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Composite Majorana fermion wave functions in nanowires
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We consider Majorana fermions (MFs) in quasi-one-dimensional nanowire systems containing normal and
superconducting sections where the topological phase based on Rashba spin-orbit interaction can be tuned by
magnetic fields. We derive explicit analytic solutions of the MF wave function in the weak and strong spin
orbit interaction regimes. We find that the wave function for one single MF is a composite object formed by
superpositions of different MF wave functions which have nearly disjoint supports in momentum space. These
contributions are coming from the extrema of the spectrum, one centered around zero momentum and the other
around the two Fermi points. As a result, the various MF wave functions have different localization lengths in
real space and interference among them leads to pronounced oscillations of the MF probability density. For a
transparent normal-superconducting junction we find that in the topological phase the MF leaks out from the
superconducting into the normal section of the wire and is delocalized over the entire normal section, in agreement
with numerical results obtained in previous studies.
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I. INTRODUCTION

Majorana fermions1 (MFs), being their own antiparticles,
have attracted much attention in recent years in condensed
matter physics.2–19 Besides being of fundamental interest,
these exotic quantum particles have the potential for be-
ing used in topological quantum computing due to their
non-Abelian statistics.20–26 There are a number of systems
in which to expect MFs, e.g., fractional quantum Hall
systems,27,28 topological insulators,3,4 optical lattices,5 p-
wave superconductors,12 and especially nanowires with strong
Rashba spin-orbit interaction7–9—the system of interest in this
work. There are now several claims for experimental evidence
of MFs in topological insulators29,30 and, in particular, in
semiconducting nanowires of the type considered here.31–33

As is well known,7–9,19 an s-wave superconductor brought
into contact with a semiconducting nanowire with Rashba
spin-orbit interaction (SOI) induces effective p-wave super-
conductivity that gives rise to MFs, one at each end of
such a wire. Most studies have analyzed the corresponding
model Hamiltonian by direct numerical diagonalization, which
provides exact solutions of the Schrödinger equation for
essentially all parameter values irrespective of their relative
sizes. Less attention, however, has been given to analytical
approaches which can provide additional insights into the na-
ture of MFs. As usual, this comes with a price: closed analytic
expressions are hard to come by and can be obtained only in
special limits. But since these limits turn out to include realistic
parameter regimes such an approach is not a mere academic
exercise but worthwhile also from a physical point of view.

Motivated by this, we focus in the present work on the spinor
wave function for MFs, and derive analytical expressions
for various limiting cases, loosely characterized as weak and
strong SOI regimes. We find that these solutions are superpo-
sitions of states that come, in general, from different extremal
points of the energy dispersion, one centered around zero
momentum and the others around the Fermi points. Despite
having nearly disjoint support in momentum space, all such
contributions must be taken into account, in general, in order
to satisfy the boundary conditions imposed on the spinor wave

functions in real space. As a consequence of this composite
structure of the MF wave functions, there will be more than
one localization length that characterizes a single MF. We will
see throughout this work that the Schrödinger equation for the
systems under consideration allows, in principle, degenerate
MF wave functions. However, this degeneracy gets completely
removed by the boundary conditions considered here, and,
consequently, there exists only one single MF wave function at
a given end of the nanowire. The superposition also gives rise to
interference effects that leads to pronounced oscillations of the
MF probability density in real space. Quite interestingly, the
relative strengths of the different localization lengths as well
as of the oscillation periods can be tuned by magnetic fields.

If only a section of the wire is covered with a superconduc-
tor, a normal-superconducting (NS) junction is formed. For this
case, we find that the MF becomes delocalized over the entire
normal section, while still localized in the superconducting
section, as noted by several groups before,19,34–37 and most
recently studied in detail in a numerical study by Chevallier
et al.38 Here, we will find analytical solutions for this problem,
valid in the weak and strong SOI regime. Depending on
the length of the normal section, the support of the MF
wave function is, again, centered at zero momentum or the
Fermi momenta. Also similarly as before, different localization
lengths and oscillation periods of the MF in the normal
section occur, again tunable by magnetic fields. This could
then provide an experimental signature for MFs, e.g., in a
tunneling density of states measurement, where a signal that
comes from a zero-mode MF will show oscillations along the
normal section.

The paper is organized as follows. In Sec. II we introduce
the continuum model of a nanowire including SOI, magnetic
field, and induced superconductivity. The composite structure
of MF in proximity-induced superconducting wire is discussed
in Sec. III for strong and weak SOI. In Sec. IV we investigate
an NS junction and show how the type of MF wave function
oscillates in space and depends on magnetic field. The final
Sec. V contains our conclusions. Some technical details are
referred to two appendixes.
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FIG. 1. (Color online) Nanowire (blue slab) of length Lsc in the
superconducting regime with gap �sc induced via proximity effect
by a bulk s-wave superconductor (not shown). A magnetic field B is
applied along the nanowire in x direction and perpendicularly to the
Rashba SOI vector αR that points in z direction.

II. MODEL

Following earlier work,7–9,19,38 our starting point is a
semiconducting nanowire with Rashba SOI (see Fig. 1)
characterized by a SOI vector αR that points perpendicularly
to the nanowire axis and defines the spin quantization direction
z. In addition, a magnetic field B is applied along the
nanowire in the x direction. We imagine that the nanowire
(or a section of it) is in tunnel contact with a conventional
bulk s-wave superconductor which leads to proximity-induced
superconductivity in the nanowire itself, characterized by the
induced s-wave gap �sc (see Fig. 1). We refer to this part
of the nanowire as the superconducting section (or as the
nanowire being in the superconducting regime), in contrast
to the “normal” section of the nanowire that is not in contact
with the superconductor and thus in the normal regime.

We describe this nanowire system by a continuum model
and our goal is to find the explicit wave functions for the MFs in
the entire nanowire, including the normal and superconducting
section. For this, we need to introduce some basic definitions
and briefly recall well-known results about the spectrum.

The Hamiltonian H 0 = H kin + H SOI + HZ for the normal
regime7,8 consists of the kinetic energy term

H kin =
∑

σ

∫
dx �†

σ (x)

[
(−ih̄∂x)2

2m
− μ

]
�σ (x), (1)

where m is the (effective) electron mass, and μ is the chemical
potential, the SOI term,

H SOI = −iαR

∑
σ,σ ′

∫
dx �†

σ (x)(σ3)σσ ′∂x�σ ′(x), (2)

where, again, the z axis is chosen along αR , and the Zeeman
term corresponding to the magnetic field B along the nanowire
(x axis),

HZ = �Z

∑
σ,σ ′

∫
dx �†

σ (x)(σ1)σσ ′�σ ′(x). (3)

Here, �†
σ (x) is the creation operator of an electron at position

x with spin σ/2 = ±1/2 (along the z axis), and the Pauli
matrices σ1,2,3 act on the spin of the electron. The Zeeman
energy is given by �Z = gμBB/2, where g is the g factor,
and μB is the Bohr magneton. It is convenient to introduce the
corresponding Hamiltonian density H0,

H 0 =
∫

dx ψ†(x)H0ψ(x),
(4)

H0 = −h̄2∂2
x

/
2m − μ − iαRσ3∂x + �Zσ1,

(a) (b)

FIG. 2. (Color online) Bulk spectrum for extended electron (solid
lines) and hole (dashed lines) states in the normal (a) and in the
superconducting regime (b). (a) In the normal regime, a Zeeman gap
2�Z is opened at k = 0, but the full spectrum is still gapless due to
the propagating modes at the Fermi points ±kF . (b) The proximity-
induced superconductivity leads to the opening of a gap �e at the
Fermi points ±kF and modifies the topological gap �− = �sc − �Z

at k = 0.

which acts on the vector ψ = (�↑,�↓). The bulk spectrum of
H0 [see Fig. 2(a)] consists of two branches and is given by

E0
±(k) = h̄2k2

2m
− μ ±

√
(αRk)2 + �2

Z , (5)

where k is a momentum along the nanowire. By opening a
Zeeman gap 2�Z , the magnetic field lifts the spin degeneracy
at k = 0. The chemical potential μ is tuned inside this gap and
set to zero. In this case, the Fermi wave vector is determined
from E0

−(kF ) = 0 and given by

kF =
√

2k2
so +

√
4k4

so + k4
Z , (6)

where kso = mαR/h̄2 and kZ = √
2�Zm/h̄.

The nanowire in the superconducting regime is described
by the Hamiltonian H 0 + Hsc, where the s-wave BCS Hamil-
tonian Hsc couples states with opposite momenta and spins,7,8

Hsc = 1

2

∑
σ,σ ′

∫
dx �sc(�σ (iσ2)σσ ′�σ ′ + H.c.). (7)

The proximity-induced superconductivity gap �sc is chosen to
be real (thereby assuming that we can neglect the flux induced
by the B field, which is the case, e.g., for InSb nanowires31).
The spectrum of H 0 + Hsc [see Fig. 2(b)] is then found to be

E2
±(k) =

(
h̄2k2

2m

)2

+ (αRk)2 + �2
Z + �2

sc

± 2

√
�2

Z�2
sc +

(
h̄2k2

2m

)2[
�2

Z + (αRk)2
]
. (8)

The “topological” gap at k = 0 is given by �− = �sc − �Z ,
and the closing of this gap marks the transition between non-
topological (�− > 0) and topological (�− < 0) phases.5,7,8

In contrast, the gap at kF , �e ≡ 2|E−(kF )|, is always nonzero
[see Fig. 2(b)].

III. MAJORANA FERMIONS IN THE
SUPERCONDUCTING SECTION

In this section we consider first the simpler case where
the superconducting section extends over the entire nanowire
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(a) (b)

FIG. 3. (Color online) (a) Band structure of a nanowire with
strong SOI and in a uniform magnetic field B in the laboratory frame
(see also Fig. 2) for the normal section. States around k = 0 belong to
the interior branches and states around k = kF = 2kso belong to the
exterior branches. (b) The same band structure in the rotating frame.
The rotating magnetic field B̃(x) given by Eq. (12) couples R̃↑ and
L̃↓ that leads to the opening of the Zeeman gap 2�Z but does not
affect L̃↑ and R̃↓.

from x = 0 to x = Lsc; see Fig. 1. In the topological phase
there is one MF bound state at each end of the nanowire.7,8

In the physically interesting regime, these two MFs should be
independent and have negligible spatial overlap. This justifies
the consideration of a semi-infinite nanowire. In this work we
focus on the MF at the left end, x = 0.

We will consider two limiting regimes, namely strong
(kF � 2kso) and weak (kF � kZ) SOI. In both regimes, the
Hamiltonian can be linearized near the Fermi points and solved
analytically. We show that the MF wave function has support in
k space from the exterior (k � ±kF ) and the interior (k � 0)
branches of the spectrum; see Fig. 3(a). If the system is in
some intermediate regime of moderate SOI, the support of the
MF wave function extends over all momenta from −kF to kF ,
and this case cannot be treated analytically in the linearization
approximation considered here.

A. Regime of strong SOI and rotating frame

The regime of strong SOI is defined by the condition that
the SOI energy at the Fermi level is larger than the Zeeman
splitting, �Z � mα2

R/h̄2 (or kF ≈ 2kso), and larger than the
proximity gap, �sc � mα2

R/h̄2. This allows us to treat the
magnetic field and the proximity-induced superconductivity
as small perturbations.

The spectrum obtained in Eq. (5) consists of two parabolas
shifted by the SOI momentum kso = mαR/h̄2 and with a
Zeeman gap opened at k = 0 [see Fig. 3(a)]. In the strong SOI
regime it is more convenient to work in the rotating frame;
see Fig. 3(b). For this we follow Ref. 39 and make use of the
following spin-dependent gauge transformation

�σ (x) = e−iσksox�̃σ (x), (9)

where the tilde refers to the rotating frame. The H SOI

term is effectively eliminated (H̃ SOI = 0) and the spectrum
corresponding to H̃ kin consists of two parabolas centered at
k = 0, one for spin up and one for spin down. Around the
Fermi points, ±kso, the spectrum can be linearized and the
electron operators �̃σ are expressed in terms of slowly varying

right (R̃σ ) and left (L̃σ ) movers,

�̃σ (x) = R̃σ (x)eiksox + L̃σ (x)e−iksox. (10)

The kinetic-energy term in the linearized model is

H̃ kin = −ih̄υF

∫
dx [R̃†

σ (x)∂xR̃σ (x) − L̃†
σ (x)∂xL̃σ (x)]

(11)

with Fermi velocity υF = αR/h̄. Here, we dropped all fast os-
cillating terms, which is justified as long as ξ 
 2π/kso, where
ξ is a localization length of R̃σ and L̃σ (see below).

In the rotating frame the B field be comes helical, rotating
in the plane perpendicular to the SOI vector αR ,

B̃(x) = B[x̂ cos(2ksox) − ŷ sin(2ksox)]. (12)

Here, x̂ and ŷ are unit vectors in x and y directions, respectively
(see Fig. 1). This leads to the Zeeman Hamiltonian of the form

H̃Z = �Z

∫
dx �̃†

σ (x)e2iσksox�̃−σ (x),

� �Z

∫
dx [R̃†

↑(x)L̃↓(x) + L̃
†
↓(x)R̃↑(x)], (13)

where in the second line we used the linearization approxi-
mation and, again, dropped all fast oscillating terms. We note
that only R̃↑(x) and L̃↓(x) are coupled, which leads to the
opening of a gap, as shown in Fig. 3(b). This is similar to
the spin-selective Peierls mechanism discovered in Ref. 39
where interaction effects strongly renormalize this gap (here,
however, we shall ignore interaction effects).

The superconductivity term [see Eq. (7)] in the linearized
model becomes

H̃ sc = 1

2

∫
dx �sc(R̃↑(x)L̃↓(x) − L̃↓(x)R̃↑(x)

+ L̃↑(x)R̃↓(x) − R̃↓(x)L̃↑(x) + H.c.). (14)

We construct two vectors, φ̃(i) = (R̃↑,L̃↓,R̃
†
↑,L̃

†
↓) and φ̃(e) =

(L̃↑,R̃↓,L̃
†
↑,R̃

†
↓), which correspond to the exterior (k � 2kso)

and interior (k � 0) branches of the spectrum in the laboratory
frame [see Fig. 3(a)]. The linearized Hamiltonian H̃ kin +
H̃Z + H̃ sc reduces then to (l = i,e)

H̃ (l) = 1

2

∫
dx [φ̃(l)(x)]†H̃(l)φ̃(l)(x), (15)

where the interior branches are described by

H̃(i) = −ih̄υF σ3∂x + �zσ1η3 + �scσ2η2, (16)

and the exterior ones by

H̃(e) = ih̄υF σ3∂x + �scσ2η2. (17)

Here, the Pauli matrices η1,2,3 act on the electron-hole
subspace.

The energy spectrum is determined by the Schrödinger
equation, H̃(l)ϕ̃

(l)
E (x) = Eϕ̃

(l)
E (x), with boundary conditions to

be imposed on the eigenfunctions ϕ̃
(l)
E (x) as discussed below.

We introduce then the operator γ̃
(l)
E = ∫ dx ϕ̃

(l)
E (x) · φ̃(l)(x) and

see that it diagonalizes Eq. (15), i.e., H̃ (l) =∑E E(γ̃ (l)
E )†γ̃ (l)

E .
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Focusing now on the zero modes, we consider in particular
γ̃ (l) ≡ γ̃

(l)
E=0 but express it in a more convenient basis,

γ̃ (l) =
∫

dx �̃
(l)
E=0(x) · �̃(x), (18)

where �̃ = (�̃↑,�̃↓,�̃
†
↑,�̃

†
↓) and where fast oscillating terms

were dropped. In this new basis �̃, we have reinstalled the
phase factors e±iksox (associated with R̃σ and L̃σ ) explicitly
in the wave functions �̃

(l)
E=0(x), so that they are taken

automatically into account when we impose the boundary
conditions on �̃

(l)
E=0(x).

The zero-energy operator γ̃ (l) represents a MF, i.e., (γ̃ (l))† =
γ̃ (l), if and only if the corresponding wave function �̃

(l)
E=0(x)

has the following form:

�̃
(l)
E=0(x) =

⎛⎜⎜⎜⎝
f (x)

g(x)

f ∗(x)

g∗(x)

⎞⎟⎟⎟⎠, (19)

where the functions f,g are arbitrary up to nor-
malization

∫
dx|�̃(l)

E=0(x)|2/2 = ∫ dx(|f (x)|2 + |g(x)|2) =
1, which, however, will be suppressed in the following.

In infinite space (no boundary conditions), the spectrum
of the interior branches [see Eq. (16)] is given by E

(i)
± =

±
√

(h̄υF κ)2 + �2±, while the one for the exterior branches

[see Eq. (17)] is given by E
(e)
1,2 = ±√(h̄υF κ)2 + �2

e , where κ

is taken from the Fermi point. Here, �± = �sc ± �Z and
�e = �sc. If �Z and �sc become equal, the topological
interior gap �− is closed. In contrast, the exterior gap �e

is not affected by the magnetic field.
The only normalizable eigenstates of H̃(l) at zero energy

and at x > 0 are two evanescent modes coming from the
interior branches, characterized by a decay wave vector k

(i)
± =

|�±|/αR , and two evanescent modes coming from the exterior
branches, characterized by a decay wave vector k(e) = �sc/αR .
The corresponding zero-energy eigenfunctions ϕ̃

(l)
E=0(x) give

the four basis wave functions, exponentially decaying in the
semi-infinite space x > 0,

�̃
(i)
− =

⎛⎜⎜⎜⎝
−i sgn(�−)e−iksox

eiksox

i sgn(�−)eiksox

e−iksox

⎞⎟⎟⎟⎠e−k
(i)
− x,

(20)

�̃
(i)
+ =

⎛⎜⎜⎜⎝
e−iksox

−i eiksox

eiksox

i e−iksox

⎞⎟⎟⎟⎠e−k
(i)
+ x,

�̃
(e)
1 =

⎛⎜⎜⎜⎝
i eiksox

e−iksox

−i e−iksox

eiksox

⎞⎟⎟⎟⎠e−k(e)x, �̃
(e)
2 =

⎛⎜⎜⎜⎝
eiksox

i e−iksox

e−iksox

−i eiksox

⎞⎟⎟⎟⎠e−k(e)x.

(21)

Here we should note that these four degenerate MF wave
functions are not yet solutions of our problem: they do satisfy
the Schrödinger equation but not yet the boundary conditions.
Thus we search now for a linear combination of them, �̃M ,
such that the boundary conditions are satisfied. At the left
end of the nanowire, the condition on the wave function
is �̃M (x = 0) = 0. We assume here that the length of the
nanowire Lsc provides the largest scale, so we can neglect
any interplay between the two ends of the nanowire and
treat them independently (see also below). The set of vectors
{�̃(i)

− , �̃
(i)
+ , �̃

(e)
1 , �̃

(e)
2 } is seen to be linearly independent

in the nontopological phase at x = 0, thus it is impossible
to satisfy the boundary conditions and no solution exists at
zero energy. In contrast, in the topological phase, �Z > �sc,
the two vectors �̃

(i)
− and �̃

(e)
1 are “collinear: such that the

boundary condition can be satisfied and the zero energy state
is a MF given by �̃M = �̃

(i)
− − �̃

(e)
1 in the rotating frame.

Using Eq. (9), the MF wave function in the laboratory frame
is then given by

�M (x) =

⎛⎜⎜⎜⎝
i

1

−i

1

⎞⎟⎟⎟⎠e−k
(i)
− x −

⎛⎜⎜⎜⎝
i eikF x

e−ikF x

−i e−ikF x

eikF x

⎞⎟⎟⎟⎠e−k(e)x, (22)

with kF = 2kso.
There are a few remarks in order. First, we see that the

initial fourfold degeneracy of the MF has been completely
removed by the boundary condition and we end up with one
single nondegenerate MF wave function at the left end of the
nanowire, x = 0 (analogously for the right end, x = Lsc). This
is reminiscent of a well-known fact in elementary quantum
mechanics, where for spinless particles in a one-dimensional
box the degeneracy also gets removed by vanishing boundary
conditions (whereas there is degeneracy for periodic boundary
conditions).40 This nondegeneracy of the MFs is a generic
feature which will occur in all cases considered in this
work, even in the presence of additional symmetries such
as pseudotime-reversal invariance (see Sec. III B below and
Ref. 41).

Second, we see that the MF wave function �M is a
“composite” object that is a superposition of two MF wave
functions with (essentially) disjoint supports in k space,
one coming from the exterior (�̃(e)

1 ) and one from interior
(�̃(i)

− ) branches of the spectrum, respectively. Note that the
corresponding wave vectors are extrema of the particle-hole
spectrum shown in Fig. 2(b). As a consequence, these two MF
wave functions have different localization lengths in real space,
ξ (i) = 1/k

(i)
− and ξ (e) = 1/k(e), which are inverse proportional

to the corresponding gaps, |�−| and �sc. Which one of them
determines the localization length of �M depends on the ratio
between �Z and �sc.

In particular, as the magnetic field is being increased from
zero to the critical value Bc = 2�sc/gμB , MFs emerge at each
end of the nanowire.5,7,8 However, if the localization lengths
ξ (i) of these emerging MFs are comparable to the length Lsc of
the nanowire, then these two MFs are hybridized into a subgap
fermion of finite energy (see Appendix A). This then implies
that the MFs in a finite wire can only appear at a magnetic field
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(a) (b)

FIG. 4. (Color online) The MF probability density |�M (x)|2, see
Eq. (22), for a nanowire in the strong SOI regime with h̄2�sc/mα2

R =
0.1. The decaying MF wave function �M oscillates with a period
π/kso. (a) In the topological phase but still near the transition, �Z =
2�sc, the MF wave function undergoes many oscillations due to the
interference between �̃

(i)
− and �̃

(e)
1 . (b) Deep inside the topological

phase, �Z = 7�sc, the MF wave function from the interior branches
decays much faster than the one from the exterior branches. This
leads to only a few oscillations of the density and a uniform decay
with a decay wave vector k(e) away from the end of the nanowire.

B∗
c � Bc(1 + 4αR/�scLsc) that is larger than the Bc obtained

for a semi-infinite nanowire. If the magnetic field is increased
further, the main contribution to the MF bound state comes
from the exterior branches.

The composite structure of the MF wave function manifests
itself in the probability density |�M (x)|2 along the nanowire.
The density of a MF coming only from one of the branches,
for example, �̃

(i)
− , is just decaying exponentially. In contrast,

the density of the composite MF exhibits oscillations (see
Fig. 4). These oscillations are due to interference and are most
pronounced when the contributions of �̃

(e)
1 and �̃

(i)
− to �̃M are

similar, i.e., when both decay lengths, ξ (i) and ξ (e), are close
to each other.

The approach of the rotating magnetic field allows us to
understand the structure of composite MF wave function.
However, this approach is valid under the assumption that
the SOI at the Fermi level is the largest energy scale. In order
to explore the weak SOI regime, we come back to the full
quadratic Hamiltonian in the next subsection.

B. Weak SOI regime: Near the topological phase transition

The regime of weak SOI is defined by the condition that
the Zeeman splitting is much larger than the SOI energy at the
Fermi level, �Z 
 mα2

R/h̄2 [or kF ≈ kZ; see Eq. (6)]. This
allows us to treat the SOI as a perturbation.15,26

Around the Fermi points, ±kF , the eigenstates of H0

are found from the Schrödinger equation H0(−i∂x →
±kF )ϕR/L = 0 [see Eq. (4)] and given by

ϕ
R/L

0 = 1√
2

(
−1 ± kso

kF

1 ± kso
kF

)
, (23)

where ϕ
R/L

0 denotes the eigenstates at k = ±kF . In Eq. (23)
we kept only terms up to first order in kso/kF . As expected,
ϕR

0 and ϕL
0 are nearly “aligned” along the magnetic field since

�Z 
 αRkF . In the absence of SOI, ϕR
0 and ϕL

0 are perfectly
aligned along the x axis and have the same spin, so they cannot
be coupled by an ordinary s-wave superconductor. The SOI
slightly tilts the spins in the orthogonal direction, which then
allows the coupling between these states if the nanowire is
brought into the proximity of an s-wave superconductor.

The exterior branches can be treated in the linearized
approximation similar to Sec. III A,

χ (x) = R(x)eikF x + L(x)e−ikF x, (24)

where, again, R (L) annihilates a right- (left-) moving
electron. These operators are connected to spin-up (�↑) and
spin-down (�↓) electron operators as R(x) = ϕR(x) · ψ and
L(x) = ϕL(x) · ψ , where ψ = (�↑,�↓) (with corresponding
support for right and left movers). Here, ϕR/L(x) is given by
Eq. (23) but where we allow now also for a slowly varying x

dependence.
In this approximation, we find

H 0 = −ih̄υF

∫
dx [R†(x)∂xR(x) − L†(x)∂xL(x)], (25)

where the Fermi velocity is given by υF ≈ √
2�Z/m. The

proximity-induced superconductivity [see Eq. (7)] is described
in the linearized model as

Hsc = 1

2

∫
dx �sc(R(x)L(x) − L(x)R(x) + H.c.), (26)

where the strength of the proximity-induced effective p-wave
superconductivity, �sc, is found from Eqs. (7), (23), and (24),

�sc

�sc

= (ϕR
0

)∗ · iσ2ϕ
L
0 = 2

kso

kF

=
√

2mαR

h̄
√

�Z

� 1. (27)

The suppression of �sc compared to �sc can be understood
from the fact that two states with opposite momenta at the
Fermi level have mostly parallel spins due to the strong
magnetic field and they slightly deviate in the orthogonal
direction due to the weak SOI, which then leads to a
suppression of �sc by a factor kso/kF .

Again, introducing a vector φ(e)(x) = (R,L,R†,L†), we
represent the linearized Hamiltonian H (e) = H 0 + Hsc as

H (e) = 1

2

∫
dx(φ(e))†H(e)φ(e),

(28)
H(e) = −ih̄υF τ3∂x + �scτ2η2,

where the Pauli matrices τ1,2,3 act on the right-/left-mover
subspace.

The spectrum around the Fermi points in infinite space (no
boundary conditions) follows from the Schrödinger equation,
H(e)ϕ(e) = E(e)ϕ(e), and is given by E

(e)
1,2 = ±√(h̄υF κ)2 + �2

e ,
where the momentum κ is again taken from the Fermi points.
Here, 2�e ≡ 2�sc is the gap induced by superconductivity.

The zero-energy solutions that are normalizable for x > 0
are two evanescent modes with wave vector k̄(e) = �sc/h̄υF

determining the localization length. These solutions can
be written explicitly as ϕ

(e)
1 = (1,−i,1,i)e−k̄(e)x and ϕ

(e)
2 =

(−i,1,i,1)e−k̄(e)x . Repeating the procedure that led us to
Eq. (18) in Sec. III A, we can introduce a new MF operator,

γ =
∫

dx �E=0(x) · �(x). (29)
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Here � = (�↑,�↓,�
†
↑,�

†
↓). The two corresponding wave

functions are written as

�
(e)
j =

⎛⎜⎜⎜⎝
fj (x)

if ∗
j (x)

f ∗
j (x)

−ifj (x)

⎞⎟⎟⎟⎠e−k̄(e)x, (30)

where

f1(x) = i(1 + kso/kF )eikF x − (1 − kso/kF )e−ikF x,
(31)

f2(x) = i(1 − kso/kF )e−ikF x − (1 + kso/kF )eikF x .

The effect of the SOI on the states around k = 0 is negligible
near the topological phase transition if h̄2|�−|/2mα2

R � 1.
Therefore the eigenstates for weak and strong SOIs are the
same in first order in SOI. This means that we are allowed to
take �̃

(i)
− and �̃

(i)
+ given by Eq. (20) and transform them back

into the laboratory frame,

�
(i)
− =

⎛⎜⎜⎜⎝
−i sgn(�−)

1

i sgn(�−)

1

⎞⎟⎟⎟⎠e−k
(i)
− x, �

(i)
+ =

⎛⎜⎜⎜⎝
1

−i

1

i

⎞⎟⎟⎟⎠e−k
(i)
+ x. (32)

After we found four basis wave functions
{�(i)

− ,�
(i)
+ ,�

(e)
1 ,�

(e)
2 }, we should impose the boundary

conditions on their linear combination �(x). The wave
function �(x) should vanish at the boundary x = 0. One can
see that if we neglect the corrections to the wave functions
�

(e)
1 and �

(e)
2 coming from SOI, then we are able to satisfy

the boundary conditions. This is a consequence of the fact
that in the absence of SOI both states at the Fermi level have
the same spin, so that the functions �

(e)
i , i = 1,2, effectively

become spinless objects and the MF always exists and arises
only from the exterior branches. For the complete treatment,
however, we should also consider contributions from the
interior branches. This will be addressed next.

The set of wave functions {�(i)
− ,�

(i)
+ ,�

(e)
1 ,�

(e)
2 } becomes

linearly dependent in the topological regime �− < 0 and the
MF wave function is given by

�M =
(

1 − kso

kF

)
�

(e)
1 −

(
1 − kso

kF

)
�

(e)
2 − 4

kso

kF

�
(i)
− .

(33)

As in the regime of strong SOI (see Sec. III A), the MF
wave function has its support around wave vectors k = 0
(interior branches) and k = ±kF (exterior branches). However,
in contrast to the previous case, the contribution of the interior
branches is suppressed by the small parameter kso/kF , thus the
exterior branches contribute most to the MF wave function.
At the same time we note that the localization length of
MFs is determined by the smallest gap in the system. Near
the topological phase transition,7,8 which corresponds to the
closing of the topological (interior) gap, the interior branches
determine the localization length as long as k̄(e) > k

(i)
− . If the

magnetic field is increased further, the gap in the system is
given by the exterior gap, 2�e = 2�sc ∝ 1/

√
B [see Eq. (27)].

The localization length is increasing as ∝B. As soon as it is
comparable to the nanowire length Lsc, the wave function of

FIG. 5. (Color online) The MF probability density |�M (x)|2 for
a nanowire in the weak SOI regime (mα2

R/h̄2�sc = 0.2 and �Z =
5�sc) oscillates with period π/kF due to interference between right-
and left-moving contributions [see Eq. (30)]. The decay length is
given by 1/k̄(e).

the two MFs at opposite ends overlap, and the two zero-energy
MF levels are split into one subgap fermion of finite energy.

In the weak SOI regime and sufficiently far away from the
topological transition point, �Z > �sc(1 + kso/kF ), so that
the gap is determined by the exterior branches only, we can
work in the simplified model15 given by H(e) [see Eq. (28)].
The explicit MF wave function can be found from Eq. (33),

�M (x) =

⎛⎜⎜⎜⎝
e−iπ/4

ieiπ/4

eiπ/4

−ie−iπ/4

⎞⎟⎟⎟⎠ sin(kF x)e−k̄(e)x. (34)

Again, we note that this wave function describes a MF with
the spin of both, the electron and the hole, pointing in the
x direction, again, up to corrections of order of kso/kF . The
MF probability density |�M (x)|2 ∝ sin2(kF x)e−2k̄(e)x decays
oscillating with a period half the Fermi wavelength, λF /2 =
π/kF (see Fig. 5). In passing, we remark that H(e) given in
Eq. (28) belongs to the topological class DIII according to
the classification scheme of Ref. 42 and supports MFs in one
dimension, in agreement with our result Eq. (34).41

IV. MAJORANA FERMIONS IN NS JUNCTIONS

In this section we consider a nanowire containing a normal-
superconducting (NS) junction where the right part is in
the superconducting and the left part in the normal regime;
see Fig. 6. The junction is assumed to be fully transparent.
We will show that the MF wave function leaks out of the
superconducting section and leads to a new MF bound state

FIG. 6. (Color online) NS junction of a nanowire. The right
section (blue) of the nanowire from x = 0 to x = Lsc is brought into
contact with a bulk s-wave superconductor (not shown) that induces a
gap �sc in the nanowire via proximity effect. The left section (green)
of the nanowire from x = −Ln to x = 0 is in the normal regime. A
magnetic field B is applied along the entire nanowire in x direction
and perpendicularly to the Rashba SOI vector αR , which points in z

direction.
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that extends over the entire normal section. We note that this
bound state is different from Andreev bound states44 known
to occur in NS junction systems. Indeed, the existence of the
latter at zero energy would be accidental in the presence of a
magnetic field since they move away from the Fermi level if the
magnetic field is varied. Further, the MFs found in this section
always exist in the topological regime and are not sensitive
to the length Ln of the normal section, in stark contrast to
Andreev bound states that move in energy as a function of
Ln.44,45

We continue to work with the formalism developed in
Sec. III [see Eqs. (18) and (29)] and represent γ in the
basis of electron/hole spin-up/spin-down operators �(x) in
terms of a four-component vector �(x) on which we im-
pose the boundary conditions. As before, the length of the
superconducting part of the nanowire Lsc is assumed to be
much larger than any decay length given by k

(i)
− , k

(i)
+ , or k(e)

(k̄(e)). This assumption allows us to treat the nanowire again
as semi-infinite with no boundary conditions at x = Lsc. In
contrast, the normal section, x ∈ [−Ln,0], is finite. Thus at
x = 0 we invoke continuity of the wave functions and of their
derivatives46 and at x = −Ln we impose vanishing boundary
conditions,

�(x = 0−) = �(x = 0+), (35)

∂x�(x = 0−) = ∂x�(x = 0+), (36)

�(x = −Ln) = 0. (37)

The analytical form of the functions �(x) can be found in two
regimes, again in the weak and strong SOI limits, which we
address now in turn.

A. NS junction in the strong SOI regime

As before, the most convenient way to treat the strong SOI
regime is to work in the rotating frame. In Sec. III A we already
found the four basis wave functions at zero energy,(

�̃
(sc)
1 ,�̃

(sc)
2 ,�̃

(sc)
3 ,�̃

(sc)
4

) = (�̃(i)
− ,�̃

(i)
+ ,�̃

(e)
1 ,�̃

(e)
2

)
, (38)

in the superconducting section, for x � 0 [see Eqs. (20) and
(21)].

The eigenfunctions for the normal section can be found
from the linearized Hamiltonians for the interior branches,
H̃(i) [see Eq. (16)], and for the exterior branches, H̃(e) [see
Eq. (17)], with �sc = 0. The exterior branches are not gapped
leading to the four propagating modes [see Fig. 3(b)] with
wave functions given by

�̃
(n)
1 =

⎛⎜⎜⎜⎝
−i eiksox

e−iksox

i e−iksox

eiksox

⎞⎟⎟⎟⎠, �̃
(n)
2 =

⎛⎜⎜⎜⎝
eiksox

i e−iksox

e−iksox

−i eiksox

⎞⎟⎟⎟⎠,

(39)

�̃
(n)
3 =

⎛⎜⎜⎜⎝
i eiksox

e−iksox

−i e−iksox

eiksox

⎞⎟⎟⎟⎠, �̃
(n)
4 =

⎛⎜⎜⎜⎝
eiksox

−i e−iksox

e−iksox

i eiksox

⎞⎟⎟⎟⎠,

where we choose to represent the wave functions in form of
MFs, guided by our expectation that the final solution is also
a MF. The interior branches are gapped by the magnetic field
[see Fig. 3(b)] and the four corresponding wave functions
describing evanescent modes are given by

�̃
(n)
5 =

⎛⎜⎜⎜⎜⎝
−i e−iksox

eiksox

i eiksox

e−iksox

⎞⎟⎟⎟⎟⎠ek(n)x, �̃
(n)
6 =

⎛⎜⎜⎜⎜⎝
e−iksox

i eiksox

eiksox

−i e−iksox

⎞⎟⎟⎟⎟⎠ek(n)x,

(40)

�̃
(n)
7 =

⎛⎜⎜⎜⎜⎝
i e−iksox

eiksox

−i eiksox

e−iksox

⎞⎟⎟⎟⎟⎠e−k(n)(Ln+x),

(41)

�̃
(n)
8 =

⎛⎜⎜⎜⎜⎝
e−iksox

−i eiksox

eiksox

i e−iksox

⎞⎟⎟⎟⎟⎠e−k(n)(Ln+x),

with k(n) = �Z/αR . The modes �̃
(n)
5,6 decay from their maxi-

mum at x = 0 to zero for x → −∞, while �̃
(n)
7,8 decay from

their maximum at x = −Ln to zero for x → +∞.
After having introduced the basis consisting of 12 MF wave

functions given by Eqs. (20), (21), (39), and (41), we search
for their linear combination,

�̃M (x) =
{∑4

j=1 aj �̃
(sc)
j , x � 0,∑8

j=1 bj �̃
(n)
j , −Ln � x � 0,

(42)

such that the boundary conditions (35)–(37) are satisfied. This
is, in general, possible only in the topological phase. However,
we also find solutions in the nontopological phase, where
these solutions exist only if some special relations between
the parameters �Z , αR , �sc, and Ln are satisfied. This allows
us to identify them as Andreev bound states in an NS junction.
Since they are not of interest here, we focus on the solutions
in the topological phase only.

It is worth of pointing out that due to the internal symmetry
of the MF wave functions, five of the coefficients are readily
seen to vanish, namely

a2 = b1 = b4 = b5 = b8 = 0. (43)

The exact analytical solution is given in Appendix B and used
for the plot in Fig. 7. Here, we only discuss the two limiting
cases of long and short normal sections Ln.

First, we consider Ln 
 1/k(n), allowing us to neglect the
terms �̃

(n)
5 and �̃

(n)
6 at x = −Ln, and �̃

(n)
7 and �̃

(n)
8 at x = 0. In

this case, the sum in Eq. (42) is determined by the coefficients

a1 → 0, b6 → 0, b7 = −1,
(44)

a3 = b3 = cos(2ksoLn), a4 = b2 = − sin(2ksoLn),
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leading to the solution of the form

�̃M (x) =
{

�̃
(n)
3 (2Ln + x) e−k(e)x, x > 0

�̃
(n)
3 (2Ln + x) − �̃

(n)
3 (−x) e−k(n)(x+Ln), −Ln � x < 0.

(45)

Thus we see that the MF wave function in the laboratory
frame, �M (x), decays monotonically in the superconducting
section while it oscillates in the normal one (see Fig. 7). In
weak magnetic fields the MF probability density |�M (x)|2
oscillates over the entire normal section, in contrast to the near
absence of oscillations in strong magnetic fields.

We note that a long normal section serves as a “momentum
filter.” As shown in Sec. III A, a MF has equal support
from the exterior and interior branches [see Eq. (22)] if the
entire nanowire is in the superconducting regime. In contrast
to that, if a significant portion of the nanowire is in the
normal regime, the MF has support mostly from the exterior
branches with momenta k � ±kF . The contributions from the
interior branches with momenta k � 0 are negligibly small,
a1 → 0 and a2 = 0. This behavior can be understood in terms
of momentum mismatch: the normal section does not have
propagating modes with k = 0 (in the laboratory frame). Thus
while such k = 0 modes exist in the superconducting section,
they cannot propagate into the normal section.

Second, we consider the opposite limit Ln � 1/k(n). Here,
we can treat the decaying solutions, �̃

(n)
j , j = 5,6,7,8, as

being constant over Ln. The MF wave function �̃M (x) is
constructed from seven basis MF wave functions with the
same coefficients as in Eq. (44) with the only difference that
now a1 = −1. For short normal sections, the form of the MF

FIG. 7. (Color online) The MF probability density |�M (x)|2 in an
NS junction for a nanowire in the strong SOI regime (h̄2�sc/mα2

R =
0.06). The normal section of length Ln is long compared to the
decay length, i.e., k(n)Ln 
 1. The MF wave function extends over
the entire normal section (green) and decays exponentially inside
the superconducting section (white). The oscillations with period
π/kso result from interference between the three components �̃

(n)
2,3,7,

of �M . In weak magnetic fields (�Z = 1.5�sc, blue full line),
k(n)Ln ∼ 1, and the oscillations extend over the entire normal section.
In contrast, in strong magnetic fields (�Z = 7�sc, red dashed line),
the oscillations are strongly suppressed. Inset: |�M (x)|2 as function
of x for a short normal section, k(n)Ln � 1. Similarly to the case of
the superconducting wire (see Fig. 4), |�M (x)|2 decays oscillating.

probability density |�M (x)|2 is very similar to the one of a
superconducting nanowire [compare the inset of Fig. 7 with
Fig. 4(a)]. Again, the interference between �̃

(i)
− , �̃(e)

1 , and �̃
(e)
2

leads to oscillations in the superconducting section.
In both limits of short and long normal sections, |�M (x)|2

has its maximum in the normal section while it decays in the
superconducting one. This opens the possibility of measuring
the presence of a MF state spectroscopically in the normal
section. The amplitude and period of oscillations of the MF
probability density is sensitive to magnetic fields and to the
nanowire length, controlled, e.g., by an infinite barrier on the
left end. Moreover, by shifting such a barrier via gates, we
can change the type of MF from �̃

(e)
1 to �̃

(e)
2 [see Eqs. (38),

(42), and (44)]. This amounts to changing a given MF state
from a “real part” type, ψ + ψ†, to an “imaginary part” type,
i(ψ − ψ†).

B. NS junction in the weak SOI regime

As before, we first identify basis wave functions in the
superconducting section and in the normal section. Then, we
search for a linear combination of them such that the boundary
conditions given by Eqs. (35)–(37) are satisfied.

As shown in Sec. III B, the MF wave function �M

has predominantly support from the exterior branches. The
correction to the MF wave function from the interior branches
is suppressed by a factor kso/kF [see Eq. (33)]. If we focus on
the regime away from the topological phase transition where
the exterior gap is smaller than the interior one, then, as in
Eq. (30), the MF wave function can be constructed to first
order in kso/kF from the exterior wave functions �

(e)
j=1,2 alone,

�
(sc)
j =

⎛⎜⎜⎜⎝
gj (x)

ig∗
j (x)

g∗
j (x)

−igj (x)

⎞⎟⎟⎟⎠e−k̄(e)x,

(46)
g1 = e−iπ/4 sin(kF x), g2 = e−iπ/4 cos(kF x).

The propagating electron modes ϕR and ϕL of Eq. (23)
in the normal section described by H 0 (without Hsc) were
considered before [see Eq. (29)] and given by

�
(n)
1 =

⎛⎜⎜⎜⎝
e−ikF x

−e−ikF x

eikF x

−eikF x

⎞⎟⎟⎟⎠, �
(n)
2 =

⎛⎜⎜⎜⎝
eikF x

−eikF x

e−ikF x

−e−ikF x

⎞⎟⎟⎟⎠,

(47)

�
(n)
3 =

⎛⎜⎜⎜⎝
ie−ikF x

−ie−ikF x

−ieikF x

ieikF x

⎞⎟⎟⎟⎠, �
(n)
4 =

⎛⎜⎜⎜⎝
ieikF x

−ieikF x

−ie−ikF x

ie−ikF x

⎞⎟⎟⎟⎠.
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FIG. 8. (Color online) The MF probability density |�M (x)|2 in an
NS junction for a nanowire in the weak SOI regime (mα2

R/h̄2�sc =
0.2 and �Z = 5�sc). The MF wave function extends over the entire
normal section of length Ln (green) and decays rapidly inside the
superconducting section (white).

The ansatz for the wave function in both sections is

�(x) =
⎧⎨⎩
∑2

j=1 aj�
(sc)
j , x � 0∑4

j=1 bj�
(n)
j , −Ln � x � 0.

(48)

The coefficients aj and bj can then be found from the boundary
conditions (35)–(37),

a1 = 2[k̄(e) sin(kF Ln) + kF cos(kF Ln)],

a2 = 2kF sin(kF Ln),
(49)

b1 = −b4 = kF cos(kF Ln − π/4),

b2 = −b3 = −kF cos(kF Ln + π/4),

leading finally to the MF wave function of the form

�M (x) = f (x)

⎛⎜⎜⎜⎝
e−iπ/4

−e−iπ/4

eiπ/4

−eiπ/4

⎞⎟⎟⎟⎠, (50)

where

f (x) =

⎧⎪⎪⎨⎪⎪⎩
kF sin(kF [x + Ln]), −Ln � x � 0,

e−k̄ex[kF sin(kF [x + Ln]),

+k̄e sin(kF x) sin(kF Ln)], x � 0.

(51)

The corresponding MF probability density |�M (x)|2 is
shown in Fig. 8. The MF wave function extends over the
entire normal section. In this section, we considered as basis
functions only propagating modes, �

(n)
j , leading to a purely

oscillatory solution with the period given by half the Fermi
wavelength λF /2 = π/kF . In contrast, in the superconducting
section, the MF wave function decays on a short distance.
In other words, the MF is mostly delocalized over the entire
normal section and is strongly localized in the superconduct-
ing section, in agreement with recent numerical results.38

This might simplify the detection of MFs by local-density
measurements since the normal section is freely accessible
to tunnel contacts, in contrast to the superconducting section
which needs to be covered by a bulk s-wave superconductor.

V. CONCLUSIONS

In this work, we have focused on the wave-function
properties of Majorana fermions occurring in superconducting
nanowires and in nanowires with an NS junction. The
superconducting phase is effectively p wave and is based on
an interplay of s-wave proximity effect, spin-orbit interaction,
and magnetic fields. We have derived explicit results for the
MF wave functions in the regime of strong and weak SOI
and shown that the wave functions are composite objects,
being superpositions of contributions coming from the interior
(around k = 0) and exterior (around ±kF ) branches of the
spectrum in momentum space. While the underlying Hamil-
tonians considered in this work allow degenerate MF wave
functions, the boundary conditions at hand completely lift this
degeneracy and we are left with only one single MF state at a
given end of the nanowire (i.e., in total there are two MF states
for the entire nanowire).

In the strong SOI regime of a superconducting nanowire
both branches contribute equally. However, the decay length
of the MF is determined by the branch that also defines the
smallest gap in the system. Moreover, the oscillations in the MF
probability density with period of the Fermi wavelength are
decaying on the scale given by the largest gap in the system. In
the weak SOI regime, the exterior branches mostly contribute
to the MF wave function. The contributions of the interior
branch are suppressed by the small factor kso/kF � 1 and
only close to the topological phase transition does this branch
determine the localization length of the MF. The interference
between modes from kF and −kF leads to oscillations of the
probability density of the MF with an exponentially decaying
envelope.

For a nanowire with an NS junction we find that the MF
wave function becomes delocalized over the entire normal
section, while still being localized in the superconducting
section, in agreement with recent numerical results.38 Again,
we obtain analytical results for the weak and strong SOI
regimes. Depending on the length of the normal section, the
support of the MF wave function is centered at zero momentum
or at the Fermi points. Again, we find different localization
lengths and oscillation periods of the MF in the normal section
that are tunable by magnetic fields. Based on this insight, we
expect that in a tunneling density of states measurement the
tunneling current at zero bias exhibits oscillations as a function
of position along the normal section due to the presence of the
MF in the normal section.

Finally, we remark that in this work we have focused on
single-particle properties and ignored, in particular, interaction
effects. It would be interesting to extend the present analysis to
interacting Luttinger liquids, in particular for the SOI nanowire
with an NS junction, combining the approaches developed in
Refs. 14, 15, 39, and 47.
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APPENDIX A: FINITE NANOWIRE

In this Appendix we address the problem of a finite superconducting section of length Lsc. In this case, the decaying modes
�̃0 = {�̃(i)

− , �̃
(i)
+ , �̃

(e)
1 , �̃

(e)
2 } with maximum at x = 0 are given by Eqs. (20) and (21). Now we should also take into account the

four evanescent modes with maximum at x = Lsc. These modes, �̃Lsc
= {�̃(i)

− , �̃
(i)
+ , �̃

(e)
1 , �̃

(e)
2 }, are found from Eqs. (16) and

(17) and are similar by their structure to �̃0,

�̃
(i)
− =

⎛⎜⎜⎜⎝
i sgn(�−)e−iksox

eiksox

−i sgn(�−)eiksox

e−iksox

⎞⎟⎟⎟⎠ek
(i)
− (x−Lsc), �̃

(i)
+ =

⎛⎜⎜⎜⎝
e−iksox

i eiksox

eiksox

−i e−iksox

⎞⎟⎟⎟⎠e−k
(i)
+ (x−Lsc),

(A1)

�̃
(e)
1 =

⎛⎜⎜⎜⎝
−i eiksox

e−iksox

i e−iksox

eiksox

⎞⎟⎟⎟⎠e−k(e)(x−Lsc), �̃
(e)
2 =

⎛⎜⎜⎜⎝
eiksox

−i e−iksox

e−iksox

i eiksox

⎞⎟⎟⎟⎠e−k(e)(x−Lsc).

We construct an 8 × 4 matrix ω̃(x) from the eight basis wave functions. The zero-energy solution can then be compactly
written as

�̃(x) = a · �̃0(x) + b · �̃Lsc
(x) ≡ ω̃(x)

(
a

b

)
, (A2)

where a = (a1,a2,a3,a4) and b = (b1,b2,b3,b4) are coefficients that should be determined from the boundary conditions,

�̃(x = 0,Lsc) = 0, (A3)

which can be rewritten as a matrix equation in terms of an 8 × 8 matrix �̃,

�̃

(
a

b

)
= ( ω̃(0) ω̃(Lsc) )

(
a

b

)
= 0. (A4)

The determinant of the matrix �̃ is nonzero, so the solution of the matrix equation is unique and trivial, (a,b) = 0. This means
that, strictly speaking, MFs cannot emerge in a finite-size nanowire. MFs exist only under the assumption that the overlap of the
two MF wave functions (localized at each end of the nanowire and derived in a semi-infinite nanowire model) can be neglected.
Otherwise, the two MFs are hybridized into a subgap fermion of finite energy.

APPENDIX B: EXACT SOLUTION IN STRONG SOI REGIME

Here, we present the exact solution for the MF wave function �̃(x) composed of seven different basis MFs wave functions
[see Eq. (42)] and satisfying the boundary conditions (35)–(37). We find

a2 = b1 = b4 = b5 = b8 = 0,

a1 = 4k2
so + 4ksok

(e) cosh(k(n)L) sin(2ksoLn) − 2k(e) cos(2ksoLn)[k(e) cosh(k(n)Ln) + k(n) sinh(k(n)Ln)],

a3 = e−k(n)Ln
{
ek(n)Ln(k(e)[k(n) − 2k

(i)
− ] + k(n)[k(n) − k

(i)
− ]) − 4k2

soe
2k(n)Ln cos(2ksoLn) − 2kso

(
e2k(n)Lnk(e) + k

(i)
− − k(n)

)
sin(2ksoLn)

}
,

a4 = −e−k(n)Ln
[
2ek(n)Lnkso(k(n) − k

(i)
− − k(e)) + 2kso

(
e2k(n)Lnk(e) + k

(i)
− − k(n)

)
cos(2ksoLn) − e2k(n)Ln4k2

so sin(2ksoLn)
]
, (B1)

b2 = −e−k(n)Ln
[−2ek(n)Lnksok

(e) + 2kso(k(i)
− − k(n)) cos(2ksoLn) − 4k2

soe
2k(n)Ln sin(2ksoLn)

]
,

b3 = e−k(n)Ln
{
ek(n)Lnk(e)[k(e) − k

(i)
− ] − 4k2

soe
2k(n)Ln cos(2ksoLn) + 2kso(k(n) − k

(i)
− ) sin(2ksoLn)

}
,

b6 = −2kso(k(n) − k
(i)
− ) − ek(n)Lnk(e)[2kso cos(2ksoLn) + (k(e) − k

(i)
− ) sin(2ksoLn)], b7 = 4k2

soe
k(n)Ln .
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