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Leggett-Garg inequalities for the statistics of electron transport
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We derive a set of Leggett-Garg inequalities (temporal Bell’s inequalities) for the moment generating function of
charge transferred through a conductor. Violation of these inequalities demonstrates the absence of a macroscopic-
real description of the transport process. We show how these inequalities can be violated by quantum-mechanical
systems and consider transport through normal and superconducting single-electron transistors as examples.
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I. INTRODUCTION

Full counting statistics (FCS) seeks to understand electronic
transport by counting the number of charges transferred
through a conductor in a certain time interval tb � t � ta .1

Considered as a classical stochastic process, the information
about transferred charge can be encapsulated by the moment
generating function (MGF)

Gcl.(χ ; tb,ta) = 〈eiχ[n(tb)−n(ta )]〉, (1)

where n(t) is the collector charge at time t and χ is the
counting field. Recent quantum dot (QD) experiments,2,3

have borne out many of the predictions of FCS in a regime
where charge transfer is essentially classical and the above
definition applicable. More generally though, the collector
charge is a quantum degree of freedom since electrons can
form superpositions between states within the reservoir and
those without.

The aim of this paper is is to investigate the dividing line
between classical and quantum transport by deriving a set of
inequalities for the MGF. These inequalities are obeyed by all
classical systems but, as we go on to show, can be violated by
quantum-mechanical ones.

In contrast to the more familiar spatial Bell’s inequalities
that probe entanglement between particles4,5 and have been
extensively discussed in the context of quantum transport,
e.g., Refs. 6–10, the inequalities we derive here are of the
class introduced by Leggett and Garg–single-system temporal
Bell’s inequalities,11 which have been the subject of several
recent (nontransport) experiments, e.g., Refs. 12 and 13. Here
we write down inequalities for the MGF of FCS which
are predicated on the macroscopic reality11 of the collector
charge–classically, the charge has a definite (if unknown)
value at all times, which can, in principle, be measured
noninvasively. This type of inequality was considered for
transport systems in Ref. 14, but the focus there was on
the the internal degrees-of-freedom of system, and not the
FCS as measured in the contacts, as discussed here. We may
also contrast our work with that of Vogel et al.15,16 who
derived inequalities for the generating function of position
for a harmonic oscillator.

We show that our inequalities can be violated by the quan-
tum transport. As examples, we consider two single electron
transistors (SETs): first, a normal SET for which the violation
is limited; and secondly, a superconducting SET (SSET),
for which the violations are much more pronounced. This
latter result clearly demonstrates that the double-Josephson

quasiparticle resonance (DJQP) phenomenon of the SSET17–21

has no macroscopic-real interpretation.

II. INEQUALITIES

The inequalities that we derive here concern the quantity

L(χ, {ti}) ≡ G(χ ; t1,t0) + G(χ ; t2,t1) − G(χ ; t2,t0), (2)

which involves the MGF over three different time intervals. To
derive classical bounds for this quantity we begin by writing
the classical MGF of Eq. (1) as

Gcl.(χ ; tb,ta) =
∑
nb,na

P (nb,na)eiχ[nb−na ], (3)

where P (nb,na) is the probability of having na = n(ta) collec-
tor charges electrons at time ta and nb = n(tb) at time tb. Under
the Leggett-Garg assumptions of macroscopic realism and
noninvasive measurability,11 the three probabilities required
to construct the classical expression Lcl.(χ,{ti}) of Eq. (2) can
be obtained as marginals of the joint probability P (n3,n2,n1),
e.g., P (n3,n1) = ∑

n2
P (n3,n2,n1). This allows us to write

Eq. (2) classically as

Lcl. =
∑
{ni }

P (n3,n2,n1){eiθ10 + eiθ21 − eiθ20}, (4)

where we have introduced the shorthand θba = χ [nb − na].
Taking the real part, we have

Re {Lcl.}
=

∑
{ni }

P (n3,n2,n1) {cos(θ10) + cos(θ21) − cos(θ20)} .

An upper bound for this quantity is obtained by finding the
maximum value of the quantity in brackets as a function of
electron numbers {ni} and choosing the probability distribution
P (n3,n2,n1) such that all weight resides with this maximum
value. We have then

max [Re {Lcl.}] = max [cos(θ10) + cos(θ21) − cos(θ21 + θ10)] ,

where we have used θ20 = θ21 + θ10. The maximum on the
right-hand side can then be found solving sin(θ10) = sin(θ21) =
sin(θ21 + θ10) subject to the constraints that each θij is equal
to χ times an integer. These constraints arise from the
quantisation of the collector charge in integer units. We thus
obtain an upper bound for Re{Lcl.} that we will denote CR(χ ).
This bound is χ -dependent and selected values are listed in
Table I. A lower bound BR(χ ) can similarly be established but
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TABLE I. Bounds of Eq. (5) for selected values of χ . CR(χ )
and BR(χ ) are upper and lower bounds for the real part inequality,
Eq. (5a); CI(χ ) bounds the magnitude of the imaginary part, Eq. (5b).

χ π

4
π

3
π

2
2π

3 π

CR(χ )
√

2 3
2 1 1 1

BR(χ ) −3 −3 −3 −2 −3
CI(χ ) 1 + √

2 3
√

3
2 2 3

√
3

2 0

in the examples we study here, this lower bound is not violated
and we will not consider it further. Using a similar argument,
the imaginary part of Lcl. can also be shown to be bounded,
from above by CI(χ ) and below by −CI(χ ) (Table I). The
central formal result of this paper is therefore that any classical
MGF must obey the inequalities:

Re {G(χ ; t1,t0) + G(χ ; t2,t1) − G(χ ; t2,t0)} � CR(χ ); (5a)

|Im {G(χ ; t1,t0) + G(χ ; t2,t1) − G(χ ; t2,t0)}| � CI(χ ), (5b)

for all χ and times {ti}.
For simplicity, in the following we will set t0 = 0, t1 = τ ,

and t2 = 2τ and define

R(χ,τ ) ≡ Re[G(χ ; τ,0) + G(χ ; 2τ,τ ) − G(χ ; 2τ,0)], (6)

with I (χ,τ ) as the imaginary part defined analogously. In the
stationary limit, the MGFs are translationally invariant and we
have, e.g., R(χ,τ ) ≡ Re[2G(χ ; τ,0) − G(χ ; 2τ,0)].

III. QUANTUM MGF

Quantum-mechanically, there is no unique generalisation
of Eq. (1) since the MGF is a two-time quantity, and a
time-ordering must be specified. The canonical MGF given
by Levitov and coworkers involves Keldysh-ordering:1

GL(χ ; tb,ta) = 〈e−i
χ

2 n̂(ta )eiχn̂(tb)e−i
χ

2 n̂(ta )〉. (7)

The setup proposed by Levitov et al. to measure this MGF
was a spin processing under the influence of the magnetic field
generated by the collector current. This setup is suited for our
purposes because, not only does it yield the complete MGF
directly, but this measurement is classically noninvasive. In a
more realistic experimental setup, it might be the case that only
a finite number of cumulants be known, e.g., Ref. 22. In this
case, care must be taken in reconstructing the full MGF since
the generic behavior of the cumulants is factorial growth with
their order.23 Care must also be taken that the measurement be
performed noninvasively.

In calculating the MGF here, we use the equiv-
alent expression GL(χ ; t) = Tr{�(χ ; t)} in terms of the
χ -resolved density matrix, the dynamics of which are
determined by the modified von Neumann equation
�̇(χ ; t) = −i[H ( 1

2χ )�(χ ; t) − �(χ ; t)H (− 1
2χ )] with gauge-

transformed Hamiltonian H (χ ) = eiχn̂He−iχn̂.

IV. CHARGE QUBIT

We first consider an isolated charge qubit with states
|L〉 and |R〉, the latter of which we associate as our “col-
lector”, such that n̂ = |R〉〈R|. We assume a Hamiltonian
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FIG. 1. (Color online) Violations of Eq. (5) for an isolated qubit.
(a) and (b) show the quantities R(χ,t) and I (χ,t) as functions of
time for three different values of χ/π = 1, 2

3 , 1
2 . Since CR(χ ) = 1

for these values of χ , the qubit evolution violates Eq. (5a). For the
imaginary part, the classical bound is only violated for χ = π for
which CI(π ) = 0. (c) The solid line shows the maximum Rmax(χ ) as
a function of χ for the qubit. The points show the upper classical
bound CR(χ ) for two sets of χ -values: χ = kπ/24 and χ = kπ/33,
with k a non-negative integer. Only for selected values of χ [notably
those used in (a)] is the bound low enough to allow strong violation
of the inequality. (d) Maximum value Imax(χ ) and bound CI(χ ) as a
function of χ . The different qubit lines correspond to different initial
conditions. Only for the special case of χ = π are violations of the
classical inequality observed.

Hqb = 1
2�(|L〉〈R| + |R〉〈L|) with splitting � (h̄ = 1, here and

throughout). Starting the qubit in an arbitrary state, we find

R(χ,τ ) = cos2
(

1
2χ

) + sin2
(

1
2χ

) {2 cos �τ − cos 2�τ }. (8)

This function is plotted in 1(a) for several different values
of χ . Its maximum occurs at a time tRmax = π/(3�) and has
the value Rmax(χ ) = 1 + 1

2 sin2( 1
2χ ) � 3/2. Whether or not

this constitutes a violation of Eq. (5) depends on the value of
CR(χ ) [see Fig. 1(c)]. Maximum violation occurs for χ = π

where Rmax(π ) = 3/2 and CR(π ) = 1. In this special case,
the MGF becomes the two-time correlation function for the
charge-parity operator of the lead, (−1)n̂ and Eq. (5a) reduces
to the Legget-Garg inequality for this operator.24 We note that,
although the behavior of Rmax is continuous as a function
of χ , the bounds, and hence the question of violation, is
discontinuous.

Figure 1(b) shows the imaginary part I (χ,t), which does
depend on initial conditions. With initial pure state α|L〉 +√

1 − α2|R〉 with α real, the maximum value reads Imax(χ ) =
〈σz〉0( sin( 1

2χ ) − 1
2 sin(χ )) where 〈σz〉0 is the expectation value

of the Pauli operator σz in the initial state.

V. SINGLE ELECTRON TRANSISTOR

Our first transport example will be the SET with normal
leads.25 We assume strong Coulomb blockade such that
only a single spinless level plays a role in transport. The
gauge-transformed Hamiltonian of our system is H (χ ) =
HS + Hres + V (χ ), where HS = εd†d describes the dot level
at energy ε; Hres = ∑

k,α ωkαc
†
kαckα , two noninteracting leads
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FIG. 2. (Color online) Violation of inequalities Eq. (5) with χ =
π for the single electron transistor in the sequential tunneling regime
(�L = �R = � = 1

4 kT , unless stated). (a) Real part R(π,τ ) − 1 as
a function of time τ . Values greater than zero indicate a violation
of Eq. (5a). A single maximum is observed at a time ∼tR

a (see text)
with height inversely proportional to the bandwidth. (b) Maximum
violation of real part inequality as a function of bandwidth. Solid lines
correspond to the analytic expression given in the text. (c) Imaginary
part I (π,τ ) as function of time τ . Violations occur at a time τ ∼
0.7(�kT )−1/2. (d) Maximum violation of imaginary part inequality
as a function of applied bias. The violation is zero in equilibrium,
increases linearly and returns to zero for large bias. In calculating
I (π,t), a large bandwidth XC = 105kT was used.

(α = L,R) with states of energy ωkα; and where V (χ ) =∑
kα tkαeiχδα,R c

†
kαd + H.c. describes single-electron tunneling

with amplitudes tkα . The leads are taken at temperature T

with a symmetric bias V across the dot such that the chemical
potentials are μL = −μR = ε ± eV/2. We also assume that
the reservoir bands have a Lorentzian cutoff with bandwidth
parameter XC .

We calculate the MGF of Eq. (7) by tracing out the leads
from the equation of motion for ρ(χ ) using the technique
described in Ref. 26, and we work to lowest order in the rates
�α(ω) ≡ 2π

∑
k |tkα|2δ(ωkα − ω), assumed constant. The re-

sulting non-Markovian quantum master equation captures
the essential features of system-bath coherence in the limit
�α/kT � 1.

Figure 2 shows that despite the weak coupling between
system and reservoir, both quantities R and I violate their
respective inequalities, albeit in different manners. The χ -
dependence of the results here is similar to that for the
qubit and so we concentrate on the case χ = π for which
maximum violations occur. The real part R(π,τ ) shows a
single maximum as a function of time [Fig. 2(a)]. Provided
that the bias is less than the bandwidth, eV � XC , R(π,τ )
is insensitive to the bias. The maximum occurs at a time
tRmax ∼ tRa = 1

2XC
log XC

�
and the value of the function at this

point is Rmax(π ) ∼ 1 + a(1 − √
a)2; a = �/XC [Fig. 2(b)].

Violation of Eq. (5) for the SET in sequential regime is
therefore an equilibrium effect and relies on finite bandwidth:
as XC increases, the degree of violation (as well as the time

of violation) tend to zero: Rmax(π ) − 1 ∼ �/XC → 0 in the
wide band limit.

Figures 2(c) and 2(d) show the imaginary part I (π,t) for
this model. In contrast to the real part, this quantity shows
violations of the classical inequality in the large bandwidth
limit, XC → ∞. As a function of time, I (π,t) shows a
single maximum located at t ∼ �−1 log[1 + c + √

c(1 + c)]
with c = 14ζ (3)/π3 �

kT
≈ 0.54 �

kT
. The maximum degree of

violation, Imax(χ ), is shown in Fig. 2(d). To lowest order
in the bias, we find Imax(π ) ∼ − 1

4eV c�
kT +c�

, and, within
the sequential regime, increasing � increases the degree of
violation. At high bias, the degree of violation becomes less
and vanishes in the infinite bias limit. In this limit, a Markovian,
essentially classical, description of electron jumps between
system and reservoir emerges.

VI. SUPERCONDUCTING SET

The second SET we consider has superconducting island
and leads. Under applied bias, transport through the island
can proceed via a number of different channels involving
both coherent tunneling of cooper-pairs (CPs) and incoherent
tunneling of quasiparticles.17 We focus here on the DJQP
resonance,18,19 where both coherent and incoherent processes
occur at both junctions. Recent interest in this resonance
concerns the current noise at finite frequency.20,21

As discussed in Ref. 21, the DJQP resonance can be
described by a model in the basis {|n,N〉} where n is the
number of electrons on the island and N the number of
charges in one of the leads.27 The coherent part of the
evolution is described by a χ -dependent Hamiltonian H (χ ) =
HC + HJ (χ ), with charging part

HC =
∑
N,n

[
EC(n − ng)2 −

(
N + n

2

)
eV

]
|n,N〉〈n,N |, (9)

where V is the bias voltage and ng is the gate-induced island
charge; and the Josephson term

HJ (χ ) = −1

2
EJ

∑
N

|0,N〉〈2,N |

+ e−2iχ |1,N〉〈−1,N + 2| + H.c, (10)

where EJ is the junction Josephson energy. A DJQP resonance
occurs at voltages for which ng = 1/2 and eV = 2EC , such
that the detunings from both left and right junctions
vanish. Transport through the SSET is then described by
the Markovian master equation ρ̇(χ ) = −i[H ( 1

2χ )ρ(χ ) −
ρ(χ )H (− 1

2χ )]+Wdec(χ )ρ(χ ) where the termWdec(χ )ρ(χ ) =
�

∑
N,α[eiχδα,RDN

α ρ(χ )DN
α

†− 1
2 {DN

α

†
DN

α ,ρ(χ )}] with DN
L =

|0,N〉〈−1,N | and DN
R = |1,N + 1〉〈2,N |, describes

dissipative quasiparticle tunneling at a rate �. The resultant
χ -dependent master equation has an 8 × 8 block matrix
structure,18 which renders the problem tractable without
further approximation.

Figure 3(a) shows the real part R as a function of time and
Fig. 3(b) its maximum value as a function of bias and gate
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FIG. 3. (Color online) Violation of inequality Eq. (5a) for the
superconducting-SET near DJQP resonance. (a) R(π/2,τ ) as a
function of time on resonance. Violations are clearly seen. For
small quasiparticle tunneling rate �, the violations repeat, albeit
somewhat damped, at longer times. (b) The maximum Rmax(π/2)
as a function of gate charge and bias. DJQP resonance occurs at
ng = 1/2 and eV = 474 μeV. (c) Rmax as a function of χ on resonance
(see text for discussion). Unless otherwise stated, the parameters
were �/EJ = 1.98, EC/EJ = 4.65, on resonance: ng = 1/2 and
eV = 2EC .

charge for a value χ = π/2. The parameters used were the
experimental parameters of Ref. 20 and inequality Eq. (5a) is
clearly violated around the DJQP resonance.

The behavior of Rmax(χ ) as a function of χ is interesting
[Fig. 3(c)]. Unlike for the qubit or the SET, Rmax(χ = π ) is
zero. This is because there are no coherent processes involving
the transfer of single charges here. In the limit �/EJ → 0, CP
tunneling dominates quasiparticle tunneling and the systems
behavior is essentially a mixture of CP tunneling in the left
junction and CP tunneling in the right. Each process looks
like the oscillation of our qubit (with double charge), but only
the righthand process contribute to the generating function.
We have then R(χ ) = 1

2 [1 + Lqb(2χ )] = 1 + 1
4 sin2(χ ), with

a maximum value of 1
4 , as observed. In the incoherent limit,

EJ /� → 0, we have R(χ ) = 1. At finite EJ , however, we
observe a peak with Rmax(χ ) → 3

2 for small values of χ (and

for χ → 2π ). In this regime, the MGF looks likes that of qubit
with χ = π with oscillation frequency �eff ∼ 3

2�E2
J χ/(�2 +

2EJ ). Thus, Rmax(χ ) → 3
2 for small χ . This does not constitute

a violation of Eq. (5a), however, because the upper bound
CR(χ ) in this limit is also 3

2 .
For this model then, the greatest violations are found for

χ = 1
2π . For the experimental values of Ref. 20, the maximum

value is Rmax ≈ 1.08. Decreasing the rate � by one-half, would
double the degree of violation, and an order of magnitude
would bring the violation close to the theoretical maximum
of 5

4 . These results not only confirm the quantum nature of
the DJQP resonance, but also show that no macroscopic-real
explanation of this phenomenon is possible.

VII. DISCUSSION

We have described a set of Leggett-Garg inequalities for
the MGF of FCS. Violation of this inequality constitutes
absence of “macroscopic reality” of the charge transferred to
the reservoir. We have calculated violations for our quantum
systems using the MGF of Eq. (7). However, similar violations
can be found with alternative definitions. For example, the
MGF discussed by Shelankov and Rammer,28

GSR(χ,t) =
∑

n

〈P̂ne
−i

χ

2 n̂(ta )eiχn̂(tb)e−i
χ

2 n̂(ta )P̂n〉, (11)

which includes a sum over projection operators P̂n onto initial
states of definite charge, gives real-part violations that are
identical for the qubit and very similar for the two SET models
to those obtained from Eq. (7). The imaginary parts calculated
with this second MGF are, however, always zero, suggesting
that the real-part violations are a more robust indicator of
quantum behavior.

One interesting perspective is to see how the uniquely
quantum behavior described here relates to the connection
between FCS and entanglement.29

ACKNOWLEDGMENTS

I am grateful to N. Lambert, T. Brandes, and M. Houzet for
discussions and to O. Karlström and J. Pederson for help with
the SET calculations. This work was supported by the DFG
through SFB 910.

1L. S. Levitov, H. Lee, and G. B. Lesovik, Journal Mathematical
Physics 37, 4845 (1996); L. S. Levitov, in Quantum Noise in
Mesoscopic Physics, Nato Science series, Vol. 97, edited by
Y. V. Nazarov (Kluwer, Dordrecht, 2002), p. 373.

2S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser, T. Ihn,
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