2] = 1

2
tr(Ĝ0X1Ĝ0X1) = Js

2

∫
dτd2r(∇θ )2, (C6)

and the superfluid density is

Js = 9v3
F

2γ 2
1

∫∫
d2kk

(2π )2

[
1 − εk − vF Q

ξk

tanh

(
ξk

2kBT

)]
− 9v6

F

2γ 4
1

∫∫
d2k

(2π )2

k4

kBT cosh2
(

ξk

2kBT

) . (C7)
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