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Capture numbers and island size distributions in models of submonolayer surface growth
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The capture numbers entering the rate equations (RE) for submonolayer film growth are determined from
extensive kinetic Monte Carlo (KMC) simulations for simple representative growth models yielding point,
compact, and fractal island morphologies. The full dependence of the capture numbers σs(�,�) on island size s

and on both the coverage � and the � = D/F ratio between the adatom diffusion coefficient D and deposition
rate F is determined. Based on this information, the RE are solved to give the RE island size distribution
(RE-ISD), as quantified by the number ns(�,�) of islands of size s per unit area. The RE-ISDs are shown to
agree well with the corresponding KMC-ISDs for all island morphologies. For compact morphologies, however,
this agreement is only present for coverages smaller than � � 5% due to a significantly increased coalescence
rate compared to fractal morphologies. As found earlier, the scaled KMC-ISDs ns s̄

2/� as a function of scaled
island size x = s/s̄ approach, for fixed �, a limiting curve f∞(x,�) for � → ∞. Our findings provide evidence
that the limiting curve is independent of � for point islands, while the results for compact and fractal island
morphologies indicate a dependence on �.
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I. INTRODUCTION

The kinetics of submonolayer nucleation and island growth
during the initial stage of epitaxial thin film growth has been
studied intensively both experimentally and theoretically for
more than three decades (for reviews, see Refs. 1–4, and
references therein). Important aspects of the growth kinetics
in the submonolayer growth regime can be described by the
rate equations (RE) approach.5 This approach has proven to
be very valuable in inorganic thin film growth. Interestingly,
many of the theoretical concepts developed for thin film growth
kinetics of inorganic materials, have shown recently to be very
valuable also for applications in organic thin film growth.6–10

This is due to the fact that these concepts often are not
specifically referring to particular materials. Instead, they take
into account the key mechanisms involved in the complex
interplay of deposition, evaporation, diffusion, aggregation
and dissociation from a general viewpoint.

Parameters entering the RE are the capture numbers
σs(�,�), which describe the strength of islands of size s to
capture adatoms at a coverage � and ratio D/F ≡ � of the
adatom diffusion coefficient D and deposition flux F . The
dependence of the capture numbers on s has been studied
for various � but only for one or a few � values. In this
work, we present a systematic study of the full dependence
on both � and � for different types of island morphologies
and the case, where detachments of atoms from islands can
be neglected, corresponding to a critical nucleus of size i = 1.
This is motivated by the following questions, which have not
been thoroughly answered yet. (1) If the σs(�,�) are known,
do the RE then predict correctly the number density ns(�,�)
of islands of size s, that means the island size distribution
(ISD)? This question indeed was earlier posed by Ratsch
and Venables11 as well as Evans et al.3 The answer to this
question is not obvious, since the RE with known capture
numbers σs(�,�) neglect many-particle correlation effects,12

spatial fluctuations in shapes and capture zones of islands,
and coalescence events that, despite rare in the early-stage
growth, can have a significant influence.13 (2) Is there a simple

functional form of the σs(�,�), in particular, is there a scaling
of these capture numbers with respect to an effective capture
length as suggested by a self-consistent treatment14,15 based
on the RE? Do the σs , when scaled with respect to their mean
σ̄ , depend for large � on the scaled island size s/s̄ only, as
suggested by Bartelt and Evans?16

In previous studies, it has been found that the scaled ISD
s̄2ns/� as a function of scaled island size x = s/s̄ approaches,
for fixed coverage �, a scaling function f (x) for large �.
Early simulations suggested that f (x) is independent of � and
moreover not sensitive to the island morphology. However,
later results showed3,16 that the morphology has an influence on
the form of f (x). In fact, one would expect the scaling function
f (x) to become independent of � if the RE with known capture
numbers correctly predict the ISD, and if the scaled capture
numbers σ/σ̄ as a function of s/s̄ become independent of �

for large �. Under these assumptions, an explicit relation was
proposed by Bartelt and Evans,16,17 which connects the scaling
function of the capture numbers with the scaling function of
the ISD. We hence address the following further questions:
(3) is the scaling function f (x) independent of � for large
�? What is the influence of the island morphology? Can the
relation between the scaled ISD f (x) and the scaling function
for the capture numbers be confirmed?

The RE treatment is based on a coupled set of simple rate
equations describing the time evolution of the adatom density
n1 and the number density ns of islands with size s � 2, if
spatial correlations among islands during growth are neglected.
Taking into account direct impingement of arriving atoms at
the border of islands, the RE for the case i = 1 read

1

F

dn1

dt
= (1 − �) − 2�σ1n

2
1 − �n1

∑
s>1

σsns − 2κ1n1

−
∑
s>1

κsns, (1)

1

F

dns

dt
= �n1(σs−1ns−1 − σsns)

+ κs−1ns−1 − κsns , s = 2,3, . . . . (2)
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These equations refer to the precoalescence regime where
only adatoms are mobile and it is presumed that reevaporation
of atoms and atom movements between the first and second
layers can be disregarded. Moreover, adatoms arriving on top
of an island are not counted, i.e., s in a strict sense refers
to the number of substrate sites covered by an island (or
the island area). The coverage � entering Eq. (1) is given
by � = ∑

s�1 sns = 1 − exp(−F t) and takes into account
that adatoms are generated by deposition into the uncovered
substrate area (as common in the literature in this field, we
set the length unit equal to the the size of the substrate lattice
unit). The terms with σ1(�) and κ1(�) describe the nucleation
of dimers due to attachment of two adatoms by diffusion and
due to direct impingement, respectively. The term ∝ n1σsns

describes the attachment of adatoms to islands of size s > 1,
and the term ∝ κsns the direct impingement of deposited atoms
to boundaries of islands with size s. For the idealized point
island model, s refers to the total number of atoms that arrived
at a point, and (1 − �) in Eq. (1) is replaced by one (no
covered substrate area). For a unified discussion of capture
numbers and the ISD, we formally set � = F t for the point
island model.

Introducing the total number density of stable islands N

and the average capture number σ ,

N =
∑
s>1

ns, σ = 1

N

∑
s>1

σsns, (3)

a reduced set of equations for n1(�) and N (�) can be derived
from Eqs. (1) and (2) within the RE treatment. These equations
predict the scaling relation N ∝ �−χ with the scaling exponent
χ = 1/3.18,19 This relation has been successfully validated
by several growth experiments in the past and applied to
extract adatom diffusion barriers and binding energies in metal
epitaxy. A discussion of many of these experiments can be
found in Ref. 2. Recently, the relation has also been applied
in organic thin film growth.6,7 An extended RE approach
for multicomponent adsorbates4,20 was recently suggested to
determine binding energies between unlike atoms from island
density data.21

More detailed information on the growth kinetics is
contained in the ISD. If the full dependence of the ISD ns (�,�)
on � and � is mediated by the mean island size s̄(�,�), the
ISD should obey the following scaling form, as first suggested
by Vicsek and Family,22

s2(�,�)

�
ns(�,�) = f

(
s

s̄(�,�)

)
. (4)

Here, the scaling function f (x) must fulfill the conditions∫ ∞
0 f (x)dx = ∫ ∞

0 xf (x)dx = 1. The scaling behavior was
found to give a good effective description for large �. More
precisely, the curves s2ns/� as a function of x = s/s̄ approach
a limiting curve,23

lim
�→∞

s̄2

�
nxs̄(�,�) = f∞(x,�) . (5)

Previous studies for a few fixed � values suggest that f∞(x,�)
is independent of �.

An explicit expression for the scaling function f (x) with
shape independent of � was suggested by Amar and Family,24

f (x) = Cix
i exp(−iaix

1/ai ). (6)

The parameters entering this scaling function depend on the
size of the critical nucleus i, which allows one to determine
i in experiments.7,9,25,26 Equation (6) was believed to be
independent even of the morphology;24 but this has later been
questioned.3,16

Based on a continuum limit of the RE (2) and scaling
assumptions for the capture numbers and a neglect of the �

dependence, an expression for the limiting curve f∞(x) was
derived by Bartelt and Evans,16,17

f∞(x) = f∞(0) exp

[ ∫ x

0
dy

(2z∞ − 1) − C ′
tot(y)

Ctot(y) − zy

]
, (7)

where z∞ = ∂(ln s̄)/∂(ln �) and Ctot(x) is a linear combination
of the scaled capture numbers C∞(x) = σs/σ̄ and scaled direct
capture areas K∞(x) = κs/κ̄ . The “∞” subscript indicates that
the large � → ∞ limit should be taken. As pointed out by
Bartelt and Evans, Ctot(x) should be well approximated by
the scaled capture numbers alone, Ctot(x) ≈ (1 − �)C∞(x).
In Appendix A, we show that in fact it holds Ctot(x) ≈
C∞(x). The two conditions for f∞(x) (normalization and first
moment equal to one) imply that C∞(0) = (1 − z)/f∞(0) and∫ ∞

0 dx C∞(x)f∞(x) = 1.3,17

It is interesting to note that a semiempirical form, which has
a structure similar to Eq. (6) has been suggested recently by
Pimpinelli and Einstein27 for the distribution of capture zones
A as identified by Voronoi tessellation,

Pβ = cβaβ exp(−dβa2) , (8)

where a = A/Ā is the rescaled capture zone with respect to
the mean Ā and β = i + 1 (see also Ref. 28). This distribution
corresponds to a generalized Wigner surmise from random
matrix theory. The parameter β = i + 1 and the functional
form, however, are controversially discussed.29,30

Besides this recent progress in predicting functional forms
of capture zone distributions, there are only a few studies so
far13,31,32 that address the problem whether an integration of
the REs (1) and (2) can yield correctly the ISD for different
cluster morphologies in the precoalescence regime. For an
integration of the RE, a reliable determination of σs(�,�)
is needed. Four general approaches have been followed for
this purpose: (i) within a self-consistent ansatz one can solve
the diffusion field around an island and derive determining
equations for the capture numbers by equating the attachment
currents of the diffusion field and the RE.14,15 (ii) By modeling
the island growth with the level set method,33 one can
analogously equate attachments currents and determine the
capture numbers.31,32 (iii) Balancing the deposition rate FAsns

into the mean capture zone As of islands of size s with the RE
expression Dσsn1ns for the attachment rate to these islands,
yields σs � As/�n1. This means that the capture numbers can
be approximately calculated from a determination of the As ,
e.g., by Voronoi tessellation.17,34–36 (iv) In simulations, where
the individual attachments are followed, the capture numbers
can be calculated from the mean number of attachments Ms to
island of size s during a time interval 	t [see Eq. (9) and the
discussion in Sec. II].16
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The paper is organized as follows. First, we describe in
Sec. II the method used to generate point, compact and fractal
island morphologies, and the method for determining the
capture numbers as function of island size and coverage. In
Sec. III, we discuss the results for the capture numbers and
compare these with the prediction of the self-consistent theory.
In Sec. IV, we analyze the mean island and adatom densities for
the different island morphologies and discuss their prediction
by the self-consistent RE and the RE based on the capture
numbers determined in the KMC simulations. In Sec. V,
we demonstrate that the ISD is successfully predicted by
the RE as long as coalescence events can be neglected. These
coalescence events are relevant already for small coverages
� � 0.05 for compact morphologies, while they turn out to
be much less important for fractal morphologies. The reason
for these differences are reduced coalescence rates for fractal
island morphologies because of a screening effect.1,37 Finally,
we study in Sec. VI the behavior of the scaled capture numbers
and scaled ISDs in the limit � → ∞.

II. SUBMONOLAYER GROWTH: MODELS,
MORPHOLOGIES AND SIMULATIONS

The KMC simulations are performed with a first reaction
time Monte Carlo algorithm38,39 on a square lattice with L × L

sites. In this algorithm, two times τF and τD are randomly
generated from the exponential probability density ψ(τ ) =
γ exp(−γ τ ), where γ = L2F for τF , corresponding to a
deposition process, and γ = 4DL2n1 for τD , corresponding
to one of the possible diffusive jumps of adatoms. If τD <

τF , the simulation time is incremented by τD and one of
the L2n1 adatoms is selected randomly and moved to a
randomly selected vacant nearest neighbor site. If τF < τD ,
the simulation time is incremented by τF and one of the L2

sites is randomly chosen. If this site is vacant, an additional
adatom is deposited on this site, while, if the site is occupied,
no deposition takes place.

With respect to the formation of islands, we consider
three simple growth models that are representative for the
different types of island morphologies in the case of i = 1.
Fractal islands are generated by applying “hit and stick”
aggregation, which means an adatom having another atom as
the nearest neighbor becomes immobilized. Compact island
morphologies are produced by letting islands grow spirally

into a quadratic form as in Ref. 40, meaning that each adatom
attached to an island is displaced to the corresponding tip of the
spiral. Point island morphologies are generated by displacing
an adatom attaching to an island to the site representing the
island, while bookkeeping the total number of aggregated
atoms for the island size.

To calculate the capture numbers σs at the coverage �, we
use the following procedure, which is based on the method
outlined in Ref. 16; each simulation run is stopped at coverage
� and the number densities ns = Ns/L

2, s = 1,2, . . . are
determined, where Ns are the numbers of monomers (s = 1)
and islands (s > 1). Then the simulation is continued for a time
interval 	t without deposition and the following additional
rules are implemented: (i) if an adatom is attaching to an
island of size s > 1, a counter Ms is incremented and the
adatom thereafter repositioned at a randomly selected site on
the free substrate area (i.e., a site which is neither covered nor
the nearest neighbor of a covered site), and (ii) if two adatoms
form a dimer, a counter M1 is incremented and the two adatoms
thereafter are repositioned randomly as described in (i). In
this way, a stationary state is maintained at the coverage �.
The mean attachment rate per unit area to islands of size s is
Ms/(L2	t), and equating this with the expression Dσsnsn1

from the RE (1, 2) yields

σs = Ms

L2	tDnsn1
, s = 1,2, . . . . (9)

Averaging over many simulation runs (configurations) gives
σs(�,�). The κs are determined from the lengths of the islands
boundaries, which are simultaneously monitored during the
simulation and averaged for each size s.

The continuous-time Monte Carlo (KMC) simulations
are performed on a square lattice with periodic boundary
conditions and L × L = 8000 × 8000 sites for four different
� = 105, 106, 107, and 108. For each value of �, an average
over 108 nucleation/attachment events was performed.

III. CAPTURE NUMBERS

The direct capture areas for point islands on a square lattice
are given by κs = 4. For compact and fractal islands, the κs

increase as ∼√
s and ∼s, respectively, and their dependence

on � and � is very weak. Representative results for the capture
numbers σs are shown in Fig. 1 as a function of s for fixed
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FIG. 1. Capture numbers as a function of s for � = 107 and four different fixed coverages for the models representing (a) point, (b) compact,
and (c) fractal island morphologies. The filled symbols refer to the σs obtained from the KMC simulations and the open symbols to the results
of the self-consistent theory according to Eqs. (10) (with the Rs taken from the simulations, see text and Fig. 3).
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FIG. 2. Mean capture number σ̄ and mean island size s̄ as a function of � for the four simulated � values and the models representing
point, compact, and fractal island morphologies.

� = 107 and four different coverages for the (a) point, (b)
compact, and (c) fractal island morphologies. For the other
simulated � values, a similar behavior was obtained. The mean
σ̄ (�,�) [see Eq. (3)] as a function of � for all simulated �

values is displayed in Fig. 2, together with the mean island
size s̄(�,�). These functions are later used in Sec. VI when
investigating the scaled capture numbers σs in connection with
the scaled island densities in the limit � → ∞.

A common feature for all morphologies in Fig. 1 is a linear
increase of σs with s for large s > s̄. It can be understood3

from the proportionality of the σs to the mean capture zone
areas As , and the fact that large islands typically exhibit large
As , which led to the stronger growth of these islands. Since a
twice as large capture zone gives on average rise to a twice as
large island, it holds As ∼ s and hence σs ∝ As ∼ s.3,16

With respect to the dependence on the coverage �, the
σs in Fig. 1 have a quite different behavior for the three
morphologies in the regime s > s̄. While for the point islands
the σs decrease with �, they are almost independent of �

for the compact islands, and they increase with � for the
fractal islands. Main reason for these differences is that for
point islands the number density N continues to increase with
� (that means time t = �/F ) due to ongoing nucleation of
new islands, while for compact and fractal morphologies, N

tends to saturate for larger �, with less pronounced saturation
in the compact case (see Sec. IV below). During the growth
in the point island model, a large capture zone surrounding
a large island is, compared to the other two morphologies,
more frequently destroyed by a nucleation event in this zone,
and the As ∝ σs thus decrease with � for fixed s > s̄. Due
to the higher nucleation rate and the missing spatial extension
of islands in the point island model, the corresponding σs

are much smaller than for the compact and fractal morpholo-
gies. The larger island extension and the strong capture of
adatoms by finger tips in the case of fractal islands lead
to about five times larger σs in comparison to the compact
islands.

The differences with respect to the � dependence are also
reflected in the behavior of σ̄ (�,�) in Fig. 2. In fact, when con-
sidering the scaled capture numbers σs/σ̄ , the � dependence
for s > s̄ becomes qualitatively the same for all morphologies
(increase of σs/σ̄ with �, see Sec. VI below). For small s < s̄,

the curves in Fig. 1 show a nonlinear dependence of σs on s

for all morphologies.35,41,42 By combining the linear function
for large s with a polynomial at small s, we fitted the results
for σs for all simulated � and � values. These fits, together
with corresponding fits for the κs , were used to integrate the
REs (1) and (2).

The mean island size s̄ in Fig. 2 reproduces the behavior
seen in many earlier studies.3 In the point island model
the straight lines in the double logarithmic representation
are in agreement with s̄ ∼ �z with z = 2/3 as predicted
by a scaling analysis of the reduced RE.3,43,44 In the case
of the compact and fractal island morphologies, the slope
z(�) = ∂ ln s̄(�,�)/∂ ln � increases with � and approaches
z � 1 for both island morphologies. This is consistent with a
saturation (�-independence) of the island density for large �

in the precoalescence regime, s̄ ∼ �/N ∼ �.
In the self-consistent theory,14 the capture numbers are

given by

σ sc
s = 2π

(1 − �)

Rs

ξ

K1(Rs/ξ )

K0(Rs/ξ )
, (10a)

ξ−2 = 2σ sc
1 n1 +

∑
s�2

σ sc
s ns , (10b)

where Rs is the effective radius of an island of size s, K0 and
K1 are the modified Bessel functions of order zero and one,
respectively, and ξ is the adatom capture length (mean linear
size of depletion zone around an island). The factor (1 − �)
in Eq. (10), which was not given in the original derivation
in Ref. 14, arises from the fact that the adatom current to
a (circular) island of size s is 2πRsD ∂r ñ1(r)|r=Rs

, where
ñ1(r) = n1(r)/(1 − �) is the adatom density with respect
to the free (uncovered) surface area, and n1(r) is the local
form corresponding to the global mean value n1 appearing in
the RE [see also Ref. 45 for the additional factor (1 − �)].
For Rs � ξ , σs ∼ 2π/[(1 − �) ln(ξ/Rs)] and for Rs � ξ ,
σs ∼ 2π/(1 − �)(Rs/ξ ).

To determine the σ sc
s , the REs (1) and (2) are numerically

solved with initial conditions ns = 0 at time t = 0 and a cutoff
value sc so that ns can be safely neglected for s > sc. In each
integration step the implicit Eq. (10) is solved for the σ sc

s .
The results become sensitive to the island morphology via the

085403-4



CAPTURE NUMBERS AND ISLAND SIZE DISTRIBUTIONS . . . PHYSICAL REVIEW B 86, 085403 (2012)

100 101 102

s

100

101

Rs
fractal
compact

FIG. 3. Mean radii of gyration Rs of islands of size s for the
models representing compact and fractal island morphologies. The
straight lines in the double-logarithmic plot indicate the power-law
behavior for large s.

dependence of Rs on s in this approach. For point islands
we take Rs = 1 corresponding to one lattice constant. For the
compact and fractal island morphologies, we determined the
mean radius of gyration of islands of size s, as shown in Fig. 3.
The straight lines in the double-logarithmic representation
give Rs ∼ 0.42s1/2 (compact islands) and Rs ∼ 0.47s0.57

(fractal morphologies) for large s. To compare the σ sc
s with

the σs obtained from the KMC simulations, we used the
full dependence of the Rs on s, i.e., including the small s

behavior, in our integration of the RE. The results from the
self-consistent theory are shown in Fig. 1 (open symbols). As
can be seen from the figure, the σ sc

s deviate strongly from
the KMC results, both in their size and in their functional
form. In particular, the self-consistent theory underestimates
the capture numbers for large s, as known from earlier work
in the literature.3

It is interesting to see, whether the scaling of (1 − �)
σs(�,�) with Rs/ξ is valid, if the σs and ns from the KMC
simulations are used in the expression for ξ−2 in Eq. (10b).
In this case, the linearization step used in this theory for
deriving a linear diffusion equation for the local adatom
density n1(r) could be reasoned, i.e., the step, where the term
2σ1n1(r)2 + ∑

s>1 σsn1(r)ns(r) is replaced by n1(r)ξ−2 with
ξ−2 = 2σ1n1 + ∑

s>1 σsns given by the mean (r-independent)
densities (see Ref. 14 for details). In Fig. 4, (1 − �)σs(�,�)

is plotted as a function of Rs/ξ for the models representing
compact and fractal island morphologies. Figure 4(a) shows
that indeed a data collapse is obtained for different � values at
fixed �. However, with respect to the � dependence, tested in
Fig. 4(b), no scaling behavior is found. This indicates that
the linearization step in the self-consistent theory leads to
the unsatisfactory capture numbers. It has been shown that
correlation effects between island sizes and capture areas
need to be taken into account to improve theories for capture
numbers and island size distributions. This can been achieved
by considering the joint probability of island size and capture
area.42,45–48

IV. ADATOM AND ISLAND DENSITIES

Numerical integration of the RE with the κs and σs from
Sec. III gives an excellent description of the adatom density
n1 and of the island density N as a function of � and � for
all island morphologies in the precoalescence regime. This
is demonstrated in Fig. 5 where n1 and N from the KMC
simulation (open squares) and RE solution (solid lines) are
plotted as a function of � for � = 107. For compact and fractal
island morphologies, the KMC data for N steeply fall for
coverages larger than 15% (compact islands) and 30% (fractal
islands) because of island coalescences. Small deviations of the
RE solution for n1 can be seen close to its maximum, where it
slightly underestimates the adatom density. The agreement for
the other simulated � values is of the same quality. As known
from previous studies,1,11,14,45 the RE predict n1 and N quite
well also, when using the self-consistent capture numbers from
Eq. (10). The corresponding solutions are drawn as dashed
lines in Fig. 5. In view of the discrepancies discussed in Sec. III,
this good predictive power of the RE under use of the self-
consistent capture numbers σ sc

s is surprising.

V. ISLAND SIZE DISTRIBUTIONS

Since the σ sc
s (�,�) deviate strongly from the σs(�,�),

the RE with self-consistent capture numbers fail to predict the
ISD. This failure was reported already when the self-consisting
theory was developed.14 In the following, we therefore do
no longer consider the self-consistent theory, but concentrate
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FIG. 4. Scaling plot of (1 − �)σs as a function of Rs/ξ for the model representing compact island morphologies, with both Rs and
ξ−2 = 2σ1n1 + ∑

s�2 σsns determined from the KMC simulations, (a) for various � and fixed � = 0.2 and (b) for various � and fixed
� = 108. The insets in (a) and (b) show the corresponding results for the model representing fractal island morphologies. The solid lines
represent the specific functional form in Eq. (10) predicted by the self-consistent theory.
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FIG. 5. KMC results (symbols) for the adatom density n1 and island density N as function of � at � = 107 for (a) point, (b) compact,
and (c) fractal island morphologies in comparison with the RE solutions, when using the direct capture areas κs and capture numbers σs from
Sec. III (solid lines) and when using the capture numbers σ sc

s from the self-consistent theory according to Eq. (10) (dashed lines).

on the principal questions whether the RE with the capture
numbers σ (�,�) are successful in predicting the ISD, and if
so, whether in the limit � → ∞ the asymptotic form (7) for
the scaling function becomes valid. In this section, we address
the first of these two questions.

Representative results for the ISD (symbols) in comparison
with the RE predictions are shown in Fig. 6 for � = 107

and three different coverages �, for point and fractal island
morphologies. The excellent agreement between the RE
predictions and the KMC data in that figure is also found
for the other simulated � values. As was shown in Ref. 13
for the fractal island morphologies, a χ2 test with a standard
significance level of 5% is passed up to a coverage of
� = 0.18. For larger �, coalescence events, not included in
the RE approach, become relevant.

For the compact island morphologies, a good agreement
of the KMC data with the RE prediction is obtained up to
coverages of about � = 0.05 only, see Fig. 7(a). The reason
for the discrepancies are coalescence events that become
important already for small � � 0.05, in contrast to what one
may conclude from the behavior of the mean island density
shown in Fig. 5, where coalescences seem to be irrelevant up
to coverages of about 15%. One can take out the coalescence
effect in the calculation of the ISD by following the islands in
the simulations and by counting coalesced islands as if they
were separated. The islands identified in this way were referred

to as subislands and the resulting ISD as sub-ISD in Refs. 3
and 40. In the same way as described in Sec. II, we determined
the κ ′

s and σ ′
s for the subislands and integrated the REs (1) and

(2) with these input quantities. As shown in Fig. 7(b), these RE
results for the sub-ISD give again excellent agreement with the
KMC data.

That coalescence events are much more frequent for
compact than for fractal islands is shown in Fig. 8, where
we plotted the fraction of the coalesced islands as a function
of � both for the compact and fractal island morphologies.
This fraction was determined by dividing the total number
of coalescences up to the coverage � by the total number of
islands at this � value, i.e., islands that have undergone more
than one coalescence are counted with their corresponding
multiplicities. As can be seen from Fig. 8, the fraction of
coalesced islands for compact islands has already at � = 0.05
reached a level comparable to that found for the fractal islands
at � = 0.2.

The reason for the less frequent coalescences of fractal
islands is that two approaching fractal islands can avoid each
other for some time, because fingers of one islands grow into
breaches between fingers of the other island. When a finger
enters a breach, its further growth slows down because of
the shielding inside the breach. This screening effect and its
consequence for coalescences has been discussed earlier in
the literature.1,37 A quantitative analysis of the coalescence
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FIG. 6. Simulated island size distribution
(circles) in comparison with the RE solution
(lines) for three different � at � = 107 for the
models representing (a) point and (b) fractal
island morphologies.
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�.

behavior of compact and fractal island morphologies is given
in Appendix B.

VI. LIMITING BEHAVIOR FOR � → ∞
Based on our first key finding that for all morphologies and

for all coverages in the pre-coalescence regime, the ISDs from
the KMC simulations are successfully predicted by the RE we
now turn to the question, whether the scaled ISDs approach
the asymptotic form (7) in the limit � → ∞.

To answer this question is not easy because of various
subtleties, which let us revisit the derivation of the scaling
function by Bartelt and Evans16,17 in Appendix A. As
mentioned in Introduction, Eq. (4) for the limiting curve
of the scaled ISD f∞(x) should be valid if f∞(x,�)
from Eq. (5) is independent of �. This is the case if
C∞(x,�) = lim�→∞ σxs̄(�,�)/σ̄ (�,�) for the scaled
capture numbers and z∞(�) = lim�→∞ ∂ ln s̄(�,�)/∂ ln �

also have �-independent limits. A further requirement for the
validity of Eq. (7) is that lim�→∞ κ̄(�,�)/s̄(�,�) = 0, where
κ̄ = N−1 ∑

s>1 κsns is the mean direct capture area. This
condition can be expected to be fulfilled for compact and point
island morphologies and is in fact the reason, why the scaling
function of the direct capture areas should not enter the RE
prediction (7). If lim�→∞ κ̄(�,�)/s̄(�,�) > 0, f∞(x,�) can
be expected to depend on � and one would need to solve the
semi-linear partial differential equation (A6) for f∞(x,�).
Note that the κs cannot increase stronger than linearly with
s, and accordingly κ̄ should not increase more than linearly
with s̄.
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FIG. 8. Fraction of coalesced islands as a function of the coverage
� for � = 107.

In interpreting numerical results for finite �, we have to
pay attention to the fact that for smaller � larger � values
are needed to approach the limiting curves. This is because
s̄(�,�) must become large enough to reach the “continuum
limit” (and larger � are needed to obtain the same s̄ at smaller
�), and because the relation n1 ∼ (1 − �)/�σ̄N , used in the
derivation of Eq. (7), should be obeyed. This relation is usually
referred to as the quasistationary condition, since it follows
from balancing the adatom attachment rate Dσ̄nN to islands
with the deposition rate F (1 − �). However, as was shown
earlier,44 the relation is also valid for small � values in the
regimes, where relative changes of N are still large and have
not leveled off. A refined scaling analysis yields that, for i = 1
as relevant here, the relation holds for (�2�)1/3 � 1, implying
again that for smaller � larger � are needed to identify the
limiting behavior.

Figure 9 shows ns s̄
2/� as a function of s/s̄ for � = 108 at

four different coverages for the (a) point and (b) fractal island
morphologies. In the insets, the scaled ISDs are shown for
a fixed coverage � = 0.2 and different �. In the case of the
point island morphologies, the data suggest the existence of
a �-independent limiting curve, in agreement with previous
findings.3 For the fractal island morphologies, the scaled ISD
for different � show no clear signature of a �-independent
limiting curve. Based on the tendency of the simulated data
for different � and � to become slightly closer to each
other for larger � and �, one may conjecture that also in
this case a limiting curve would be reached at larger �

values. However, the fact that for each fixed �, the curves
at large � are almost overlapping suggests that these are
good estimates of f∞(x,�). Our conclusion is therefore that
it is not likely that a �-independent limiting curve exists
for the hit-and-stick model used here for the fractal island
morphologies.

This conclusion is further corroborated by the fact that
the scaled direct capture areas exhibit a nearly linear de-
pendence on x for the fractal islands (not shown). Thus we
encounter the case here, where the scaled direct capture areas
κ̄(�,�)/s̄(�,�) appear to approach a non-vanishing limit
for � → ∞, which would mean that in a strict treatment,
Eq. (7) can no longer be applied. If one considers f∞(x,�) to
depend only very weakly on �, ∂f∞(x,�)/∂� � 0, we could
replace C∞(x) by Ctot(x) = C∞(x) + ρ∞�K∞(x,�)/(1 −
�), where K∞(x,�) = lim�→∞ κxs̄(�,�)/κ̄(�,�) is the lim-
iting curve for the scaled direct capture areas and ρ∞ =
lim�→∞ κ̄(�,�)/s̄(�,�) > 0.
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FIG. 9. Scaled island size distributions ns s̄
2/� as function of the scaled island size x = s/s̄ for fixed � = 108 and four coverages �, for

(a) point and (b) fractal island morphologies. The insets show the scaled ISDs at fixed � = 0.2 and the four simulated � values. The line in (a)
is a fit to the data for � = 0.2 and � = 108 and agrees with the analytical result Eq. (7), when using the line in Fig. 10(a) as the estimate for
C∞(x).

Our conclusions drawn with respect to the scaled ISDs of
the point islands are consistent with the behavior of the scaled
capture numbers, which are shown in Fig. 10(a) for the same �

and � values as in Fig. 9(a). In this Fig. 10(a), an approach to a
�-independent limiting curve C∞(x) can be seen. In the case
of the fractal island morphologies by contrast, an approach to
a �-independent limiting curve cannot be clearly identified,
which gives further evidence that the f∞(x,�) are dependent
on �.

In order to test the validity of Eq. (7) for the point islands,
we set z∞ = 2/3 (see Sec. III) and used a fit to the scaled
ISD for � = 108 and � = 0.2 in Fig. 9(a) as an estimate for
f∞(x). The fit, which fulfills the constraints of normalization
and normalized first moment, is shown as line in this figure. We
then estimated C∞(x) based on this fit by rewriting Eq. (A6)
from Appendix A [for �-independent f∞(x)] in the form

dC∞(x)

dx
= (2z∞ − 1) − [C∞(x) − z∞x]

d ln[f∞(x)]

dx
. (11)

Since the solution of this differential equation is proportional
to 1/f∞(x), we preferred to integrate Eq. (11) with the
initial condition C∞(0) = f∞(0)/(1 − z∞) to achieve a stable
numerical results for large x also. The resulting estimate for
C∞(x) is shown as line in Fig. 10(a). The line lies slightly
above the data for the scaled capture numbers for � = 108 and

� = 0.2, indicating that indeed an estimate of a limiting curve
for the scaled capture numbers is obtained. In a cross check,
we performed the integral in Eq. (7) with the estimated C∞(x)
and recovered the line in Fig. 9(a).

For the compact island morphologies, Eq. (7) would be
of limited practical use, because, as discussed in Sec. V, the
REs (1) and (2) fail to predict the ISD correctly already at
small � due to coalescences. Nevertheless, from a conceptual
viewpoint, it is interesting to study the scaled ISD and their
relation to the scaled capture numbers for the subislands. The
corresponding data shown in Fig. 11 indicate a behavior similar
as for the fractal island morphologies, where the limiting
curves are dependent on �.

VII. SUMMARY

The capture numbers entering the RE for the growth kinetics
of thin films have been determined by KMC simulations in
their dependence on both the coverage � and the � = D/F

ratio for the point island model and for two simple growth
models representative for islands with compact and fractal
shapes. It was shown that the � dependence of the capture
numbers could not be accounted for by the ratio Rs/ξ of
the mean island radius Rs and the effective adatom capture
length ξ of the RE. This suggests that the strong deviations
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between the capture numbers determined from the simulations
and the ones predicted by the self-consistent theory have their
origin in the linearization step used in this theory. The RE
with self-consistent capture numbers nevertheless provide a
good quantitative account of the adatom and island density.
The deviations to the correct capture numbers lead, however,
to a failure for a description of the ISD.

Integration of the RE with the simulated capture numbers
determined from the KMC simulations gives an excellent
quantitative prediction of the ISDs. For the compact islands
morphologies, it was found that coalescence events, not
considered in the RE, become relevant already at small cover-
ages well below � � 0.15, where coalescence events do not
significantly affect the island density. Compared to the fractal
island morphologies, the coalescence rate for the compact
morphologies is much higher. The ISD is affected already
by a rather small number of coalescences, because these lead
to a reshuffling of weights for different island sizes. The lower
coalescence rate for fractal morphologies is caused by the
fact that fingers of two approaching fractal islands typically
first avoid each other, which subsequently leads to a screening
effect and a slowing down of further growth of these fingers.

Finally, we discussed the limiting curves for the scaled
ISDs when � → ∞. For the point islands the KMC data
provide evidence that these limiting curves are independent
of the coverage, which is given by the RE prediction (7). This
means that there exists a true scaling behavior in the � → ∞
limit, where the dependence on � is fully accounted for by
the mean island size s̄. For the growth models representing
compact and fractal island morphologies, the results indicate
that the limiting curves are dependent on �. This implies
that one needs to solve the partial differential equation
(A6) [or Eq. (A10)] to calculate f∞(x,�) from C∞(x,�).
Unfortunately, no successful theory exists so far to predict the
limiting curve C∞(x,�) for the scaled capture numbers.

The limiting curves are also different for different mor-
phologies. Considering how sensitive the shape of the limiting
curves depends on the nonlinear behavior of the scaled capture
numbers as a function of the scaled island size, it is well
possible that the shape will also vary with details of the growth
mechanisms, even if the type of island morphology remains
essentially the same.

APPENDIX A: RATE EQUATION PREDICTION
OF THE LIMITING CURVES FOR THE SCALED

ISLAND SIZE DISTRIBUTION

For large �, s̄ ∼ N−1 ∼ �1/3 and x = s/s̄ becomes a
continuous variable, which allows one to derive a determining
equation for the scaled ISD in dependence of the scaled capture
numbers. The derivation was first presented by Bartelt and
Evans.16,17 Replacing the variable s by x and using ∂/∂(F t) =
(1 − �)∂/∂�, Eq. (2) can be written in the continuum limit as

∂nxs̄

∂�
= − 1

(1 − �)s̄

[
�n1

∂

∂x
(σxs̄nxs̄) + ∂

∂x
(κxs̄nxs̄)

]
. (A1)

Defining f (x,�,�) = s̄2nxs̄/�, C(x,�,�) = σxs̄/σ̄ , and
K(x,�,�) = κxs̄/κ̄ , one has

∂

∂x
(σxs̄nxs̄) = �σ̄

s̄2

∂(Cf )

∂x
, (A2)

∂

∂x
(κxs̄nxs̄) = �κ̄

s̄2

∂(Kf )

∂x
(A3)

∂nxs̄

∂�
= −(2z − 1)f − zx

∂f

∂x
+ �

∂f

∂�
, (A4)

where z(�,�) = ∂ ln s̄/∂ ln �. The reduced RE moreover
predict n1 ∼ (1 − �)/(�σ̄N ) ∼ (1 − �)s̄/(��σ̄ ) for large
� and fixed � > �x ∼ �−1/2. Inserting this relation and
Eqs. (A2)–(A4) into Eq. (A1) gives

(2z − 1)f + zx
∂f

∂x
− �

∂f

∂�
= ∂(Cf )

∂x
+ �κ̄

(1 − �)s̄

∂(Kf )

∂x
.

(A5)

Introducing the limits C∞(x,�) = lim�→∞ C(x,�,�),
K∞(x,�) = lim�→∞ K(x,�,�) and z∞(�) = lim�→∞
z(�,�), Eq. (A5) yields a determining equation for
f∞(x,�) = lim�→∞ f (x,�,�).

For lim�→∞ κ̄/s̄ = 0, one obtains

(2z∞ − 1)f∞ + z∞x
∂f∞
∂x

− �
∂f∞
∂�

= ∂(C∞f∞)

∂x
. (A6)

The condition lim�→∞ κ̄/s̄ = 0 is valid for point islands, and it
can be expected to hold also for compact island morphologies
unless atoms deposited on top of islands are essentially all
attaching to the island edge in the first layer (a situation
unlikely due to second layer nucleation on larger islands).
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When integrating Eq. (A6) over x from zero to infinity, the
first, second, and third terms on the left-hand side yield (2z∞ −
1), z∞ (after a partial integration) and zero, respectively,
because of the normalization of f∞. The right-hand side
becomes [−C∞(0,�)f∞(0,�)] (note that for large x, C∞ ∼ x,
and f∞ must decrease faster than x to be normalizable—
simulation results show that f∞ should in fact decay much
faster). Accordingly, the relation

f∞(0,�) = 1 − z∞(�)

C∞(0,�)
(A7)

must be fulfilled. A corresponding relation can be derived in
the same way already from Eq. (A5). Analogously, when first
multiplying Eq. (A6) with x and then integrating, one obtains∫ ∞

0
C∞(x,�)f∞(x,�) = 1 . (A8)

Integrating Eq. (A6) to a finite value x then yields

C∞(x,�) = z∞(�)x + 1 − z∞(�)

f∞(x,�)

∫ ∞

x

dx ′ f∞(x ′,�)

− �

f∞(x,�)

∂

∂�

∫ x

0
dx ′ f∞(x ′,�) , (A9)

which expresses C∞(x,�) as a functional of f∞(x,�).
When one further assumes that the limiting curve f∞ is

independent of �, one has ∂f∞/∂� = 0 and can neglect the
corresponding term in Eq. (A5). For self-consistency, this
requires also C∞ and z∞ to become independent of �. In fact,
one can conversely show that if C∞ and z∞ are independent of
�, f∞ must by independent of � also. Under this assumption
Eq. (A6) then reduces to a separable ordinary differential
equation, whose solution is given by Eq. (7), with Ctot(x)
equal to C∞(x) and z equal to z∞.

If there exists a finite limit ρ∞(�) = lim�→∞ κ̄/s̄ > 0, as
it may be the case for fractal island morphologies (see the
discussion in Sec. VI), Eq. (A5) yields

(2z∞ − 1)f∞ + z∞x
∂f∞
∂x

− �
∂f∞
∂�

= ∂(C∞f∞)

∂x
+ ρ∞

�

(1 − �)

∂(K∞f∞)

∂x
(A10)

as determining equation for f∞(x,�). Strictly speaking, a
�-independent f∞(x) should not exist then, and one needs
to solve the semilinear partial differential equation (A10).
If one nevertheless makes the approximation ∂f∞/∂� � 0
in Eq. (A10) and considers C∞ and z∞ to be independent

of (or only weakly dependent on) �, one would obtain
the weakly �-dependent solution Eq. (7) with Ctot = C∞ +
ρ∞�K∞/(1 − �).

APPENDIX B: QUANTITATIVE ANALYSIS OF
COALESCENCE EVENTS

For a quantitative analysis of the coalescence behavior, we
determined the fraction of pair distance vectors of coalescing
islands that before coalescence exhibit an antiparallel orien-
tation to the vector connecting the center of masses of the
islands. Let us denote by Ri,j the vector pointing from the
center of mass of island i to the center of mass of island j , and
by riα,jβ the vector pointing from atom α of island i to atom β

of island j . The fraction of distance vectors with antiparallel
orientation then is

�ij = 1

sisj

∑
α,β

H (−riα,jβ · Ri,j ) , (B1)

where H (.) is the Heaviside jump function with H (x) = 1
for x > 0 and zero else. For a given time lag 	t before
coalescence, the �ij were averaged over all coalescence
events, yielding the mean fraction �(	t) of distance vectors
with anti-parallel orientation. To obtain the corresponding
data, configurations generated by the KMC simulations were
analyzed afterwards back in time, starting from the instant
where islands first touched each other.

The mean fraction � obtained from this analysis is
shown in Fig. 12(a) as a function of 	t for � = 107. We
assigned negative values to 	t to emphasize that �(	t)
was determined for lags before a coalescence event. That
�(	t) for fractal islands is by many orders of magnitude
larger than for compact islands demonstrates the partial
inter-penetration of the fractal islands before coalescence.
The value �(	t) � 0.01 reached for the fractal island
morphologies in the limit 	t → 0 means that on average
about 10% of the atoms of each island in a coalescence
event pass each other. That the partial inter-penetration is
accompanied by a slowing down of the approach of two
islands before coalescence can be seen in Fig. 12(b), where the
averaged minimal distance d(	t) between coalescing islands
is shown, that means dij = minα,β(|riα,jβ |) averaged over all
coalescences of islands i and j for time lag 	t . The (negative)
slope of d(	t) is significantly smaller for the fractal island
morphologies, giving evidence for the screening effect.1,37
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FIG. 12. (a) Mean fraction � of distance
vectors with antiparallel orientation (with re-
spect to the center of mass distance vector)
and (b) mean minimal distance d between
islands as a function of the time lag 	t < 0
before a coalescence event at zero time. The
times are given in units of F −1 and the data
were determined from the KMC simulations for
� = 107.
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