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Universidad Autońoma de Madrid, 28049 Madrid, Spain

Pedro Tarazona‡
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Capillary wave fluctuations at the edges of liquid wetting layers are analyzed in Monte Carlo simulations
of a Lennard-Jones fluid adsorbed on a planar wall substrate. The analysis is based on the Fourier modes of
the liquid surface, constructed via the intrinsic sampling method. For films thinner than four molecular layers
we can quantify the damping of the capillary waves due to the wall potential. Our results are presented in the
theoretical framework of the effective surface Hamiltonians, to establish a quantitative link between the molecular
structure and the mesoscopic descriptions used for renormalization-group analysis. We observe the predicted
exponential decay of the wall damping, with the correlation length of the liquid bulk. However, associated with
the molecular layering of the density profiles, we observe a strong oscillatory dependence with respect to the
mean film thickness, not included in any theoretical prediction. We discuss the possibility of finite-size effects
in this respect. Three different definitions of the intrinsic surface at molecular level are tested, to show that the
square gradient terms of the Hamiltonian are robust, while the surface bending (or nonlocal) terms are tied to
each specific definition.
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I. INTRODUCTION

Interfacial phenomena are important in nature and they
have a great number of practical applications, e.g., the
structure of the lipid bilayers that form cell membranes, the
stability of colloids in emulsions (such as milk and paint),
etc. At mesoscopic scale, these systems are usually studied
through an effective Hamiltonian in terms of the position
and shape of the interface. For liquid films adsorbed on solid
substrates the local thickness of the film ξ (R) is the relevant
collective variable.1 The simplest Hamiltonian models have
two separated contributions: the first one is given by the surface
tension of the free liquid-vapor interface, γ0, multiplied by the
area of the corrugated surface; and the second contribution
represents the interaction of the adsorbed film with the
substrate through an effective potential �(ξ ), which, in first
approximation, is considered local. In general the predictions
of these local Hamiltonians are very accurate, although
the renormalization-group (RG) analysis is not supported
by the experimental and simulation results.2,3 Two nonlocal
effective Hamiltonians have been proposed in this context:
the first one introduces the nonlocal effects in the interfacial
tension,3 by means of a surface tension that depends on the
film thickness. In the second proposal the nonlocal effects are
included in the interaction between the substrate and the liquid-
vapor interface, i.e., in the effective interface potential.4,5 In the
latter model the nonlocal effects are due to a self-interaction
arising from two-body interfacial forces between particles
on the interface and also are presented for free liquid-vapor
interfaces.6 Although these Hamiltonians have been broadly
used in the study of the criticality for short-range wetting

transitions, the quantitative identification of these nonlocal
effects in realistic models of wetting films has proven to be
difficult. This is the aim of the present work: to study the
dependence of surface fluctuations on the thickness of the
adsorbed liquid film and to analyze possible nonlocal effects.
This is a very delicate question because previous studies4,5

have confirmed the validity of the simplest mean-field (MF)-
like Hamiltonian until the film layer is rather thin, and then the
theoretical assumptions, based on a smooth density profile at
the external edge of the film, may be questioned.

The experimental observation of nonlocal effects on the
fluctuations of wetting layers is very difficult. X-ray diffuse
scattering shows that the surface structure of absorbed films is
well characterized by the undulations due to the roughness of
the solid and the thermal capillary waves (CWs) of the film,7

but the data lack the accuracy to discriminate the effects beyond
a simple local Hamiltonian, without any CW damping from the
wall. A promising alternative is to use computer simulations,
which may provide full information on the structures at the
molecular level. Recently, Pang et al.8 analyzed the correlation
functions of large-scale Monte Carlo (MC) simulations of
interfaces in the Ising model to present, for the first time,
some evidence in favor of the nonlocal interface Hamiltonian.
However, despite the large system sizes used in that study, the
conclusions were not fully clear and more tests are necessary.
Our aim is to study the nonlocal effects in a more realistic
system like a Lennard-Jones (LJ) fluid, which could be used
to predict the quantitative contribution of these effects in
experiments, and, at the same time, to avoid the usual path
in which the fluctuations of the liquid surface are inferred
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from density-density correlations near the liquid surface. Over
the last decade, the study of CW fluctuations at the free liquid
surface has taught us to be very cautious about this approach.
The density profiles and the two-particle density correlations
contain a limited amount of information on the structure of
the liquid surface, and they unavoidably mix the averages
on the instantaneous shape of the interface with the density
fluctuations near the interface. In the long-wavelength limit,
the divergence of CW fluctuations leaves a clear signal in the
density-density fluctuations,9 but that regime is well described
by the classical form of the CW theory (CWT) in terms of
the macroscopic surface tension. Any deviation from that
macroscopic limit has to be searched at shorter scales, for
surface fluctuations that are not too far above the molecular
size; but then the link between the mesoscopic description in
terms of ξ (R) and the molecular positions becomes less certain.

In our approach we set a definition for ξ (R) directly in terms
of the molecular positions, so that the statistical sampling,
and the analysis of the mesoscopic Hamiltonian H[ξ ], may
be done from the molecular configurations along a computer
simulation, without any need to rely on the density distribution
or the two-particle correlations. Repeating the analysis with
other reasonable definitions for ξ (R) gives perspective to
discern which properties of H[ξ ] are generic, i.e., independent
of the detailed definition for the local film thickness.

The application of this approach to the instantaneous in-
trinsic surface (IS), which represents the microscopic frontier
between the liquid and the vapor phases, has provided a robust
link between the CWT and the molecular structure of fluid
interfaces. In that process we have learned that to get a good
separation of the CWs from the bulk-like compressibility
fluctuations, the IS must be defined as the boundary of the
percolation cluster in a percolation analysis of the slab liquid.10

Several proposals with this scheme have been published over
the years,11–17 and a critical revision of the different proposals
was reported in two recent reviews.18,19 For the present
study we have chosen the first practical scheme: the intrinsic
sampling method (ISM),10,16,17,20 which is computationally
more demanding than the other but is the most suitable for
study of liquid-vapor surfaces. The crucial concept of the ISM
is the self-consistent identification of particles belonging to the
outmost layer of the liquid and the determination of the IS ξ (R),
as the minimal area surface going through that set of particles.

As the previous step to the present work, in a recent paper21

we showed that the mean position of the IS ξIS = 〈ξ (R)〉 given
by the ISM is a very accurate way to define the thickness of an
adsorbed liquid layer on a solid substrate. This film thickness
definition follows with quantitative accuracy the predictions
of simple local Hamiltonians, even for films as thin as one
monolayer, and the effective interfacial potential �(ξ ) has the
simplest exponential form with a surprising accuracy, from
a single monolayer to very thick films. In this paper we have
expanded that previous work to study the effect of the substrate
on the CW spectrum at the liquid-vapor interface of adsorbed
liquid films of different thicknesses.

II. MODEL

We have studied the simple case of complete wetting on
an inert structureless substrate, far from the critical region.

The adsorbed film is an LJ fluid truncated at a cutoff distance
of 2.5σ and a temperature kbT /ε ≡ (βε)−1 = 0.75. We use
the parameters of the LJ potential as units of energy ε and
distance σ . The substrate acts as a planar wall with an external
potential on the fluid particles Vsf(z), which depends only on
the distance to the wall plane. In particular, we use for the
solid-fluid interaction a sum over three layers with the density
ρlay = 1.143σ 2 put at zi = 0.0,−0.65, and −1.30σ , with a
truncated 4–10 potential cut at rc = 2.5σsf :

Vsf(z)

8πεsfσsfρlay
=

3∑
i=1
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)10

− 1

4

(
σsf

rc

)4]}
, (1)

where εsf = 1.3ε and σsf = 0.912σ . This model potential has
been used by Velasco et al.22,23 and it gives complete wetting by
the LJ liquid at the temperature used here. A purely repulsive
potential is considered at z = Lz, to close the simulation cell
along the Z axis, with the usual periodic boundary conditions
on the X and Y directions.

We have run series of canonical ensemble MC simulations
with N = 150–2000 LJ particles, to analyze adsorbed films
up to thickness of 23.5σ , in a simulation box with Lx = Ly =
10.457σ and Lz = 65.36σ . The ISM was applied to get the
IS associated with the external edge of the adsorbed film, for
which we have averaged over 104 configurations separated
by 2000 MC steps, after 20 × 106 equilibration steps. In the
ISM the IS, ξ (R), is defined by a set of molecules called
surface pivots, Ns , chosen to represent the instantaneous liquid
surface. The number of these pivots per unit area, ns = Ns/A0,
is the main control parameter of the ISM. The optimal value
of ns may be consistently determined from a wide range of
structural and dynamical properties of the interface.16 In our
case we have used the structural criterion and obtained an
optimal occupation of nsσ

2 = 0.70 ± 0.05 for all the film
thickness analyzed here, although we must note that for very
thin adsorbed films the determination of ns becomes less
robust. The IS is described through its Fourier components:

ξ (R,qu) = ξ̂0 +
∑

0<|q|�qmax

ξ̂qe
iq.R. (2)

From here on, we assume periodic boundary conditions on a
square transverse section A0 = L2

x on the XY plane, parallel to
the mean orientation of the interface. The wave vectors allowed
by the periodic boundary conditions are q = 2π (μ,ν)/Lx with
μ,ν = 0,±1,±2, . . .. For a noncorrugated wall the statistical
averages of ξ̂q vanish for any q �= 0, while ξIS = 〈ξ (R)〉 = 〈ξ̂0〉
represents the mean (macroscopic) position of the IS referred
to the position of the planar substrate. The CW spectrum
is sampled through the mean square amplitude 〈|ξ̂q|2〉 for
each wave vector q. We have checked that all the Fourier
components with the same modulus q = |q| give similar mean
square amplitudes, and all these values are accumulated to
achieve better statistics in 〈|ξ̂q |2〉. In the ISM the IS ξ (R,qmax)
interpolates through the surface pivots as the minimal area
surface with a fixed upper wave-vector cutoff, qmax, which
determines the allowed level of corrugation. Here we make the
usual choice qmax = 2π/σ , with the molecular size as the limit
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for the corrugations of the IS. The results with other interpola-
tion schemes, based on Delaunay triangular tessellations and
Voronoi terraces, are used in Sec. V to compare with the ISM.

In our previous work21 we have explored the same system
as here, with both canonical and restricted grand-canonical
simulations. We compared the descriptions in terms of the
ISM mean film thickness, ξIS, and in terms of the usual
Gibbs dividing surface definition with a film thickness, ξN, that
reflects the total number of particles enclosed in the simulation
box. We found that the ISM allows a high accuracy in the
determination of the IS and therefore in the thickness of the
adsorbed film. The fluctuations of the mean film thickness
ξIS are well described by a simple mesoscopic Hamiltonian,
in the same spirit as we do here for the CW fluctuations of
the wetting films. An important result of that previous work
was the effective interfacial potential �(ξ ), defined as the free
energy per unit area of a liquid film with uniform thickness ξ

at coexistence with its vapor,

�(ξ ) = f (ξ |μlv) = − log[P(ξ |μlv)/(βA0)] + C, (3)

where P(ξ |μlv) is the probability distribution for the mean
film thickness, obtained in the grand-canonical ensemble at
the bulk coexistence chemical potential μlv. The constant C,
tied to the normalization of P(ξ |μ), and the value of μlv are
obtained from the requirement that �(ξ ) = 0 for large ξ .

The results for �(ξ ) were obtained with both ξ ≡ ξIS and
ξ ≡ ξN (see Fig. 6 in Ref. 21). The main advantage of the ISM
definition is that, for any film thickness above one monolayer
(ξIS � σ ), the effective potential presents a perfect exponential
behavior,

�(ξIS) = �0e
−λξIS , (4)

with β�0σ
2 = 1.97 (i.e., β�0A0 = 215.4), and the expo-

nential decay λσ = 1.55. The exponential constant is also
obtained from the decay of the liquid-vapor density profile
ρ(z) toward the liquid bulk, so that λ is clearly identified as
the true inverse correlation length.

From the exponential decay λ and the simulation value of
the macroscopic surface tension βγ0σ

2 = 0.66 ± 0.01, we get
the so-called wetting parameter, which controls the critical
behavior of the wetting layer:1,5

ω = kbT λ2

4πγ0
= 0.29, (5)

a value similar to the effective one extracted from simulations
for the Ising model.24 With this value of ω we expect only
slight deviations of the MF predictions.

III. THEORY

The theoretical framework to study the fluctuations of liquid
films adsorbed on walls is the mesoscopic interfacial effective
Hamiltonian H[ξ ], as a functional of the instantaneous shape
of the interface z = ξ (R) ≡ ξ (x,y), which is the relevant
collective parameter in the study of the wetting transitions.
Within the Fourier description of the IS, (2), the interfacial
Hamiltonian becomes a function of the Fourier components ξ̂q .
For nonstructured substrates (such as the one studied here) the
components with q �= 0 have null mean value, 〈ξ̂q〉 = 0, so that
the only relevant parameter in a MF description is the q = 0

component, which gives the mean thickness of the wetting
layer, z = 〈ξ (R)〉 ≡ ξIS. The MF Hamiltonian is directly given
by the effective interfacial potential, (4):

HMF[ξ ] = A0�(ξIS). (6)

Beyond the MF description, the dependence of H[ξ ] on
ξ̂q describes the CW fluctuations of the interface, and it
is the subject of the theoretical analysis based on the
RG theory.25,26 The simplest theoretical hypothesis splits
the surface Hamiltonian into two independent contributions,
H[ξ (R)] = Hwall[ξ (R)] + HCW[ξ (R)]. The first one describes
the interaction of the wetting film with the inert substrate in
terms of the local effective potential,

Hwall[ξ (R)]

A0
=

∫
d2R
A0

�(ξ (R)), (7)

averaged over the substrate area. The second contribution
considers the corrugations of the film in terms of the classical
CW Hamiltonian for a free liquid-vapor surface,

Hclass
CW [ξ (R)]

A0
= γ0

∫
d2R
A0

[
√

1 + |∇ξ (R)|2 − 1]

=
∫

d2R
A0

(
γ0

2
|∇ξ (R)|2 + O4[∇ξ ]

)
, (8)

where the (macroscopic) surface tension γ0 multiplies the
(instantaneous) increase in area produced by the CW fluc-
tuations on the edge of the film. The leading effects of the CW
fluctuations are included with the expansion of (7) and (8) in
powers of |ξ̂q |2,

H[ξ̂q]

A0
≈ �(ξ̂0) + 1

2

∑
q

(�′′(ξ̂0) + γ0q
2)|ξ̂q |2 + O(|ξ̂q |4),

(9)

so that, neglecting the quartic-order terms, each CW mode
becomes an independent harmonic oscillator. The equipartition
theorem gives

A0

2
(�′′(ξIS) + γ0q

2)〈|ξq |2〉 = kbT

2
, (10)

and the mean square amplitude is a Lorentzian function of the
wave vector:

〈|ξ̂q |2〉 = kbT

(�′′(ξIS) + γ0q2)A0
. (11)

The CW divergence at low q, predicted for free liquid surfaces,
becomes limited by the effect of the substrate through the
second derivative of the interfacial potential. Note that (11) is a
direct generalization of the gravity effect on the CW amplitude,
with �grav(ξ ) = ρmgξ 2/2, that sets the capillary length lgrav =
[γ0/ρmg]1/2, in the range of millimeters, as the limit for the
transverse size effect in the surface fluctuations for simple
fluids.9 Similarly, the effective wall potential �(ξIS) in Eq. (11)
sets a transverse correlation length lwall(ξIS) = [γ0/�′′(ξIS)]1/2

that increases exponentially with film thickness.27–29 In our
system, when the wetting film has two molecular layers,
ξIS = 2σ , we have lwall(ξIS) ≈ 3σ , while for four adsorbed
layers we have lwall(ξIS) � 13σ , and the CW fluctuations
〈ξ (R)2〉 − 〈ξ (R)〉2 observed in our simulations are already
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restricted by the finite simulation transverse area A0 = L2
x <

l2
wall. To include all the relevant CW modes in a thick film of

10 layers we would need a simulation box with a transverse
size of several thousand molecular diameters.

The role of the theories based on the surface Hamiltonian
H[ξ (x,y)] is to fill the gap between the nanometer scale,
explored with molecular simulations or density functional
theories,30 and the behavior of thick films for transverse sizes in
the range of Lx ∼ 10–100 μ, when all the relevant CW modes
are included. The RG analysis25,26 shows that small effects
beyond the simplest hypothesis (7)–(9) become relevant in
the RG flux, so that they have to be included in the starting
H[ξ (R)]. The aim of this work is to extract the functional
form of H[ξ ] directly from the MC simulation results for
〈|ξ̂q |2〉, as a function of the mean thickness ξIS and the wave
vector q. To that end, it is crucial to get a firm hold on the
nanometric range, i.e., qσ ∼ 1, and for wetting films that are
not too thick, ξIS � 4σ , so that the deviations of H[ξ ] from
the simplest functional form, (9), may appear clearly, over
the unavoidable noise of the computer simulation. Therefore,
although our simulations cover a wide range of wetting layer
thicknesses σ � ξIS � 10σ , the most important results come
from the fluctuations of relatively thin films, which may be
analyzed in terms of the theoretical Hamiltonians predicted
from the limit of thick films.

It is well established17,20,31 that, when applied to the
free liquid-vapor interface [i.e., �(ξ ) = 0], prediction (11)
is correct in the low-q limit, for qσ 
 1. However, in the
nanoscale regime, qσ � 0.5, accessible to a typical simulation,
the observed mean square CW amplitude 〈|ξq |2〉 starts to
deviate from the simplest CWT prediction,

〈|ξq |2〉LV = kbT

γ0q2A0
. (12)

The deviation is usually described through the definition of a
wave-vector-dependent surface tension,31,32 defined as

γLV(q) ≡ kbT

q2A0〈|ξq |2〉LV
, (13)

and with a low-q expansion,

γLV(q) ≈ γ0 + κq2 + · · · . (14)

We have to point out that long-range van der Waals
interactions (not considered here) would produce a nonana-
lytical dependence γLV(q) ≈ γ0 + aq2 log(q/b) + · · ·, so that
the effective bending constant becomes divergently negative
for low q.33 Those long-range interactions would also produce
a power-law decay of �(ξ ) and change the whole RG analysis
of the problem.

In geometrical terms, the coefficient κ in Eq. (14) represents
a bending modulus that gives the free energy cost of curvature
in a fixed area. In the generalized version of the CWT the
integrand in Eq. (8), which is a local function of the gradient
∇ξ (R), is extended to be a function �

gen
CW(∇ξ,∇2ξ, . . .), that

depends on higher order derivatives of ξ (R), to include the
effect of curvature. The expansion up to quadratic order in
the CW amplitude, and the usual symmetry arguments for a

(macroscopically) planar interface, lead to

Hgen
CW[ξ ]

A0
=

∫
d2R
A0

�
gen
CW(∇ξ (R),∇2ξ (R), . . .)

≈
∫

d2R
A0

(
γ0

2
|∇ξ (R)|2 + κ

2
|∇2ξ (R)|2 + · · ·

)

=
∑
q>0

(γ0 + κq2 + · · ·) q2 |ξ̂q |2
2

≡
∑
q>0

γLV(q)q2 |ξ̂q |2
2

, (15)

consistent with (13). Therefore, the function γLV(q) represents
all the relevant aspects of the generic function �

gen
CW, and its

q = 0 limit recovers the macroscopic limit γLV(0) = γ0 used
in Eq. (8). The bending modulus κ , or the generic rise in γLV(q)
as q increases, may replace the need for an empirical cutoff
for the CW wavelengths, λcw = 2π/q � � ≡ 2π/qu, imposed
over the simplest Hamiltonian form, (9).

The functional form, (7), for the interaction of the wetting
film with the substrate Hwall[ξ ] may also be generalized, in
the same way that Hgen

CW[ξ ] in Eq. (15) generalizes Hclass
CW [ξ ]

in Eq. (8). The function �wall(ξ (R)) may be extended to
�

gen
wall(ξ (R),∇ξ (R),∇2ξ (R), . . .) to allow for the dependence

on the local shape of the IS, within the range of the wall
potential with the same expansion used in Eq. (15), we get

Hgen
wall[ξ ]

A0

=
∫

d2R
A0

�
gen
wall(ξ (R),∇ξ (R),∇2ξ (R), . . .)

≈
∫

d2R
A0

(
�(ξ (R)) + �γ (ξ (R))

2
|∇ξ (R)|2

+�κ(ξ (R))

2
|∇2ξ (R)|2 + · · ·

)
= �(ξ̂0)

+
∑
q>0

(�′′(ξ̂0) + �γ (ξ̂0)q2 + �κ(ξ̂0)q4 + · · ·) |ξ̂q |2
2

≡ �(ξ̂0) +
∑
q>0

(�′′(ξ̂0) + �γ (q,ξ̂0) q2)
|ξ̂q |2

2
. (16)

The functional dependence of Hgen
wall[ξ ], up to quadratic

order in the amplitude of the CW fluctuations, is given by the
functions �(ξIS) and �γ (q,ξIS). The first one, (4), has already
been obtained,21 and the second may be directly extracted from
the mean square CW amplitude, as a direct generalization of
(11),

〈|ξ̂q |2〉 = kbT

(�′′(ξIS) + (γLV(q) + �γ (q,ξIS))q2)A0
. (17)

We should remark that the bottom line in Eqs. (15) and
(16), in terms of γLV(q) and �γ (q,ξIS), are more general
than the top lines in the same equations, given in terms
of the local function of ξ (x,y) and its derivatives. Strictly
nonlocal interfacial Hamiltonians, as proposed by Parry and
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coworkers,34 include double integrals over the surface, like

Hnl[ξ ] ∼
∫

d2R1S(ξ (R1))
∫

d2R2S(ξ (R2))K(R12), (18)

where a kernel function K(|R1 − R2|) links the functional
dependence at two points of the interface, with a generic
function S(ξ ). The expansion of Hnl[ξ ] in terms of ξ (R2) ≈
ξ (R1) + ∇ξ (R1)(R2 − R1) + · · · may not converge (if there
are important changes of the film thickness over the range of
the kernel) and, in that case, Hnl[ξ ] cannot be approximated
by the first lines in Eq. (16). However, the expansion of
Hnl[ξ ] up to quadratic order in ξ̂q would still have the
form of the last line in Eq. (16). In that case, the function
�γ (q,ξIS) would not converge as a polynomial expansion
�γ (ξIS) + �κ(ξIS)q2 + · · ·.

Our direct evaluation of γLV(q) + �γ (ξIS,q) from the sim-
ulation results for 〈|ξ̂q |2〉 does not presuppose any particular
dependence with q, so that we are not assuming any particular
form, local or nonlocal, for the interfacial Hamiltonian. On the
other hand, the (generalized) wall contribution to the surface
tension �γ (ξIS,q) has to vanish in the limit of very thick layers,
and the most obvious trial form to fit the MC results would be
the simple exponential function that gives �(ξIS) in Eq. (4), as
extracted from grand-canonical MC simulations of the same
model used here,21 i.e.,

�γ (q,ξIS) ≈ �γw(q)e−λξIS . (19)

The Hamiltonian form used in the RG analysis by Fisher
and Jin3 corresponds to (16) and (19) with a q-independent
function �γw(q) ≈ �γFJ. The simplest classical version, (7),
is recovered if �γFJ = 0. For flat substrates the Hamiltonian
of Fisher and Jin is recovered as the low-q limit of the nonlocal
functional form proposed by Parry et al.,34 but the latter
includes a q dependence in �γ (q,ξIS). Therefore, the first dif-
ference between the two theoretical assumptions would appear
as the curvature terms in the expansion γLV(q) + �γ (q,ξIS) ≈
γ0 + �γFJe

−λξIS + (κ + �κ(ξIS))q2 + · · ·. Parry and Rascón6

have recently shown that the nonlocal Hamiltonian also implies
the wave-vector dependence of γLV(q). ISM results extract the
value of κ from computer simulation of the liquid surface,16

and the results presented in the next section aim to test (19)
and to extract the possible curvature terms in the wall damping
term �γ (q,ξIS) for wetting films.

IV. RESULTS

Figures 1 and 2 present the MC results for the inverse
mean square values �(q,ξIS) ≡ 〈|ξ̂q |2〉−1, as functions of the
film thickness ξIS, for the seven lowest values of q within
our simulation box (from qσ = 0.6 to 1.9). As expected, the
amplitude of the CW fluctuations decreases (� increases) for
larger q (shorter wavelength) and for thinner films (damping
by the wall). Within the accuracy of our results, �(q,ξIS) is
flat for ξIS � 5σ , and it recovers the prediction for the free
liquid slab (filled circles), i.e., �LV(q) = γLV(q)q2A0/(kbT ),
with γLV(q) defined in Eq. (13) and presented in Fig. 3(a). As
reported previously,17,20 the extrapolation of the ISM results
to the q = 0 limit is consistent with the thermodynamic
surface tension obtained in the same computer simulations,
βσ 2γLV(0) ≡ βσ 2γ0, but the effect of the bending modulus is

2 4 6 8 10
ξIS/σ

0

400

800

1200

1600

Γ(
q,

ξ I
S)
=(

〈|ξ
q|2

〉/σ
2 )−1

FIG. 1. (Color online) Inverse of the mean square amplitude of the
intrinsic surface Fourier components �(q,ξIS) versus the thickness of
the adsorbed liquid film, for different values of q. Circles, qσ = 0.601;
squares, qσ = 0.850; diamonds, qσ = 1.202; downward triangles,
qσ = 1.344; upward triangles, qσ = 1.700; left triangles, qσ = 1.802;
and right triangles, qσ = 1.900. Filled (black) circles represent the
(〈|ξq |2〉)−1 value of the free liquid slab. Dashed lines, fit to the upper
envolvent; and dashed-dotted lines, fit to the lower envolvent. Both
fits use the exponential decay, (21).

clearly observed in the increase in γLV(q) for qσ � 0.5. At
the largest wave vector, qσ = 1.90, our results for �(q,ξIS)
are about four times larger than the predictions of the classical
Hamiltonian, (7) and (8), mainly because of the large bending
contribution to the surface tension of the free liquid surface,
γLV(q) ≈ 4γ0. The classical prediction from (11) should be
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FIG. 2. (Color online) Detailed and enlarged view of the upper
(qσ = 1.90; top) and lower (qσ = 0.601; bottom) curves in Fig. 1.
Dashed lines and symbols have the same meaning as in Fig. 1.
The solid line is the fit to the decaying oscillatory function, (20).
The dotted line shows the classical prediction, (11), at qσ = 0.601.
Arrows on the bottom axis give the positions of the minima
(downward open arrows) and maxima (upward filled arrows) of the
mean density profile for thick wetting layers.
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recovered in the low-q limit, and the dotted line in the bottom
panel in Fig. 2 shows that for qσ = 0.60 it is already in the
observed range of values. The difference in the plateau for
ξIS � 5σ represents the effect of the bending contribution at the
free liquid surface, which is much smaller than for the larger q.
However, the main difference between the classical prediction
and our simulation results is the strong oscillatory structure of
�(q,ξIS) in films with ξIS � 4σ , which is very well fitted by

�(q,ξIS)

A0

≈ q2 βγLV(q) + e−λξIS [Bmean + Bosc cos(qosc(ξIS − z0))],

(20)

assuming that the boundaries have the same exponentially
decay λσ = 1.55 as the MF potential �(ξIS) in Eq. (4). The
upper and lower bounds for �(q,ξIS), represented in Figs. 1
and 2, are given by

B(low)(q)e−λξIS � �(q,ξIS)

A0
− q2 βγLV(q) � B(up)(q)e−λξIS ,

(21)

with the functions B(up,low)(q) = Bmean ± Bosc shown in
Figs. 3(b) and 3(c).

The theoretical prediction, (17), from the generalized
surface Hamiltonian leads to

B(low)(q) � β(�′′(ξIS) + q2�γ (q,ξIS))eλξIS

= β(λ2�(0) + q2�γ (q,ξIS)eλξIS ) � B(up)(q). (22)

The upper boundary B(up)(q) in Fig. 3(b) describes the
wall effect for films that show the largest damping. The
extrapolation to low q is perfectly consistent with (22), i.e.,
B(up)(0) ≈ λ2β�(0) = 4.73/σ 4. Above that constant value,
there is a nearly quadratic increase with q, consistent with
the assumption of Fisher and Jin,3 i.e., B(up)(q) ≈ λ2β�(0) +
β�γ

(up)
FJ q2, with only one free parameter to describe the wall

damping on the CW fluctuations in Eq. (19) for any value of
q and for any film thickness. Its value βσ 2�γ

(up)
w (0) ≈ 10.22,

extracted from our ISM, provides a firm quantitative link be-
tween the molecular simulations and the surface Hamiltonian
used in the RG analysis. We may even characterize the small
deviations of B(up)(q) from a pure parabolic shape, allowing
for a function �γ

(up)
w (q) = �γ

(up)
w (0) + �κ

(up)
w q2 + · · ·.

However, as is clearly seen in a comparison between
Figs. 3(a) and 3(b), the relative importance of the wall
bending term, �κ

(up)
w /�γ

(up)
w ≈ 0.06/σ 2, is much less than

in the free surface liquid-vapor interface, κ/γ0 ≈ 0.80/σ 2.
The bending (or nonlocal) effects in the fluctuating film are
essentially similar to those in the free liquid-vapor interface.

Our ISM results for 〈|ξ̂q |2〉, together with the previous
simulation results for the MF wall potential �(ξIS) and the CW
spectrum at the liquid surface γLV(q), appear to fit perfectly
into the theoretical assumptions in Eq. (16). This is highly
rewarding, however, we have to recall that B(up)(q) gives only
the upper limit for �(q,ξIS), i.e., the lower bound for the
CW square amplitude 〈|ξ̂q |2〉. The results for B(low)(q), also
presented in Fig. 3(c), break the apparent simplicity of the
analysis. The function B(low)(q) diverts from the parabolic
behavior event at very low values of q due to the high relative
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FIG. 3. (Color online) (a) The free liquid surface contribution
[q2βγLV(q)] to �(q,ξIS). Inset: The effective q-dependent surface
tension γLV(q) of the free liquid-vapor interface. (b), (c) Values
of Bup(q) and B low(q), respectively, as a function of q, obtained
from the fit of �(q,ξIS) in Fig. 1 to the decaying oscillatory function
given by (20). Open (black) circles are the results obtained using the
ISM intrinsic surface; open (red) squares, the Delaunay triangulated;
and open (green) triangles, the terraced Voronoi. The quadratic fits
at low q are as follows: solid (black) lines, ISM surface; dashed
(red) lines, Delaunay triangled; and dashed-dotted (green) lines,
terraced Voronoi. Dotted lines are the fits of the ISM results to a
quartic function: λ2β�(0) + β�γq2 + β�κq4 in (b) and (c) and
βγ0q

2 + βκq4 in (a). In (b) and (c) the horizontal dashed (blue) line
is the constant value B = λ2β�(0) predicted by the simple local
Hamiltonian given by (9).

relevance of the bending term �κ (low)
w /�γ (low)

w ≈ 2.0/σ 2.
More important is that the low q extrapolates to B(low)(0) ≈ 0,
rather than to the value λ2�(0) = �′′(0) predicted by (22).
Note that, without the wall contribution �′′(0), the CW
fluctuations in the film would diverge in the q → 0 limit, as in
the free liquid surface.

The oscillatory behavior of �(q,ξIS), and hence of the
difference between B(up)(q) and B(low)(q), comes clearly from
the formation of the molecular layers in the density profile
ρ(z) of the adsorbed film. The wave-vector parameter in
the fit, (20), is qosc ≈ 2π/σ , i.e., in the range for molecular
layering oscillations. The arrows on the bottom axis in Fig. 2
mark the positions of the IS ξIS = zmax,min, where the density
profile ρ(z) develops maxima and minima; and there is a
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FIG. 4. (Color online) Mean density profiles for wetting films in
simulation with N = 200–350 particles N . Dark dashed (red) line,
N = 200; solid gray (green) line, N = 250; dark solid (blue) line,
N = 300; and light dashed (orange) line:, N = 350. Vertical dashed
lines point out the mean positions of the intrinsic surfaces ξIS =
1.68σ , 2.15σ , 2.64σ , and 3.23σ , respectively.

clear correlation with the oscillations of �(q,ξIS). In Fig. 4
we present the density profiles ρ(z) for films with 1.5σ �
ξIS � 3.5σ , covering two full oscillations of �(q,ξIS). These
profiles are far from the theoretical image, which supposes that
the external edge of the film is similar to a liquid-vapor surface.
However, these wetting films are within the range of interest
to analyze the possible nonlocal effects in the interfacial
Hamiltonian. Thicker films (ξIS � 8σ ) present density profiles
with a liquid-like plateau between the wall and the outer edge,
but for them the wall damping effect on the CW fluctuations is
too weak, compared with the intrinsic noise of the simulation
results. With very large simulation boxes (to access at very
low q), we might enhance the wall effects for thick films, but
that would take us to the range qσ 
 1, where the simplest
local Hamiltonian, (7) and (8), is very accurate, and we could
not discern any nonlocal effect beyond it. Moreover, in our
previous work21 we have observed that, even for very thin
films, the surface potential �(ξIS) extracted by the ISM was
accurately described by the smooth exponential, (4), with the
predicted decay length and without any apparent effect of the
strong density layering near the wall. The excellent agreement
of our results for B(up)(q) and the established theoretical
description from (16) also suggests that the fluctuations of
these strongly layered films may also be very well described
in terms of the same exponential decay. This is probably the
most important result of this work.

We discussed in our previous work21 that the apparent
irrelevance of the strong layering in the smooth function
�(ξIS) implies that the structure in ρ(z) is a projection of
the inherent correlation structure in the liquid, rather than
a strong perturbation of that structure. The ISM extracts
intrinsic density profiles at the liquid-vapor interface that are
as structured as the usual (mean) density profiles near a planar
wall; observing the layering at the inner or at the outer edge
of the film is just a matter of choice for the representation of
the molecular distances, either taking the z0 = 0 position of
the wall or the z0 = ξ (R) position of the IS as the origin to
represent the positions zi − z0 of each particle (i = 1, . . . ,N).

The enhanced fluctuations described by B(low)(q) represent the
frustration, or negative interference, between the mean density
layering with respect to the wall and the intrinsic layering with
respect to the outer edge of the wetting film, which appears
to be a tendency of the system to undergo some layering
transitions. Indeed, if the growth of the molecular layers were
discrete, the function �(ξIS) should show a piece-like structure,
with the coexisting values of the mean thickness joined by
straight lines, i.e., �′′(ξIS) = 0, as apparently deduced from
B(low)(q) in Fig. 3(c). The observation of such behavior in
the canonical MC simulations analyzed here, but not in the
(restricted) grand-canonical MC used to get �(ξIS),21 suggests
that the oscillatory structure of �(q,ξIS) could be a finite-size
effect, producing a spurious layering transition. With this
interpretation the results for B(up)(q), i.e., the bottom line
for the CW mean square amplitude, could represent the true
Hamiltonian Hwall[ξ (R)].

V. DISCUSSION OF THE DEFINITION OF
THE INTRINSIC SURFACE

We must consider a problem that has already appeared in the
description of the CW spectrum for a free liquid surface. The
only physical reality at the liquid interface is the discrete set of
molecular positions. The mathematical surface z = ξ (R) that
defines the instantaneous IS is a useful construction since it
keeps the relevant fluctuations in the long-CW limit. However,
as we push the interpretation of ξ (R) to corrugations at the
mesoscopic range, there are unavoidable ambiguities, since
there is not a unique way to define the boundary for the liquid
phase. It has often been assumed that the geometrical aspects
of the surface, relevant in the long-wavelength limit, should not
be affected by this problem. Indeed, very different definitions
of the smooth surface z = ξ (R), to be associated with the
same molecular configuration, may give the same mean square
gradient 〈|∇ξ (R)|2〉), i.e., the same mean value for the IS area
in Eq. (8), when averaged over the equilibrium configurations
along a computer simulation. However, the specific details of
the interpolation scheme become relevant to estimate the mean
square curvature (or 〈|∇2ξ (R)|2〉). Therefore, the bending
rigidity κ , which weights the curvature contribution to the
surface Hamiltonian H[ξ ], is also dependent on the specific
definition for the IS.32,35 Any experimental measurement,
theoretical prediction, or computer simulation evaluation of
κ is as good as the definition of ξ (R) that is behind it.

Over the last decade, the exploration of ξ (R) in computer
simulations has built a corpus of practical definitions that
give κ within a narrow range of values, particularly when
the details in the definition of the IS are optimized to give
the best simultaneous representation of different physical
aspects, like the layering structure, the interfacial kinetics, and
the hydrodynamics of the CW modes.16 Moreover, when we
use different definitions (within that corpus) we observe that
the variation of physical parameters, like the temperature or the
range of the potential, always produce very similar changes in
γLV(q), particularly in κ . In this context, we have explored how
the results for �γ (q,ξIS) presented in the previous section may
be affected by the specific choice used in the definition of the
surface z = ξ (R) from the instantaneous molecular positions
in the MC simulation.
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FERNÁNDEZ, CHACÓN, AND TARAZONA PHYSICAL REVIEW B 86, 085401 (2012)

To be valid down to the molecular level, the definition
of the IS definition has to be pinned to the molecules at
the surface, identified with a percolation analysis, which
is computationally costly and theoretically awkward. Any
simpler definition, like a local Gibbs dividing surface based
on a density balance across the interface, is doomed to failure
at scales of qσ ∼ 1. Even within the percolation analysis, we
have to choose specific definitions and parameters, which are
reflected in the optimal number of surface pivots per unit area,
ns , selected by the ISM16 and in the specific interpolation
scheme to get ξ (R) from that set of pivots.

In the original version of the ISM, the surface z = ξ (R) was
defined as the minimal area surface, going exactly through the
positions of the selected surface pivots and having a strict
upper limit q � qu ≈ 2π/σ in its Fourier representation, (2).
An alternative representation, has been used more recently,16,36

with a Delaunay triangulation of the pivot coordinates on
the (x,y) plane, to identify the nearest neighbors of each
pivot. Then the surface z = ξ (R) is made of planar triangular
facets, joining the edges of nearest-neighbor pivots. A third
definition is the terraced Voronoi surface,37 in which the
projection of the pivots onto the (x,y) plane is followed by a
Voronoi tessellation, i.e., for each projected pivot we define its
Voronoi cell as all points whose distance to the given projected
pivot is not greater than the distance to the other projected
pivots. The terraced Voronoi surface is defined assigning to
all the points belonging to one Voronoi cell the height of
its associated pivot. For the last two procedures the Fourier
components of the CW spectrum are obtained by fitting the
faceted or terraced surfaces to (2). Note that in all cases the CW
amplitudes ξ̂q are the Fourier components of the corresponding
surface, and not those of the discrete set of pivots, which
would lead to spurious γLV(q), because the bulk-like molecular
correlations along the transverse directions would be mixed
with the surface correlations induced by the CW. For the
typical molecular configurations, the aspect of the ISM and
the Delaunay triangulated surfaces is very similar. They only
differ in the sharp edges between the facets, which appear
at length scales well below the molecular diameter σ . In
contrast, the terraced surface is rather different and apparently
unrealistic at the scale of σ , with the abrupt changes between
horizontal terraces. Comparison among the results of these
three definitions for the IS allows us to check the soundness
of the whole approach.

The results for q2γLV(q), B(up)(q), and B(low)(q) presented
in Fig. 3 confirm our expectations. All these functions are
independent of the definition of ξ (R) up to the quadratic order
∼q2, while the results at q4 and higher orders have similar qual-
itative behaviors but different quantitative values. In general,
the ISM gives the largest bending terms, closely followed by
the Delaunay triangulation. The terraced Voronoi surfaces give
null bending contribution in B(up)(q), while for the free liquid
surface κ is less than half the value obtained from the ISM.
Similar changes in κ appear within the ISM definition if we
reduce the number of surface pivots per unit area ns to slightly
below its optimal value.16 Therefore, the surface tension terms,
γLV(0) = γ0 and �γ

(up,low)
w (0), are robust, while the bending

coefficients, κ and �κ
(up,low)
w , depend on the specific definition

of the IS. Within the restricted class of definitions used here,
that dependence is mild, e.g., the relative value of the bending

modulus with respect to the surface tension may be estimated
to be in the range 0.4/σ 2 � κ/γ0 � 0.8/σ 2 for the free liquid
surface and 0 � �κw/�γw � 0.07/σ 2 for the wall damping
term. The qualitative behavior of the CW spectrum at the
wetting film would not change within these ranges; there is
a clear bending (or nonlocal) effect that is essentially given
by the free liquid surface. The contribution of these effects
to Hwall[ξ ] is much smaller, and it falls within the inherent
uncertainty of the mesoscopic description.

We should not forget that other apparently reasonable
definitions of the IS (e.g., the local Gibbs dividing surface)
lead to very different results for γLV(q), with negative bending
terms. This is produced by a poor separation of the bulk-like
density fluctuations near the surface, which are interpreted as
enhanced CW fluctuations.10,38

Therefore, to distinguish among different theoretical pro-
posals, local or nonlocal, for the surface HamiltonianH[ξ ], we
have to bear in mind that any contribution beyond the square
gradient term in Eqs. (15) and (16) would reflect the (explicit
or implicit) definition of the IS.

VI. CONCLUDING REMARKS

In this work we have studied the CW fluctuations at the
edge of wetting layers and how they depend on the mean
film thickness ξIS. We use MC computer simulations of a
simple but realistic model of the wall-fluid interface and the
method known as the ISM16,17 to extract the shape of the
IS z = ξ (R) directly from the molecular positions. This is
an important difference from any previous analysis of CW
fluctuations in wetting layers, which were done relying on
the observation of density-density surface correlations.8 The
subtleties in the connection between the fluctuations of the
IS and those of the fluid density near the surface have often
been ignored as being irrelevant for the macroscopic limit.
However, they are crucial if we want to explore the mesoscopic
range in which the effective interfacial Hamiltonian H[ξ ] may
differ from the simplest CWT with a local exponential wall
potential, (7) and (8). Our explicit sampling of ξ (R) may be
directly compared with the predictions of any approximation
for H[ξ ], without the (uncontrolled) approximations to go
from 〈|ξ̂q |2〉 to the density-density correlations. Moreover, we
have checked the influence of the specific definition to get
ξ (R) from the molecular positions, which are the only physical
reality described by H[ξ ].

We have analyzed wetting layers with thicknesses between
1 and 10 monolayers, but only those with ξIS � 4σ give
relevant information about the damping effect of the substrate
wall on CW fluctuations. Using much larger simulation boxes
we could access smaller wave vectors, which would show
the influence of the wall in thicker films, but then the results
would be trivially reproduced by the simplest local version
of H[ξ ]. The possible effects of surface bending, (15) and
(16), or nonlocal dependence, (18), have to be explored in
the range of qσ ∼ 1 for wave vectors and for relatively thin
films. In realistic models these thin films have strongly layered
density profiles ρ(z), and their influence on the CW spectrum
has to be tested. In a previous paper21 we reported that the
wall potential �(ξIS) extracted by our method in (restricted)
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grand-canonical MC simulations was a smooth exponential
function of the mean film thickness, despite the fact that
z = 〈ξ (R)〉 had to cross over the strong layers in ρ(z). In
the present work we have used canonical MC simulations of
the same system to measure the CW fluctuations with respect
to the best possible determination of the mean film thickness,
and we get a clear influence of the layering structure in the
mean square amplitude of the CWs.

Along the line of films with the maximum damping effect
of the wall (i.e., the upper boundary for the inverse of 〈|ξ̂q |2〉
shown in Figs. 1–3), our results closely follow the predictions
from the theoretical models for H[ξ ]. From layer to layer,
the dependence on the film thickness is given by the same
exponential decay, ∼e−λξIS , as the potential �(ξIS), where
the decay constant λ is the inverse correlation length in the
bulk liquid. The dependence on q fits well into the form
�′′(ξIS) + q2�γw(0)e−λξIS used in the RG analysis by Fisher
and Jin,3 but the nonlocal effects pointed out by Parry et al.4,5

appear to be strong and clear in the contribution γLV(q),
independent of ξIS, which gives the free liquid surface limit
for thick films. In this respect, our method to extract the CW
fluctuations from the molecular positions gives a quantitative
and testable link between the molecular and the mesoscopic
descriptions of wetting films. From the molecular interactions
used in the simulations we can get accurate predictions for
the functions �(ξIS) and γLV(q) + �γw(q,ξIS), which define
the Hamiltonian model for RG analysis, and we may check
their dependence with the specific definition of the intrinsic
function. Since the theoretical approaches are developed from
the limit of very thick wetting layers, proving their validity
for thin films, of a few monolayers and with structured

density profiles, is, on its own, an interesting result of our
work.

On the other hand, if we look at the whole dependence
of the CW fluctuations on the film thickness (and not just
its bottom line), we observe the strong layering effect, with
enhanced fluctuations when ξIS goes from one layer to the
next. Further studies are required to test for finite-size effects
and for the differences between the results of canonical and
those of grand-canonical simulations for �(ξIS). In the simplest
scenario, the oscillatory behavior of the CW damping could be
produced by a pseudo phase transition induced by the finite-
size effects. Otherwise, if such layering had to be incorporated
into an effective Hamiltonian H[ξ ], it would imply the use of
nonlocal dependence with oscillatory kernels, which have not
been considered in any RG analysis. The appealing consistency
between Bup(q) in Fig. 3(b) and the theoretical framework
suggests that the enhanced (or subdamped) CW fluctuations
that create the oscillatory behavior of �γ (q,ξIS) could be
spurious or irrelevant in the RG flux. The present procedure
may also be applied to the study of wetting layers on structured
substrates where nonlocal effects could be more relevant to
contrast with the predictions of Fisher and Jin3 and Parry
et al.4,5 Work addressing these questions is in progress and
will be reported in the future.
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