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Superradiance-like electron transport through a quantum dot
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We theoretically show that intriguing features of coherent many-body physics can be observed in electron
transport through a quantum dot (QD). We first derive a master-equation-based framework for electron transport
in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in
the QD. This general tool is then used to study the leakage current through a single QD in a transport setting.
We find that, for an initially polarized nuclear system, the proposed setup leads to a strong current peak, in
close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with
realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin
ensembles in QDs.
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I. INTRODUCTION

Quantum coherence is at the very heart of many intriguing
phenomena in today’s nanostructures.1,2 For example, it is
the essential ingredient to the understanding of the famous
Aharonov-Bohm-like interference oscillations of the conduc-
tance of metallic rings3 or the well-known conductance steps in
quasi-one-dimensional wires.4,5 In particular, nonequilibrium
electronic transport has emerged as a versatile tool to gain deep
insights into the coherent quantum properties of mesoscopic
solid-state devices.6,7 Here, with the prospect of spintronics
and applications in quantum computing, a great deal of
research has been directed towards the interplay and feedback
mechanisms between electron and nuclear spins in gate-based
semiconductor quantum dots.8–14 Current fluctuations have
been assigned to the random dynamics of the ambient nuclear
spins15 and/or hysteresis effects due to dynamic nuclear
polarization.15–18 Spin-flip-mediated transport, realized in
few-electron quantum dots in the so-called spin-blockade
regime,19 has been shown to exhibit long time scale oscillations
and bistability as a result of a buildup and relaxation of
nuclear polarization.15,16 The nuclear spins are known to act
collectively on the electron spin via hyperfine interaction. In
principle, this opens up an exciting test bed for the observation
of collective effects which play a remarkable role in a wide
range of many-body physics.20–22

In quantum optics, the concept of superradiance (SR),
describing the cooperative emission of photons, is a paradigm
example for a cooperative quantum effect.1,23,24 Here, initially
excited atoms emit photons collectively as a result of the
buildup and reinforcement of strong interatomic correlations.
Its most prominent feature is an emission intensity burst in
which the system radiates much faster than an otherwise
identical system of independent emitters. This phenomenon
is of fundamental importance in quantum optics and has been
studied extensively since its first prediction by Dicke in 1954.23

Yet, in its original form the observation of optical SR has
turned out to be difficult due to dephasing dipole-dipole van
der Waals interactions, which suppress a coherence buildup in
atomic ensembles.

This paper is built on analogies between mesoscopic
solid-state physics and quantum optics: The nuclear spins

surrounding a quantum dot (QD) are identified with an
atomic ensemble, individual nuclear spins corresponding to the
internal levels of a single atom and the electrons are associated
with photons. Despite some fundamental differences—for
example, electrons are fermions, whereas photons are bosonic
particles—this analogy stimulates conjectures about the po-
tential occurrence of related phenomena in these two fields of
physics. Led by this line of thought, we address the question
of whether superradiant behavior might also be observed in a
solid-state environment where the role of photons is played by
electrons. To this end, we analyze a gate-based semiconductor
QD in the Coulomb blockade regime, obtaining two main
results, of both experimental and theoretical relevance. First,
in analogy to superradiant emission of photons, we show how
to observe superradiant emission of electrons in a transport
setting through a QD. We demonstrate that the proposed
setup, when tuned into the spin-blockade regime, carries
clear fingerprints of cooperative emission, with no van der
Waals dephasing mechanism on relevant time scales. The
spin blockade is lifted by the hyperfine (HF) coupling which
becomes increasingly more efficient as correlations among the
nuclear spins build up. This markedly enhances the spin-flip
rate and hence the leakage current running through the QD.
Second, we develop a general theoretical master-equation
framework that describes the nuclear spin mediated transport
through a single QD. Apart from the collective effects due
to the HF interaction, the electronic tunneling current is
shown to depend on the internal state of the ambient nuclear
spins through the effective magnetic field (Overhauser field)
produced by the hyperfine interaction.

The paper is structured as follows. In Sec. II, we highlight
our key findings and provide an intuitive picture of our basic
ideas, allowing the reader to grasp our main results on a
qualitative level. By defining the underlying Hamiltonian,
Sec. III then describes the system in a more rigorous fashion.
Next, we present the first main result of this paper in Sec. IV: a
general master equation for electron transport through a single
QD which is coherently enhanced by the HF interaction with
the ambient nuclear spins in the QD. It features both collective
effects and feedback mechanisms between the electronic and
the nuclear subsystem of the QD. Based on this theoretical
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framework, Sec. V puts forward the second main result,
namely the observation of superradiant behavior in the leakage
current through a QD. The qualitative explanations provided in
Sec. II should make it possible to read this part independently
of the derivation given in Sec. IV. Section VI backs up
our analytical predictions with numerical simulations. When
starting from an initially polarized nuclear spin ensemble, the
leakage current through the QD is shown to exhibit a strong
peak whose relative height scales linearly with the number of
nuclear spins, which we identify as the characteristic feature
of superradiant behavior. In Sec. VII we draw conclusions and
give an outlook on future directions of research.

II. MAIN RESULTS

In this section we provide an intuitive exposition of our key
ideas and summarize our main findings.

HF-assisted electron transport. We study a single electri-
cally defined QD in the Coulomb-blockade regime which is
attached to two leads, as schematically depicted in Fig. 1.
Formally, the Hamiltonian for the total system is given by

H = HZ + HB + HT + HHF. (1)

Here, HZ describes the electronic level structure inside the QD
in the presence of an external magnetic field. Next, HB refers to
two independent reservoirs of noninteracting electrons, the left
and right leads, respectively. The coupling between these and
the QD is described in terms of a tunneling Hamiltonian HT

and HHF models the collective hyperfine interaction between
an electron confined inside the QD and an ensemble of N

proximal nuclear spins surrounding the QD. Note that the
specific form of H is given later in Sec. III.

Our analysis is built on a quantum master-equation ap-
proach, a technique originally rooted in the field of quantum

FIG. 1. (Color online) Schematic illustration of the transport
system: An electrically defined QD is tunnel-coupled to two electron
reservoirs, the left and right lead, respectively. A bias voltage
V = (μL − μR)/e is applied between the two leads in order to induce
a current through the QD. An external magnetic field is used to
tune the system into the sequential-tunneling regime and the QD
effectively acts as a spin filter. The resulting spin blockade can be
lifted by the HF interaction between the QD electron and the nuclear
spins in the surrounding host environment.

optics. By tracing out the unobserved degrees of freedom
of the leads we derive an effective equation of motion for
the density matrix of the QD system ρS—describing the
electron spin inside the QD as well as the nuclear spin
ensemble—irreversibly coupled to source and drain electron
reservoirs. In addition to the standard assumptions of a
weak system-reservoir coupling (Born approximation), a flat
reservoir spectral density, and a short reservoir correlation time
(Markov approximation), we demand the hyperfine flip-flops
to be strongly detuned with respect to the effective magnetic
field seen by the electron throughout the dynamics. Under
these conditions, the central master equation can be written as

ρ̇S(t) = −i[HZ + HHF,ρS(t)]

+
∑

σ=↑,↓
ασ (t)

[
dσρS(t)d†

σ − 1

2
{d†

σ dσ ,ρS(t)}
]

+
∑

σ=↑,↓
βσ (t)

[
d†

σ ρS(t)dσ − 1

2
{dσ d†

σ ,ρS(t)}
]
,

(2)

where the tunneling rates ασ (t) and βσ (t) describe dissipative
processes by which an electron of spin σ tunnels from
one of the leads into or out of the QD, respectively. Here,
the fermionic operator d†

σ creates an electron of spin σ inside
the QD. While a detailed derivation of Eq. (2) along with the
precise form of the tunneling rates is presented in Sec. IV,
here we focus on a qualitative discussion of its theoretical
and experimental implications. Essentially, our central master
equation exhibits two core features.

Nuclear-state-dependent electronic dissipation. First, dis-
sipation only acts on the electronic subsystem with rates
ασ (t) and βσ (t) that depend dynamically on the state of the
nuclear subsystem. This nonlinear behavior potentially results
in hysteretic behavior and feedback mechanisms between the
two subsystems as already suggested theoretically11,14,20,21 and
observed in experiments in the context of double QDs in the
Pauli-blockade regime (see, e.g., Refs. 12, 13, and 18). On a
qualitative level, this finding can be understood as follows:
The nuclear spins provide an effective magnetic field for
the electron spin, the Overhauser field, whose strength is
proportional to the polarization of the nuclear spin ensemble.
Thus, a changing nuclear polarization can either dynamically
tune or detune the position of the electron levels inside the
QD. This, in turn, can have a marked effect on the transport
properties of the QD as they crucially depend on the position
of these resonances with respect to the chemical potentials
of the leads. In our model, this effect is directly captured by
the tunneling rates dynamically depending on the state of the
nuclei.

SR in electron transport. Second, the collective nature of
the HF interaction HHF allows for the observation of coherent
many-body effects. To show this, we refer to the following
example: Consider a setting in which the bias voltage and an
external magnetic field are tuned such that only one of the two
electronic spin components, say the level |↑〉, lies inside the
transport window. In this spin-blockade regime the electrons
tunneling into the right lead are spin-polarized; that is, the
QD acts as a spin filter.25,26 If the HF coupling is sufficiently
small compared to the external Zeeman splitting, the electron
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is predominantly in its |↓〉 spin state, making it possible to
adiabatically eliminate the electronic QD coordinates. In this
way we obtain an effective equation of motion for the nuclear
density operator μ only. It reads

μ̇ = cr

[
A−μA+ − 1

2
{A+A−,μ}

]

+ ici[A
+A−,μ] + i

g

2
[Az,μ], (3)

where Aμ = ∑N
i=1 giσ

μ

i with μ = +, − ,z are collective
nuclear spin operators, composed of all N individual nuclear
spin operators σ

μ

i , with gi being proportional to the probability
of the electron being at the location of the nucleus of site i.
Again, we highlight the core implications of Eq. (3) and for a
full derivation thereof, including the definition of the effective
rates cr and ci , we refer to Sec. V. Most notably, Eq. (3) closely
resembles the SR master equation which has been discussed
extensively in the context of atomic physics24 and therefore
similar effects might be expected.

Superradiance is known as a macroscopic collective phe-
nomenon which generalizes spontaneous emission from a
single emitter to a many-body system of N atoms.1 Starting
from a fully polarized initial state the system evolves within a
totally symmetric subspace under permutation and experiences
a strong correlation buildup. As a consequence, the emission
intensity is not of the usual exponentially decaying form, but
conversely features a sudden peak occurring on a very rapid
time scale ∼1/N with a maximum ∼N2.

In this paper, we show that the same type of cooperative
emission can occur from an ensemble of nuclear spins
surrounding an electrically defined QD: The spin blockade can
be lifted by the HF interaction as the nuclei pump excitations
into the electron. Starting from a highly polarized, weakly
correlated nuclear state (which could be prepared by, e.g.,
dynamic polarization techniques12,13,22), this process becomes
increasingly more efficient, as correlations among the nuclei
build up due to the collective nature of the HF interaction. This
results in an increased leakage current. Therefore, the current
is collectively enhanced by the electron’s HF interaction
with the ambient nuclear spin ensemble, giving rise to a
superradiant-like effect in which the leakage current through
the QD takes the role of the radiation field: To stress this
relation, we also refer to this effect as superradiant transport
of electrons.

Comparison to conventional SR. Compared to its conven-
tional atomic counterpart, our system incorporates two major
differences: First, our setup describes superradiant behavior
from a single emitter, since in the strong Coulomb-blockade
regime the electrons are emitted antibunched. As described
above, the superradiant character is due to the nuclear
spins acting collectively on the electron spin leading to an
increased leakage current on time scales longer than single
electron tunneling events. The second crucial difference is the
inhomogeneous nature (gi �= const) of the collective operators
Aμ. Accordingly, the collective spin is not conserved, leading
to dephasing between the nuclei which in principle could
prevent the observation of superradiant behavior. However, as
exemplified in Fig. 2, we show that under realistic conditions—
taking into account a finite initial polarization of nuclear
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FIG. 2. (Color online) Normalized leakage current through a QD
in the spin-blockade regime for N nuclear spins, initial nuclear po-
larization p, and external Zeeman splitting ω0 in units of the total HF
coupling constant AHF ≈ 100 μeV, summarized as (N,p,ω0/AHF).
For homogeneous HF coupling the dynamics can be solved exactly
(black dotted line). Compared to this idealized benchmark, the
effects are reduced for realistic inhomogeneous HF coupling, but
still present: The relative peak height becomes more pronounced for
smaller detuning ω0 or higher polarization p (solid red line compared
to the blue dashed and green dash-dotted line, respectively). Even
under realistic conditions, the relative peak height is found to scale
linearly with N , corresponding to a strong enhancement for typically
N ≈ 105–106.

spins p and dephasing processes due to the inhomogeneous
nature of the HF coupling—the leakage current through
the QD still exhibits the characteristic peak whose relative
height scales linearly with the number of nuclear spins. Even
though the effect is reduced compared to the ideal case, for
an experimentally realistic number of nuclei N ≈ 105–106

a strong increase is still predicted. The experimental key
signature of this effect, the relative peak height of the leakage
current, can be varied by either tuning the external Zeeman
splitting or the initial polarization of the nuclear spins.

In the remainder of the paper, Eqs. (2) and (3) are derived
from first principles; in particular, the underlying assumptions
and approximations are listed. Based on this general theoretical
framework, more results along with detailed discussions are
presented. For both the idealized case of homogeneous HF
coupling—in which an exact solution is feasible even for
relatively large N—and the more realistic inhomogeneous
case, further numerical simulations prove the existence of a
strong superradiant peaking in the leakage current of single
QD in the spin-blockade regime.

III. THE SYSTEM

This section gives an in-depth description of the Hamilto-
nian under study, formally introduced in Eq. (1). The system
we consider consists of a single electrically defined QD
in a transport setting as schematically depicted in Fig. 1.
Due to strong confinement only a single orbital level is
relevant. Moreover, the QD is assumed to be in the strong
Coulomb-blockade regime so that at maximum one electron
resides inside the QD. Therefore, the effective Hilbert space of
the QD electron is span {|↑〉,|↓〉,|0〉} where the lowest energy
states for an additional electron in the QD with spin σ =↑ , ↓
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are split by an external magnetic field. The Hamiltonian for
the total system is given in Eq. (1).

Here, the first term,

HZ =
∑

σ

εσ d†
σ dσ , (4)

describes the electronic levels of the QD. The Zeeman splitting
between the two spin components is ω0 = ε↑ − ε↓ (we set h̄ =
1) and the QD electron operators are d†

σ = |σ 〉〈0|, describing
transitions from the state |0〉 with no electron inside the QD to
a state |σ 〉 with one electron of spin σ inside the QD.

Electron transport through the QD is induced by attaching
the QD to two electron leads (labeled as L and R), which
are in thermal equilibrium at chemical potentials μL and
μR , respectively. The leads themselves constitute reservoirs
of noninteracting electrons,

HB =
∑
α,k,σ

εαkc
†
αkσ cαkσ , (5)

where c
†
αkσ (cαkσ ) creates (annihilates) an electron in lead α =

L,R with wave vector k and spin σ . The operators c
†
αkσ (cαkσ )

fulfill the usual Fermi commutation relations: {c†αkσ ,c
†
α′k′σ ′ } =

{cαkσ ,cα′k′σ ′ } = 0 and {c†αkσ ,cα′k′σ ′ } = δα,α′δk,k′δσ,σ ′ . The effect
of the Coulomb interaction in the leads can be taken into
account by renormalized effective quasiparticle masses. A
positive source-drain voltage V = (μL − μR)/e leads to a
dominant tunneling of electrons from left to right. Microscop-
ically, the coupling of the QD system to the electron reservoirs
is described in terms of the tunneling Hamiltonian

HT =
∑
α,k,σ

T
(α)
k,σ d†

σ cαkσ + H.c., (6)

with the tunnel matrix element T
(α)
k,σ specifying the transfer

coupling between the lead α = L,R and the system. There is
no direct coupling between the leads and electron transfer is
only possible by charging and discharging the QD.

The cooperative effects are based on the collective hyperfine
interaction of the electronic spin of the QD with N initially
polarized nuclear spins in the host environment of the QD.27

It is dominated by the isotropic contact term28 given by

HHF = g

2
(A+S− + A−S+) + gAzSz. (7)

Here Sμ and Aμ = ∑N
i=1 giσ

μ

i with μ = +, − ,z denote
electron and collective nuclear spin operators, respectively.
The coupling coefficients are normalized such that

∑
i g

2
i = 1

and individual nuclear spin operators σ
μ

i are assumed to be
spin- 1

2 for simplicity; g is related to the total HF coupling
strength AHF via g = AHF/

∑
i gi . We neglect the typically

very small nuclear Zeeman and nuclear dipole-dipole terms.28

For simplicity, we also restrict our analysis to one nuclear
species only. These simplifications are addressed in more detail
in Sec. VI.

The effect of the HF interaction with the nuclear spin
ensemble is twofold: The first part of the above Hamiltonian
Hff = g

2 (A+S− + A−S+) is a Jaynes-Cummings-type inter-
action which exchanges excitations between the QD electron
and the nuclei. The second term HOH = gAzSz constitutes a
quantum magnetic field, the Overhauser field, for the electron

spin generated by the nuclei. If the Overhauser field is not
negligible compared to the external Zeeman splitting, it can
have a marked effect on the current by (de)tuning the hyperfine
flip-flops.

IV. GENERALIZED QUANTUM MASTER EQUATION

Electron transport through a QD can be viewed as a tool
to reveal the QD’s nonequilibrium properties in terms of
the current-voltage I/V characteristics. From a theoretical
perspective, a great variety of methods such as the scattering
matrix formalism29 and nonequilibrium Green’s functions7,30

have been used to explore the I/V characteristics of quantum
systems that are attached to two metal leads. Our analysis is
built upon the master equation formalism, a tool widely used
in quantum optics for studying the irreversible dynamics of
quantum systems coupled to a macroscopic environment.

In what follows, we employ a projection operator based
technique to derive an effective master equation for the
QD system—comprising the QD electron spin as well as
the nuclear spins—which experiences dissipation via the
electron’s coupling to the leads. This dissipation is shown
to dynamically depend on the state of the nuclear system
potentially resulting in feedback mechanisms between the two
subsystems. We derive conditions which allow for a Markovian
treatment of the problem and list the assumptions our master
equation based framework is based on.

A. Superoperator formalism: Nakajima-Zwanzig equation

The state of the global system that comprises the QD as well
as the environment is represented by the full density matrix
ρ(t). However, the actual states of interest are the states of the
QD which are described by the reduced density matrix ρS =
TrB[ρ], where TrB . . . averages over the unobserved degrees
of freedom of the Fermi leads. We derive a master equation
that governs the dynamics of the reduced density matrix ρS

using the superoperator formalism. We start out from the von
Neumann equation for the full density matrix

ρ̇ = −i[H (t),ρ], (8)

where H (t) can be decomposed into the following form which
turns out to be convenient later on:

H (t) = H0(t) + H1(t) + HT . (9)

Here, H0(t) = HZ + HB + g〈Az〉t Sz comprises the Zeeman
splitting caused by the external magnetic field via HZ and
the Hamiltonian of the noninteracting electrons in the leads
HB ; moreover, the time-dependent expectation value of the
Overhauser field has been absorbed into the definition of
H0(t). The HF interaction between the QD electron and
the ensemble of nuclear spins has been split up into the
flip-flop term Hff and the Overhauser field HOH, that is HHF =
HOH + Hff . The term H1(t) = H	OH(t) + Hff comprises the
Jaynes-Cummings-type dynamics Hff and fluctuations due to
deviations of the Overhauser field from its expectation value,
that is, H	OH(t) = gδAzSz, where δAz = Az − 〈Az〉t .

The introduction of superoperators—operators acting on
the space of linear operators on the Hilbert space—allows for
a compact notation. The von Neumann equation is written
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as ρ̇ = −iL(t)ρ, where L(t) = L0(t) + L1(t) + LT is the
Liouville superoperator defined via Lα· = [Hα,·]. Next, we
define the superoperator P as a projector onto the relevant
subspace

Pρ(t) = TrB[ρ(t)] ⊗ ρ0
B = ρS(t) ⊗ ρ0

B, (10)

where ρ0
B describes separate thermal equilibria of the two leads

whose chemical potentials are different due to the bias voltage
V = (μL − μR)/e. Essentially, P maps a density operator
onto one of product form with the environment in equilibrium
but still retains the relevant information on the system state.
The complement of P is Q = 1 − P .

By inserting P and Q in front of both sides of the von
Neumann equation one can derive a closed equation for the
projection Pρ(t), which for factorized initial condition, where
Qρ(0) = 0, can be rewritten in the form of the generalized
Nakajima-Zwanzig master equation,

d

dt
Pρ = −iPLPρ −

∫ t

0
dt ′ PLQ T̂ e−i

∫ t

t ′ dτQL(τ )QLPρ(t ′),

(11)

which is nonlocal in time and contains all orders of the
system-leads coupling.31 Here, T̂ denotes the chronological
time-ordering operator. Since P and Q are projectors onto
orthogonal subspaces that are only connected by LT , this
simplifies to

d

dt
Pρ = −iPLPρ −

∫ t

0
dt ′PLT T̂ e−i

∫ t

t ′ dτQL(τ )LT Pρ(t ′).

(12)

Starting out from this exact integro-differential equation, we
introduce some approximations: In the weak coupling limit
we neglect all powers of LT higher than two (Born approx-
imation). Consequently, we replace L(τ ) with L(τ ) − LT in
the exponential of Eq. (12). Moreover, we make use of the
fact that the nuclear spins evolve on a time scale that is very
slow compared to all electronic processes: In other words,
the Overhauser field is quasistatic on the time scale of single
electronic tunneling events.22,32 That is, we replace 〈Az〉τ with
〈Az〉t in the exponential of Eq. (12), which removes the explicit
time dependence in the kernel. By taking the trace over the
reservoir and using TrB[P ρ̇(t)] = ρ̇S(t), we get

ρ̇S(t) = −i(LZ + LHF)ρS(t) −
∫ t

0
dτ TrB(LT e−i[L0(t)+L1(t)]τ

×LT Pρ(t − τ )). (13)

Here, we also used the relations PLT P = 0 and LBP = 0
and switched the integration variable to τ = t − t ′. Note that,
for notational convenience, we suppress the explicit time
dependence of L0(1)(t) in the following. In the next step, we
iterate the Schwinger-Dyson identity:

e−i(L0+L1)τ = e−iL0τ − i

∫ τ

0
dτ ′ e−iL0(τ−τ ′)L1e

−i(L0+L1)τ ′
.

(14)

In what follows, we keep only the first term of this infinite
series (note that the next two leading terms are explicitly cal-
culated in Appendix A). In quantum optics, this simplification

is well known as an approximation of independent rates of
variation.33 In our setting it is valid, if L1(t) is small compared
to L0(t) and if the bath correlation time τc is short compared
to the HF dynamics, AHF � 1/τc. Pictorially, this means that
during the correlation time τc of a tunneling event, there is
not sufficient time for the Rabi oscillation with frequency
g � AHF to occur. For typical materials,34 the relaxation time
τc is in the range of ∼10−15 s corresponding to a relaxation
rate �c = τ−1

c ≈ 105 μeV. Indeed, this is much faster than all
other relevant processes. In this limit, the equation of motion
for the reduced density matrix of the system simplifies to

ρ̇S(t) = −i(LZ + LHF)ρS(t)

−
∫ t

0
dτ TrB

(
LT e−iL0(t)τLT ρS(t − τ ) ⊗ ρ0

B

)
. (15)

Note, however, that this master equation is not Markovian as
the rate of change of ρS(t) still depends on its past. Conditions
which allow for a Markovian treatment of the problem are
addressed in the following.

B. Markov approximation

Using the general relation e−iL0τO = e−iH0τOeiH0τ for any
operator O, we rewrite Eq. (15) as

ρ̇S(t) = −i[HZ + HHF,ρS(t)] −
∫ t

0
dτ TrB

([
HT ,

[
H̃T (τ ),

e−iH0τ ρS(t − τ )eiH0τ ⊗ ρ0
B

]])
. (16)

In accordance with the previous approximations, we replace
e−iH0τ ρS(t − τ )eiH0τ by ρS(t) which is approximately the
same since any correction to H0 would be of higher order
in perturbation theory.35,36 In other words, the evolution of
ρS(t − τ ) is approximated by its unperturbed evolution, which
is legitimate provided that the relevant time scale for this
evolution τc is very short (Markov approximation). This
step is motivated by the typically rapid decay of the lead
correlations functions;35 the precise validity of this approx-
imation is elaborated below. In particular, this simplification
disregards dissipative effects induced by HT , which is valid
self-consistently provided that the tunneling rates are small
compared to the dynamics generated by H0.

Moreover, in Eq. (16) we introduced the tunneling Hamil-
tonian in the interaction picture as H̃T (τ ) = e−iH0τHT eiH0τ .
For simplicity, we only consider one lead for now and add
the terms referring to the second lead later on. Therefore, we
can disregard an additional index specifying the left or right
reservoir and write explicitly

H̃T (τ ) =
∑
k,σ

Tk,σ e−i[εσ (t)−εk]τ d†
σ ckσ + H.c. (17)

Here, the resonances εσ (t) are explicitly time dependent as
they dynamically depend on the polarization of the nuclear
spins

ε↑(↓)(t) = ε↑(↓) ± g

2
〈Az〉t . (18)

The quantity

ω = ε↑(t) − ε↓(t) = ω0 + g〈Az〉t (19)
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can be interpreted as an effective Zeeman splitting which
incorporates the external magnetic field as well as the mean
magnetic field generated by the nuclei.

Since the leads are assumed to be at equilibrium, their
correlation functions are given by

TrB
[
c
†
kσ (τ )ck′σ ′ρ0

B

] = δσ,σ ′δk,k′e−iεkτ fk, (20)

TrB
[
ckσ (τ )c†k′σ ′ρ

0
B

] = δσ,σ ′δk,k′eiεkτ (1 − fk), (21)

where the Fermi function fk = (1 + exp[β(εk − μ)])−1 with
inverse temperature β = 1/(kBT ) gives the thermal occupa-
tion number of the respective lead in equilibrium. Note that
all terms comprising two lead creation c

†
kσ or annihilation

operators ckσ vanish since ρ0
B contains states with definite

electron number only.35 The correlation functions are diagonal
in spin space and the tunneling Hamiltonian preserves the
spin projection; therefore, only corotating terms prevail. If we
evaluate all dissipative terms appearing in Eq. (16), due to the
conservation of momentum and spin in Eqs. (20) and (21), only
a single sum over k,σ survives. Here, we single out one term
explicitly, but all other terms follow analogously. We obtain

ρ̇S(t) = · · · +
∑

σ

∫ t

0
dτ Cσ (τ )d†

σ e−iH0τ ρS(t − τ )eiH0τ dσ ,

(22)

where the correlation time of the bath τc is determined by the
decay of the noise correlations,

Cσ (τ ) =
∑

k

|Tk,σ |2fke
i[εσ (t)−εk]τ =

∫ ∞

0
dε Jσ (ε)ei[εσ (t)−ε]τ .

(23)

Here, we made use of the fact that the leads are macroscopic
and therefore exhibit a continuous density of states per spin
n(ε). On top of that, we have introduced the spectral density
of the bath as

Jσ (ε) = Dσ (ε)f (ε), (24)

where Dσ (ε) = n(ε)|Tσ (ε)|2 is the effective density of states.
The Markovian treatment manifests itself in a self-consistency
argument: We assume that the spectral density of the bath Jσ (ε)
is flat around the (time-dependent) resonance εσ (t) over a range
set by the characteristic width �d. Typically, both the tunneling
matrix elements Tσ (ε) as well as the density of states n(ε) are
slowly varying functions of energy. In the so-called wide-band
limit the effective density of states Dσ (ε) is assumed to be
constant so that the self-consistency argument will exclusively
concern the behavior of the Fermi function f (ε), which is
intimately related to the temperature of the bath T . Under
the condition, that Jσ (ε) behaves flat on the scale �d, it can
be replaced with its value at εσ (t), and the noise correlation
simplifies to

Cσ (τ ) = Jσ (εσ (t))eiεσ (t)τ
∫ ∞

0
dε e−iετ . (25)

Using the relation∫ ∞

0
dε e−iετ = πδ(τ ) − iP

1

τ
, (26)

with P denoting Cauchy’s principal value, we find that the
Markov approximation Re[Cσ (τ )] ∝ δ(τ ) is fulfilled provided
that the self-consistency argument holds. This corresponds to
the white-noise limit where the correlation-time of the bath is
τc = 0. Pictorially, the reservoir has no memory and instan-
taneously relaxes to equilibrium. We can then indeed replace
e−iH0τ ρS(t − τ )eiH0τ with ρS(t) and extend the integration in
Eq. (16) to infinity, with negligible contributions due to the
rapid decay of the memory kernel. In the following, we derive
an explicit condition for the self-consistency argument to be
satisfied.

Let us first consider the limit T = 0: As schematically
depicted in Fig. 3, in this case f (ε) behaves perfectly flat
except for ε = μ, where the self-consistency argument is
violated. Therefore, the Markovian approximation is valid at
T = 0 given that the condition |εσ (t) − μ| � �d is fulfilled.
In this limit, all tunneling rates are constant over time and
effectively decoupled from the nuclear dynamics. Note that
for the observation of superradiant transport it is sufficient to
restrict oneself to this case.

For a more general analysis, we now turn to the case of
finite temperature T > 0. We require the absolute value of the
relative change of the Fermi function around the resonance
εσ (t) over a range of the characteristic width �d to be much
less than unity, that is,∣∣∣∣∂f (ε)

∂ε

∣∣∣
εσ (t)

∣∣∣∣�d � 1. (27)

An upper bound for the first factor can easily be obtained as
this quantity is maximized at the chemical potential μ, for all
temperatures. Evaluating the derivative at εσ (t) = μ results in
the compact condition,

�d � 4kBT . (28)

Thus, finite temperature T > 0 washes out the rapid character
of f (ε) at the chemical potential μ and, provided that Eq. (28)
is fulfilled, allows for a Markovian treatment.

FIG. 3. (Color online) Fermi function for finite temperature
(dashed blue line) and in the limit T = 0 (solid blue line). The
absolute value of the derivative of the Fermi function f ′(ε) (dotted
orange line for finite temperature) is maximized at the chemical
potential μ and tends to a δ function in the limit T → 0. The
Markovian description is valid provided that the Fermi function is
approximately constant around the resonances εσ (t) on a scale of the
width of these resonances, schematically shown in red [solid line for
εσ (t) < μ and dashed line for εσ (t) > μ].
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Two distinct mechanisms contribute to the width �d:
dissipation due to coupling to the leads and the effect of
H1(t). Both of them have been neglected self-consistently in
the memory kernel when going from Eq. (12) to Eq. (15).
Typically, the tunneling rates are of the order of ∼5–20 μeV,
depending on the transparency of the tunnel barrier. Regarding
the contribution due to H1(t), we first consider two limits
of particular importance: For a completely mixed state the
fluctuation of the nuclear field around its zero expectation
value is of the order of ∼AHF/

√
N ≈ 0.1 μeV. In contrast,

for a fully polarized state these fluctuations can be neglected,
whereas the effective strength of the flip-flop dynamics is
∼AHF/

√
N as well. Therefore, in both limits considered here,

the dominant contribution to �d is due to the coupling to the
leads and the self-consistency condition could still be met
with cryostatic temperatures kBT � 10 μeV, well below the
orbital level spacing. However, we note that in the course of
a superradiant evolution, where strong correlations among the
nuclei build up, the dominant contribution to �d may come
from the flip-flop dynamics, which are AHF/4 ≈ 25 μeV at
maximum for homogeneous coupling. For realistic conditions,
though, this effect is significantly reduced, as demonstrated in
our simulations in Sec. VI.

C. General master equation for nuclear spin-assisted transport

Assuming that the self-consistency argument for a Marko-
vian treatment is satisfied, we now apply the following
modifications to Eq. (16): First, we neglect level shifts due to
the coupling to the continuum states which can be incorporated
by replacing the bare frequencies εσ (t) with renormalized
frequencies. Second, one adds the second electron reservoir
that has been omitted in the derivation above. Last, one
performs a suitable transformation into a frame rotating at
the frequency ε̄ = (ε↑ + ε↓)/2 leaving all terms invariant but
changing HZ from HZ = ε↑d

†
↑d↑ + ε↓d

†
↓d↓ to HZ = ω0S

z.
After these manipulations one arrives at the central master
equation as stated in Eq. (2) where the tunneling rates with
ασ (t) = ∑

x=L,R α(x)
σ (t), βσ (t) = ∑

x=L,R β(x)
σ (t), and

α(x)
σ (t)

2π
= nx(εσ (t))

∣∣T (x)
σ (εσ (t))

∣∣2
[1 − fx(εσ (t))],

(29)
β(x)

σ (t)

2π
= nx(εσ (t))

∣∣T (x)
σ (εσ (t))

∣∣2
fx(εσ (t))

govern the dissipative processes in which the QD system
exchanges single electrons with the leads. The tunneling rates,
as presented here, are widely used in nanostructure quantum
transport problems.35,37,38 However, in our setting they are
evaluated at the resonances εσ (t) which dynamically depend
on the polarization of the nuclear spins [see Eq. (18)]. Note that
Eq. (2) incorporates finite temperature effects via the Fermi
functions of the leads. This potentially gives rise to feedback
mechanisms between the electronic and the nuclear dynamics,
since the purely electronic diffusion markedly depends on the
nuclear dynamics.

Since Eq. (2) marks our first main result, at this point
we quickly reiterate the assumptions our master equation
treatment is based on.

(i) The system-lead coupling is assumed to be weak and
therefore treated perturbatively up to second order (Born
approximation).

(ii) In particular, the tunneling rates are small compared to
the effective Zeeman splitting ω.

(iii) Level shifts arising from the coupling to the continuum
states in the leads are merely incorporated into a redefinition
of the QD energy levels εσ (t).

(iv) There is a separation of time scales between electron-
spin dynamics and nuclear-spin dynamics. In particular, the
Overhauser field g〈Az〉t evolves on a time scale that is slow
compared to single electron tunneling events.

(v) The HF dynamics generated by H1(t) = Hff + H	OH(t)
is (i) sufficiently weak compared to H0 and (ii) slow compared
to the correlation time of the bath τc, which is AHFτc � 1
(approximation of independent rates of variation). Note that
the flip-flop dynamics can become very fast as correlations
among the nuclei build up culminating in a maximum coupling
strength of AHF/4 for homogeneous coupling. This potentially
drives the system into the strong coupling regime where con-
dition (i), that is ω � ||H1(t)||, might be violated. However,
under realistic conditions of inhomogeneous coupling this
effect is significantly reduced.

(vi) The effective density of states Dσ (ε) = n(ε)|Tσ (ε)|2 is
weakly energy dependent (wide-band limit). In particular, it is
flat on a scale of the characteristic widths of the resonances.
(vii) The Markovian description is valid provided that either

the resonances are far away from the chemical potentials of
the leads on a scale set by the characteristic widths of the
resonances or the temperature is sufficiently high to smooth
out the rapid character of the Fermi functions of the leads. This
condition is quantified in Eq. (28).
In summary, we have derived a quantum master equation
describing electronic transport through a single QD which
is collectively enhanced due to the interaction with a large
ancilla system, namely the nuclear spin ensemble in the host
environment. Equation (2) incorporates two major intriguing
features both of theoretical and experimental relevance: Due
to a separation of time scales, only the electronic subsystem
experiences dissipation with rates that depend dynamically
on the state of the ancilla system. This nonlinearity gives
rise to feedback mechanisms between the two subsystems as
well as hysteretic behavior. Moreover, the collective nature of
the HF interaction offers the possibility to observe intriguing
coherent many-body effects. Here, one particular outcome is
the occurrence of superradiant electron transport, as shown in
the remainder of this paper.

Note that in the absence of HF interaction between the QD
electron and the proximal nuclear spins, that is, in the limit
g → 0, our results agree with previous theoretical studies.36

V. SUPERRADIANCE-LIKE ELECTRON TRANSPORT

Proceeding from our general theory derived above, this
section is devoted to the prediction and analysis of superradiant
behavior of nuclear spins, evidenced by the strongly enhanced
leakage current through a single QD in the Coulomb-blockade
regime; see Fig. 1 for the scheme of the setup. A pronounced
peak in the leakage current will serve as the main evidence for
SR behavior in this setting.
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We note that, in principle, an enhancement seen in the
leakage current could also simply arise from the Overhauser
field dynamically tuning the hyperfine flip-flops. However,
we can still ensure that the measured change in the leakage
current through the QD is due to cooperative emission only
by dynamically compensating the Overhauser field. This
can be achieved by applying a time-dependent magnetic or
spin-dependent ac Stark field such that Hcomp(t) = −g〈Az〉t Sz,
which is done in most of our simulations below to clearly
prove the existence of superradiant behavior in this setting.
Consequently, in our previous analysis H0(t) is replaced with
H0 = H0(t) − g〈Az〉t Sz = HZ + HB so that the polarization
dependence of the tunneling rates is removed and we can drop
the explicit time dependence of the resonances εσ (t) → εσ .
Under this condition, the master equation for the reduced
system density operator can be written as

ρ̇S(t) = −i[ω0S
z + HHF + Hcomp(t),ρS(t)]

+
∑

σ=↑,↓
ασ

[
dσρS(t)d†

σ − 1

2
{d†

σ dσ ,ρS(t)}
]

+
∑

σ=↑,↓
βσ

[
d†

σ ρS(t)dσ − 1

2
{dσ d†

σ ,ρS(t)}
]
. (30)

In accordance with our previous considerations, in this
specific setting the Markovian treatment is valid provided
that the spectral density of the reservoirs varies smoothly
around the (time-independent) resonances εσ on a scale set
by the natural widths of the level and the fluctuations of the
dynamically compensated Overhauser field. More specifically,
throughout the whole evolution the levels are assumed to be
far away from the chemical potentials of the reservoirs;39,40

for an illustration see Fig. 3. In this wide-band limit, the
tunneling rates ασ , βσ are independent of the state of the
nuclear spins. The master equation is of Lindblad form which
guarantees the complete positivity of the generated dynamics.
Equation (30) agrees with previous theoretical results,36 except
for the appearance of the collective HF interaction between
the QD electron and the ancilla system in the Hamiltonian
dynamics of Eq. (30).

To some extent, Eq. (30) bears some similarity with the
quantum theory of the laser. While in the latter the atoms
interact with bosonic reservoirs, in our transport setting the QD
is pumped by the nuclear spin ensemble and emits fermionic
particles.30,38

If the HF dynamics is the slowest time scale in the problem,
Eq. (30) can be recast into a form which makes its superradiant
character more apparent. In this case, the system is subject to
the slaving principle:30 The dynamics of the whole system
follow that of the subsystem with the slowest time constant,
making it possible to adiabatically eliminate the electronic
QD coordinates and to obtain an effective equation of motion
for the nuclear spins. In this limit, the Overhauser field is
much smaller than the Zeeman splitting so that a dynamic
compensation of the OH can be disregarded for the moment.
For simplicity, we consider a transport setting in which only
four tunneling rates are different from zero (see Fig. 1). The
QD can be recharged from the left and the right lead, but
only electrons with spin projection σ =↑ can tunnel out of
the QD into the right lead. We define the total recharging rate

β = β↓ + β↑ = β
(L)
↓ + β

(R)
↓ + β

(L)
↑ and for notational conve-

nience unambiguously set α = α
(R)
↑ . First, we project Eq. (30)

onto the populations of the electronic levels and the coherences
in spin space according to ρmn = 〈m|ρS |n〉, where m,n = 0,

↑ , ↓. This yields

ρ̇00 = αρ↑↑ − βρ00, (31)

ρ̇↑↑ = −i
g

2
[Az,ρ↑↑] − i

g

2
(A−ρ↓↑ − ρ↑↓A+)

−αρ↑↑ + β↑ρ00, (32)

ρ̇↓↓ = +i
g

2
[Az,ρ↓↓] − i

g

2
(A+ρ↑↓ − ρ↓↑A−) + β↓ρ00,

(33)

ρ̇↑↓ = −iω0ρ↑↓ − i
g

2
(Azρ↑↓ + ρ↑↓Az)

− i
g

2
(A−ρ↓↓ − ρ↑↑A−) − α

2
ρ↑↓. (34)

We can retrieve an effective master equation for the regime in
which on relevant time scales the QD is always populated by
an electron. This holds for a sufficiently strong recharging rate,
that is in the limit β � α, which can be implemented exper-
imentally by making the left tunnel barrier more transparent
than the right one. Then, the state |0〉 is populated negligibly
throughout the dynamics and can be eliminated adiabatically
according to ρ00 ≈ α

β
ρ↑↑. In analogy to the Anderson impurity

model, in the following this limit is referred to as local moment
regime. The resulting effective master equation reads

ρ̇S = −i[ω0S
z + HHF,ρS] + γ

[
S−ρSS

+ − 1

2
{S+S−,ρS}

]

+�

[
SzρSS

z − 1

4
ρS

]
, (35)

where

γ = β↓
β

α (36)

is an effective decay rate and

� = β↑
β

α (37)

represents an effective electronic dephasing rate. This situation
is schematized in Fig. 4. The effective decay (dephasing)
describes processes in which the QD is recharged with a spin
down (up) electron after a spin up electron has tunneled out
of the QD. As demonstrated in Ref. 41, additional electronic
dephasing mechanisms only lead to small corrections to the
dephasing rate � and are therefore neglected in Eq. (35).

In the next step we aim for an effective description that
contains only the nuclear spins: Starting from a fully polarized
state, SR is due to the increase in the operative HF matrix
element 〈A+A−〉. The scale of the coupling is set by the total
HF coupling constant AHF = g

∑
i gi . For a sufficiently small

relative coupling strength27

ε = AHF/(2	), (38)

where

	 = |α/2 + iω0|, (39)
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FIG. 4. (Color online) The electronic QD system in the local
moment regime after the adiabatic elimination of the |0〉 level
including the relevant dissipative processes. Within the effective
system (box) we encounter an effective decay term and an effective
pure dephasing term, with the rates γ and �, respectively. This
simplification is possible for fast recharging of the QD, that is, β � α.

the electron is predominantly in its |↓〉 spin state and we
can project Eq. (35) to the respective subspace. As shown in
detail in Appendix B, in this limit the master equation for
the reduced nuclear density operator μ = Trel[ρS] is given by
Eq. (3), where the effective coefficients read

cr = g2α

4	2
, (40)

ci = g2ω0

4	2
. (41)

This master equation is our second main result. In an optical
setting, it has previously been predicted theoretically to
exhibit strong SR signatures.27 Conceptually, its superradiant
character can be understood immediately in the ideal case
of homogeneous coupling in which the collective state of all
nuclear spins can be described in terms of Dicke states |J,m〉:
The enhancement of the HF interaction is directly associated
with the transition through nuclear Dicke states |J,m〉, m � J .
In this idealized setting, the angular momentum operator
I = √

NA of the nuclear spin ensemble obeys the SU(2)
Lie algebra, from which one can deduce the ladder operator
relation I−|J,m〉 = √

J (J + 1) − m(m − 1)|J,m − 1〉. This
means that, starting from an initially fully polarized state
|J = N/2,m = N/2〉, the nuclear system cascades down the
Dicke ladder with an effective rate

�̃m→m−1 = cr

N
(N/2 + m)(N/2 − m + 1), (42)

since, according to the first term in Eq. (3), the populations of
the Dicke states evolve as

μ̇m,m = − cr

N
(N/2 + m)(N/2 − m + 1)μm,m

+ cr

N
(N/2 + m + 1)(N/2 − m)μm+1,m+1. (43)

While the effective rate is �̃N/2→N/2−1 = cr at the very top of
the the ladder it increases up to �̃|m|�N/2 ≈ cr

4 N at the center
of the Dicke ladder. This implies the characteristic intensity
peaking as compared to the limit of independent classical
emitters the emission rate of which would be �̃cl = cr

N
N↑ =

cr

N
(N/2 + m).

However, there is also a major difference compared to the
superradiant emission of photons from atomic ensembles: In
contrast to its atomic cousin, the prefactor cr/N ∝ 1/N2 is
N -dependent, resulting in an overall time of the SR evolution
〈tD〉 which increases with N . By linearizing Eq. (42) for the
beginning of the superradiant evolution24 as �̃m→m−1 ≈ cr (s +
1), where s = N/2 − m gives the number of nuclear flips, one
finds that the first flip takes place in an average time c−1

r , the
second one in a time (2cr )−1, and so on. The summation of all
these elementary time intervals gives an upper bound estimate
for the process duration until the SR peaking as

〈tD〉 � 2

cr

[
1 + 1

2
+ · · · + 1

N/2

]
≈ 2 ln(N/2)

cr

, (44)

which, indeed, increases with the number of emitters as
∼N ln(N ), whereas one obtains 〈tD〉 ∼ ln(N )/N for ordinary
SR.24 Accordingly, in our solid-state system the characteristic
SR peak appears at later times for higher N . The underlying
reason for this difference is that in the atomic setting each
new emitter adds to the overall coupling strength, whereas in
the central spin setting a fixed overall coupling strength AHF is
distributed over an increasing number of particles. Note that in
an actual experimental setting N is not a tunable parameter, of
course. For our theoretical discussion, though, it is convenient
to fix the total HF coupling strength AHF and to extrapolate
from our findings to an experimentally relevant number of
nuclear spins N .

For large relative coupling strength ε � 1 the QD electron
saturates and superradiant emission is capped by the decay
rate α/2, prohibiting the observation of a strong intensity
peak. In order to circumvent this bottleneck regime, one has to
choose a detuning ω0 such that 0 < ε � 1. However, to realize
the spin-blockade regime, where the upper spin manifold is
energetically well separated from the lower spin manifold, the
Zeeman splitting has to be of the order of ω0 ∼ AHF, which
guarantees ε < 1. In this parameter range, the early stage of
the evolution—in which the correlation buildup necessary for
SR takes place24—is well described by Eq. (3).

The inhomogeneous nature (gi �= const) of the collective
operators Aμ leads to dephasing between the nuclei, possibly
preventing the phased emission necessary for the observation
of SR.24,27,42,43 The inhomogeneous part of the last term
in Eq. (3)—the electron’s Knight field—causes dephasing44

∝g
√

Var(gi)/2, possibly leading to symmetry reducing tran-
sitions J → J − 1. Still, it has been shown that SR is also
present in realistic inhomogeneous systems,27 since the system
evolves in a many-body protected manifold (MPM): The
second term in Eq. (3) energetically separates different total
nuclear spin-J manifolds, protecting the correlation buildup
for large enough ε.

The superradiant character of Eq. (3) suggests the ob-
servation of its prominent intensity peak in the leakage
current through the QD in the spin-blockade regime. We have
employed the method of full-counting-statistics (FCS)45,46 in
order to obtain an expression for the current and find (setting
the electron’s charge e = 1)

I (t) = αρ↑↑ − β
(R)
↓ ρ00. (45)

This result is in agreement with previous theoretical findings:
The current through the device is completely determined by
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the occupation of the levels adjacent to one of the leads.29,37,39

The first term describes the accumulation of electrons with spin
σ =↑ in the right lead, whereas the second term describes
electrons with σ =↓ tunneling from the right lead into the
QD. As done before,27 we take the ratio of the maximum
current to the initial current (the maximum for independent
emitters) Icoop/Iind as our figure of merit: A relative intensity
peak height Icoop/Iind > 1 indicates cooperative effects. One
of the characteristic features of SR is that this quantity scales
linearly with the number of spins N .

In the local-moment regime, described by Eq. (35),
the expression for the current simplifies to I (t) = (1 −
β

(R)
↓ /β)α〈S+S−〉t ∝ 〈S+S−〉t , showing that it is directly pro-

portional to the electron inversion. This, in turn, increases
as the nuclear system pumps excitations into the electronic
system. A compact expression for the relation between the
current and the dynamics of the nuclear system can be obtained
immediately in the case of homogeneous coupling,

d

dt
〈S+S−〉t = − d

dt
〈I z〉t − γ 〈S+S−〉t . (46)

Since the nuclear dynamics are, in general, much slower
than the electron’s dynamics, the approximate solution of this
equation is 〈S+S−〉t ≈ − d

dt
〈I z〉t /γ . As a consequence, the

current I (t) is proportional to the time-derivative of the nuclear
polarization,

I (t) ∝ − d

dt
〈I z〉t . (47)

Still, no matter how strong the cooperative effects are, on a
time scale of single electron tunneling events, the electrons will
always be emitted antibunched, since in the strong Coulomb-
blockade regime the QD acts as a single-electron emitter.47

Typically, the rate for single-electron emission events is even
below the tunneling rate α due to the spin blockade. On
electronic time scales ∼1/α, the SR mechanism manifests
in lifting this blockade; as argued above, the efficiency of this
process is significantly enhanced by collective effects.

Before we proceed with an in-depth analysis of the current
I (t), we note that an intriguing extension of the present work
would be the study of fluctuations thereof (see, for example,
Ref. 48 for studies of the shot noise spectrum in a related
system). Insights into the statistics of the current could be
obtained by analyzing two-time correlation functions such as
〈n↑(t + τ )n↑(t)〉, where n↑ = d

†
↑d↑. This can conveniently be

done via the Quantum Regression Theorem,49 which yields the
formal result 〈n↑(t + τ )n↑(t)〉 = TrS[n↑eWτ (n↑ρS(t))]. Here,
W denotes the Liouvillian governing the system’s dynamics
according to ρ̇S = WρS [see Eq. (35)] and TrS[· · ·] refers to
the trace over the system’s degree of freedoms. This procedure
can be generalized to higher-order correlation functions and
full evaluation of the current statistics might reveal potential
connections between current fluctuations and cooperative
nuclear dynamics.

VI. ANALYSIS AND NUMERICAL RESULTS

A. Experimental realization

The proposed setup described here may be realized with
state-of-the-art experimental techniques. First, the Markovian

regime, valid for sufficiently large bias eV, is realized if the
Fermi functions of the leads are smooth on a scale set by
the natural widths of the levels and residual fluctuations due
to the dynamically compensated Overhauser field. Since for
typical materials8 the hyperfine coupling constant is AHF =
1–100 μeV and tunneling rates are typically9 of the order of
∼10 μeV, this does not put a severe restriction on the bias volt-
age which is routinely18,19 in the range of hundreds of μV or
mV. Second, in order to tune the system into the spin-blockade
regime, a sufficiently large external magnetic field has to be
applied. More precisely, the corresponding Zeeman splitting
ω0 energetically separates the upper and lower manifolds in
such a way that the Fermi function of the right lead drops
from one at the lower manifold to zero at the upper manifold.
Finite temperature T smears out the Fermi function around
the chemical potential by approximately ∼kBT . Accordingly,
with cryostatic temperatures of kBT ∼ 10 μeV being routinely
realized in the laboratory,10 this condition can be met by
applying an external magnetic field of ∼5–10 T, which is
equivalent to ω0 ≈ 100–200 μeV in GaAs.8,50 The charging
energy U , typically ∼1–4 meV,9,19 sets the largest energy
scale in the problem justifying the Coulomb-blockade regime
with negligible double occupancy of the QD provided that the
chemical potential of the left lead is well below the doubly
occupied level. Last, we note that similar setups to the one
proposed here have previously been realized experimentally
by, for example, Hanson et al.26,50

Proceeding from these considerations, we now show by
numerical simulation that an SR peaking of several orders
of magnitude can be observed for experimentally relevant
parameters in the leakage current through a quantum dot in the
spin-blockade regime. We first consider the idealized case of
homogeneous coupling for which an exact numerical treatment
is feasible even for a larger number of coupled nuclei. Then,
we continue with the more realistic case of inhomogeneous
coupling for which an approximative scheme is applied. Here,
we also study scenarios in which the nuclear spins are not
fully polarized initially. Moreover, we discuss intrinsic nuclear
dephasing effects and undesired cotunneling processes which
have been omitted in our simulations. In particular, we show
that the inhomogeneous nature of the HF coupling accounts
for the strongest dephasing mechanism in our system. We note
that this effect is covered in the second set of our simulations.
Finally, we self-consistently justify the perturbative treatment
of the Overhauser-field fluctuations as well as the HF flip-flop
dynamics.

B. Superradiant electron transport

1. Idealized setting

The homogeneous case allows for an exact treatment
even for a relatively large number of nuclei as the system
evolves within the totally symmetric low-dimensional sub-
space {|J,m〉,m = −J, . . . ,J }. Starting from a fully polarized
state, a strong intensity enhancement is observed; typical
results obtained from numerical simulations of Eq. (30) are
depicted in Fig. 5 for N = 60 and N = 100 nuclear spins.
The corresponding relative peak heights display a linear
dependence with N (cf. Fig. 6), which we identify as the
characteristic feature of SR. Here, we have used the numerical

085322-10



SUPERRADIANCE-LIKE ELECTRON TRANSPORT THROUGH . . . PHYSICAL REVIEW B 86, 085322 (2012)

0 5 10 15

5

10

15

1

time t[c−1
r ]

I
(t

)/
I
(t

=
0)

N=60

N=100

FIG. 5. (Color online) Typical time evolution of the normalized
current for homogeneous coupling under dynamical compensation
of the Overhauser field and a relative coupling strength of ε = 0.5,
shown here for N = 60 and N = 100 nuclear spins. The characteristic
feature of SR, a pronounced peak in the leakage current proportional
to N , is clearly observed.

parameters AHF = 1, ω0 = 1 and α = β
(L)
↑ = β

(L)
↓ = β

(R)
↓ =

0.1 in units of ∼100 μeV, corresponding to a relative coupling
strength ε = 0.5.

Before we proceed, some further remarks on the dynamic
compensation of the Overhauser field seem appropriate: We
have merely introduced it in our analysis in order to provide
a clear criterion for the presence of purely collective effects,
given by Icoop/Iind > 1. In other words, dynamic compensation
of the Overhauser field is not a necessary requirement for the
observation of collective effects, but it is rather an adequate
tool to display them clearly. From an experimental point of
view, the dynamic compensation of the Overhauser field might
be challenging as it requires accurate knowledge about the
evolution of the nuclear spins. Therefore, we also present
results for the case in which the external magnetic field
is constant and no compensation is applied. Here, we can
distinguish two cases: Depending on the sign of the HF
coupling constant AHF, the time dependence of the effective

FIG. 6. (Color online) Ratio of the maximum current to the initial
current Icoop/Iind as a function of the number of nuclear spins N for
homogeneous coupling and a relative coupling strength of ε = 0.5:
Results for perfect compensation (dashed line) are compared to the
case of dynamic compensation (dotted line) of the Overhauser field
(OHC). Simulations without compensation of the Overhauser field
set bounds for the enhancement of the leakage current, depending on
the sign of the HF coupling constant AHF; solid and dash-dotted line
for AHF > 0 and AHF < 0, respectively.

Zeeman-splitting ω can either give rise to an additional
enhancement of the leakage current (AHF > 0) or it can
counteract the collective effects (AHF < 0). As shown in Fig. 6,
this sets lower and upper bounds for the observed enhancement
of the leakage current.

In Fig. 6 we also compare the results obtained for dynamic
compensation of the Overhauser field to the idealized case
of perfect compensation in which the effect of the Overhauser
term is set to zero, that is, HOH = gAzSz = 0. Both approaches
display the same features justifying our approximation of
neglecting residual (de)tuning effects of the dynamically
compensated Overhauser field with respect to the external
Zeeman splitting ω0. This is also discussed in greater detail
below.

2. Beyond the idealized setting

Inhomogeneous HF coupling. In principle, the inhomoge-
neous HF coupling could prevent the phasing necessary for SR.
However, as shown below, SR is still present in realistically
inhomogeneous systems. In contrast to the idealized case of
homogeneous coupling, the dynamics cannot be restricted
to a low-dimensional subspace so that an exact numerical
treatment is not feasible due to the large number of nuclei. We
therefore use an approximate approach which has previously
been shown to capture the effect of nuclear spin coherences
while allowing for a numerical treatment of hundreds of
spins.22,27 For simplicity, we restrict ourselves to the local
moment regime in which the current can be obtained directly
from the electron inversion I (t) ∝ 〈S+S−〉t . By Eq. (35), this
expectation value is related to a hierarchy of correlation terms
involving both the electron and the nuclear spins. Based on a
Wick type factorization scheme, higher-order expressions are
factorized in terms of the covariance matrix γ +

ij = 〈σ+
i σ−

j 〉
and the “mediated covariance matrix” γ −

ij = 〈σ+
i Szσ−

j 〉. For
further details, see Refs. 22 and 27.

The coupling constants gj have been obtained from the
assumption of a two-dimensional Gaussian spatial electron
wave function of width

√
N/2. Specifically, we present results

for two sets of numerical parameters, corresponding to a
relative coupling strength of ε = 0.5, where AHF = 1, ω0 = 1,
γ = 0.1, and � = 0.08, and ε = 0.55 with AHF = 1, ω0 = 0.9,
γ = 0.1, and � = 0.067.

As shown in Figs. 7 and 8, the results obtained with these
methods demonstrate clear SR signatures. In comparison to
the ideal case of homogeneous coupling, the relative height is
reduced, but for a fully polarized initial state we still find a
linear enhancement Icoop/Iind ≈ 0.043N (ε = 0.5); therefore,
as long as this linear dependence is valid, for typically N ≈
105–106 a strong intensity enhancement of several orders of
magnitude is predicted (∼103–104).

Imperfect initial polarization. If the initial state is not
fully polarized, SR effects are reduced: However, when
starting from a mixture of symmetric Dicke states |J,J 〉
with polarization p = 80(60)%, we find that the linear N

dependence is still present: Icoop/Iind ≈ 0.0075(0.0025)N for
ε = 0.5; that is, the scaling is about a factor of ∼5(15) weaker
than for full polarization.51 Still, provided the linear scaling
holds up to an experimentally realistic number of nuclei
N ≈ 105–106, this amounts to a relative enhancement of the
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FIG. 7. (Color online) Typical time evolution of the normalized
current for inhomogeneous coupling, shown here for up to N = 132

nuclear spins and a relative coupling strength ε = 0.55. Compared
to the idealized case of homogeneous coupling, the SR effects are
reduced, but still clearly present. A Gaussian spatial electron wave
function has been assumed and the Overhauser field is compensated
dynamically.

order of Icoop/Iind ∼ 102–103. To clearly resolve this peak
experimentally, any spurious current should not be larger than
the initial HF-mediated leakage current. As we argue below,
this condition can be fulfilled in our setup, since the main
spurious mechanism, cotunneling, is strongly suppressed.

Nuclear Zeeman term and species inhomogeneity. In our
simulations we have disregarded the nuclear Zeeman energies.
For a single nuclear species, this term plays no role in the SR
dynamics. However, in typical QDs several nuclear species
with different g factors are present (“species inhomogeneity”).
In principle, these are large enough to cause additional dephas-
ing between the nuclear spins, similar to the inhomogeneous
Knight field.22 However, this dephasing mechanism only
applies to nuclei which belong to different species.22 This
leads to few (in GaAs three) mutually decohered subsystems,
each of which is described by our theory.

Nuclear interactions. Moreover, we have neglected the
dipolar and quadrupolar interactions among the nuclear spins.
First, the nuclear dipole-dipole interaction can cause diffusion
and dephasing processes. Diffusion processes that can change
Az are strongly detuned by the Knight field and therefore
are of minor importance, as corroborated by experimentally
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FIG. 8. (Color online) Ratio of the maximum current to the initial
current Icoop/Iind as a function of the number of nuclear spins N

for relative coupling strengths ε = 0.5 and ε = 0.55: Results for
inhomogeneous coupling. The linear dependence is still present when
starting from a nuclear state with finite polarization p = 0.8.

measured spin diffusion rates.52,53 Resonant processes such as
∝I z

i I z
j can lead to dephasing similar to the inhomogeneous

Knight shift. This competes with the phasing necessary for the
observation of SR as expressed by the first term in Eq. (3).
The SR process is the weakest at the very beginning of the
evolution where we estimate its strength as cmin

r ≈ 10 μeV/N .
An upper bound for the dipole-dipole interaction in GaAs has
been given in Ref. 28 as ∼10−5 μeV, in agreement with values
given in Refs. 32 and 41. Therefore, the nuclear dipole-dipole
interaction can safely be neglected for N � 105. In particular,
its dephasing effect should be further reduced for highly
polarized ensembles.

Second, the nuclear quadrupolar interactions can have two
origins: strain (largely absent in electrically defined QDs) and
electric field gradients originating from the electron. These
have been estimated for typical electrically defined QDs in
Ref. 41 to lead to an additional nuclear level splitting on the
order of ∼10−5 μeV. Moreover, they are absent for nuclear
spin I = 1/2 (e.g., CdSe QDs). To summarize, the additional
dephasing mechanisms induced by nuclear interactions are
much smaller than the terms arising from the inhomogeneous
Knight field.32 As argued above and confirmed by our
simulations, the latter does not prevent the observation of SR
behavior due to the presence of the MPM-term in Eq. (3).

3. Quantitative aspects

Initially, the HF-mediated SR dynamics is rather slow, with
its characteristic time scale set by c−1

r ; for experimentally
realistic parameters—in what follows we use the parameter set
(ε = 0.5, α ≈ 10 μeV, N ≈ 105) for numerical estimates—
this corresponds to c−1

r ≈ 10 μs. Based on fits as shown
in Fig. 9, we then estimate for the SR process duration
〈tD〉 ≈ 50c−1

r ≈ 500 μs, which is still smaller than recently
reported54 nuclear decoherence times of ∼1 ms. Therefore, it
should be possible to observe the characteristic enhancement
of the leakage current before the nuclear spins decohere.

Leakage current. Accordingly, in the initial phasing stage,
the HF-mediated lifting of the spin blockade is rather weak,
resulting in a low leakage current, approximatively given by
I (t = 0)/(eh̄−1) ≈ ε2α/N . Therefore, the initial current due to
HF processes is inversely proportional to the number of nuclear

FIG. 9. (Color online) Total time until the observation of the
characteristic SR peaking tmax for ε = 0.5 (blue dots) and ε = 0.55
(orange squares). Based on Eq. (44), logarithmic fits are obtained
from which we estimate tmax for experimentally realistic number of
nuclear spins N ≈ 105.
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spins N . However, as correlations among the nuclei build up,
the HF-mediated lifting becomes more efficient, culminating
in a maximum current of Imax/(eh̄−1) ≈ ε2α, independent of
N . For realistic experimental values—also taking into account
the effects of inhomogeneous HF coupling and finite initial
polarization p ≈ 0.6—we estimate the initial (maximum)
leakage current to be of the order of I (t = 0) ≈ 6 fA(Imax ≈
10 pA). Leakage currents in this range of magnitudes have
already been detected in single QD spin-filter experiments,26 as
well as double QD Pauli-blockade experiments;15,16,18,19 here,
leakage currents below 10 and 150 fA, respectively, have been
attributed explicitly to other spurious processes.18,26 These are
addressed in greater detail in the following.

Our transport setting is tuned into the sequential tunneling
regime and therefore we have disregarded cotunneling pro-
cesses which are fourth order in HT . In principle, cotunneling
processes could lift the spin blockade and add an extra
contribution to the leakage current that is independent of
the HF dynamics. However, note that cotunneling current
scales as Ict ∝ α2, whereas sequential tunneling current I ∝ α;
accordingly, cotunneling current can always be suppressed
by making the tunnel barriers less transparent.26 Moreover,
inelastic cotunneling processes exciting the QD spin can be
ruled out for eV, kBT < ω0 due to energy conservation.25

The effectiveness of a single quantum dot to act as an
electrically tunable spin filter has also been demonstrated
experimentally:26 The spin-filter efficiency was measured to
be nearly 100%, with Ict being smaller than the noise floor
∼10 fA. Its actual value has been calculated as ∼10−4 fA,
from which we roughly estimate Ict ∼ 10−2 fA in our setting.
This is smaller than the initial HF-mediated current I (t = 0)
and considerably smaller than Imax, even for an initially not
fully polarized nuclear spin ensemble. Still, if one is to
explore the regime where cotunneling cannot be neglected,
phenomenological dissipative terms—effectively describing
the corresponding spin-flip and pure dephasing mechanisms
for inelastic and elastic processes, respectively—should be
added to Eq. (30).

4. Self-consistency

In our simulations we have self-consistently verified that
the fluctuations of the Overhauser field, defined via

	OH(t) = g

√〈
A2

z

〉
t
− 〈Az〉2

t , (48)

are indeed small compared to the external Zeeman splitting ω0

throughout the entire evolution. This ensures the validity of our
perturbative approach and the realization of the spin-blockade
regime. From atomic SR it is known that in the limit of
homogeneous coupling large fluctuations can build up, since in
the middle of the emission process the density matrix becomes
a broad distribution over the Dicke states.24 Accordingly, in
the idealized, exactly solvable case of homogeneous coupling
we numerically find rather large fluctuations of the Overhauser
field; as demonstrated in Fig. 10, this holds independently of
N . In particular, for a relative coupling strength ε = 0.5 the
fluctuations culminate in max[	OH]/ω0 ≈ 0.35. However, in
the case of inhomogeneneous HF coupling the Overhauser
field fluctuations are found to be smaller as the buildup of
these fluctuations is hindered by the Knight term causing

FIG. 10. (Color online) Fluctuations of the Overhauser field
relative to the external Zeeman splitting ω0. In the limit of homoge-
neous HF coupling, strong fluctuations build up towards the middle
of the emission process (red line, ε = 0.5). For inhomogeneous
coupling this buildup of fluctuations is hindered by the dephasing
between the nuclear spins, resulting in considerably smaller fluctua-
tions: The value of the Overhauser fluctuations is shown at the time of
the SR peak tmax for ε = 0.5 (orange squares) and ε = 0.55 (green
diamonds). The Overhauser fluctuations reach a maximum value later
than tmax; see blue dots for ε = 0.5. For independent homogeneously
coupled nuclear spins, one can estimate the fluctuations via the
binominal distribution (black line).

dephasing among the nuclear spins. As another limiting case,
we also estimate the fluctuations for completely independent
homogeneously coupled nuclear spins via the binominal
distribution as max[	OH] ∼ 0.5AHF/

√
N (Ref. 55).

Moreover, we have also ensured self-consistently the
validity of the perturbative treatment of the flip-flop dynamics;
that is, throughout the entire evolution, even for maximum
operative matrix elements 〈A+A−〉t , the strength of the flip-
flop dynamics ‖Hff‖ was still at least five times smaller
than ω0.

VII. CONCLUSION AND OUTLOOK

In summary, we have developed a master equation
based theoretical framework for nuclear-spin-assisted trans-
port through a QD. Due to the collective nature of the HF
interaction, it incorporates intriguing many-body effects as
well as feedback mechanisms between the electron spin and
nuclear spin dynamics. As a prominent application, we have
shown that the current through a single electrically defined QD
in the spin-blockade regime naturally exhibits superradiant
behavior. This effect stems from the collective hyperfine
interaction between the QD electron and the nuclear spin
ensemble in the QD. Its most striking feature is a lifting
of the spin blockade and a pronounced peak in the leakage
current. The experimental observation of this effect would
provide clear evidence of coherent HF dynamics of nuclear
spin ensembles in QDs.

Finally, we highlight possible directions of research going
beyond our present work: Apart from superradiant electron
transport, the setup proposed here is inherently well suited
for other experimental applications like dynamic polarization
of nuclear spins (DNPs): In analogy to optical pumping,
Eq. (3) describes electronic pumping of the nuclear spins.
Its steady states are eigenstates of Az, which lie in the
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kernel of the collective jump operator A−. In particular, for
a completely inhomogeneous system the only steady state
is the fully polarized one, the ideal initial state required
for the observation of SR effects. When starting from a
completely unpolarized nuclear state, the unidirectionality
of Eq. (3)—electrons with one spin orientation exchange
excitations with the nuclear spins, while electrons of opposite
spin primarily do not—implies that the rather warm electronic
reservoir can still extract entropy out of the nuclear system.
More generally, the transport setting studied here possibly
opens up the route towards the (feedback-based) electronic
preparation of particular nuclear states in single QDs. This is
in line with similar ideas previously developed in double QD
settings (see, e.g., Refs. 12, 15, 18, 20, and 54).

In this work we have specialized on a single QD. However,
our theory could be extended to a double QD (DQD) setting
which is likely to offer even more possibilities. DQDs are
routinely operated in the Pauli-blockade regime where despite
the presence of an applied source-drain voltage the current
through the device is blocked whenever the electron tunneling
into the DQD has the same spin orientation as the one already
present. The DQD parameters and the external magnetic field
can be tuned such that the role of the states |σ 〉,σ =↓ ,↑, in
our model is played by a pair of singlet and triplet states, while
all other states are off-resonant. Then, along the lines of our
study, nonlinearities appear due to dependencies between the
electronic and nuclear subsystems and collective effects enter
via the HF-mediated lifting of the spin blockade.

While we have focused on the Markovian regime and the
precise conditions for its validity, Eq. (15) offers a starting
point for studies of non-Markovian effects in the proposed
transport setting. All terms appearing in the memory kernel
of Eq. (15) are quadratic in the fermionic creation and
annihilation operators allowing for an efficient numerical
simulation, without having to explicitly invoke the flatness
of the spectral density of the leads. This should then shed light
on possibly abrupt changes in the QD transport properties due
to feedback mechanism between the nuclear spin ensemble
and the electron spin.

Last, our work also opens the door towards studies of
dissipative phase transitions in the transport setting: When
combined with driving, the SR dynamics can lead to a variety
of strong-correlation effects, nonequilibrium, and dissipative
phase transitions,1,56–58 which could now be studied in a meso-
scopic solid-state system, complementing other approaches to
dissipative phase transitions in QDs.59–62
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APPENDIX A: MICROSCOPIC DERIVATION
OF THE MASTER EQUATION

In this appendix we provide some details regarding the
derivation of the master equations as stated in Eqs. (2) and
(30). It comprises the effect of the HF dynamics in the

memory kernel of Eq. (13) and the subsequent approximation
of independent rates of variation.

In the following, we show that it is self-consistent to neglect
the effect of the HF dynamics L1(t) in the memory kernel of
Eq. (13) provided that the bath correlation time τc is short
compared to the Rabi flips produced by the HF dynamics.
This needs to be addressed as cooperative effects potentially
drive the system from a weakly coupled into a strongly
coupled regime. First, we reiterate the Schwinger-Dyson
identity in Eq. (14) as an infinite sum over time-ordered nested
commutators

e−i(L0+L1)τ = e−iL0τ

∞∑
n=0

(−i)n
∫ τ

0
dτ1

∫ τ1

0
dτ2 . . .

×
∫ τn−1

0
dτn L̃1(τ1)L̃1(τ2) . . . L̃1(τn), (A1)

where for any operator X

L̃1(τ )X = eiL0τL1e
−iL0τX

= [eiH0τH1e
−iH0τ ,X] = [H̃1(τ ),X]. (A2)

More explicitly, up to second order Eq. (A1) is equivalent to

e−i(L0+L1)τX

= e−iL0τX − ie−iL0τ

∫ τ

0
dτ1[H̃1(τ1),X]

− e−iL0τ

∫ τ

0
dτ1

∫ τ1

0
dτ2[H̃1(τ1),[H̃1(τ2),X]] + · · · .

(A3)

Note that the time dependence of H̃1(τ ) is simply given by

H̃1(τ ) = eiωτH+ + e−iωτH− + H	OH, H± = g

2
S±A∓,

(A4)

where the effective Zeeman splitting ω = ω0 + g〈Az〉t is
time dependent. Accordingly, we define L̃1(τ ) = L̃+(τ ) +
L̃−(τ ) + L̃	OH(τ ) = eiωτL+ + e−iωτL− + L	OH, where
Lx · = [Hx,·] for x = ±,	OH. In the next steps, we explicitly
evaluate the first two contributions to the memory kernel that
go beyond n = 0 and then generalize our findings to any order
n of the Schwinger-Dyson series.

1. First-order correction

The first-order contribution n = 1 in Eq. (13) is given by

�(1) = i

∫ t

0
dτ

∫ τ

0
dτ1TrB(LT e−iL0τ [H̃1(τ1),X]). (A5)

Performing the integration in τ1 leads to

�(1) =
∫ t

0
dτ

{
g

2ω
(1 − e−iωτ )TrB(LT [S+A−,X̃τ ])

+ g

2ω
(eiωτ − 1)TrB(LT [S−A+,X̃τ ])

+ igτTrB(LT [(Az − 〈Az〉t )Sz,X̃τ ])

}
, (A6)

where, for notational convenience, we introduced the op-
erators X = LT ρS(t − τ )ρ0

B and X̃τ = e−iH0τ [HT ,ρS(t −
τ )ρ0

B]eiH0τ ≈ [H̃T (τ ),ρS(t)ρ0
B]. In accordance with previous
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approximations, we have replaced e−iH0τ ρS(t − τ )eiH0τ with
ρS(t) since any additional term besides H0 would be of higher
order in perturbation theory.35,36 In particular, this disregards
dissipative effects: In our case, this approximation is valid
self-consistently provided that the tunneling rates are small
compared to effective Zeeman splitting ω. The integrand
decays on the leads-correlation time scale τc, which is typically
much faster than the time scale set by the effective Zeeman
splitting, ωτc � 1. This separation of time scales allows
for an expansion in the small parameter ωτ , for example,
g

ω
(eiωτ − 1) ≈ igτ . We see that the first-order correction can

be neglected if the the bath correlation time τc is sufficiently
short compared to the time scale of the HF dynamics, that is
gτc � 1. The latter is bounded by the total hyperfine coupling
constant AHF (since ||gAx || � AHF) so that the requirement
for disregarding the first-order term reads AHFτc � 1.

2. Second-order correction

The contribution of the second term n = 2 in the
Schwinger-Dyson expansion can be decomposed into

�(2) = �(2)
zz + �

(2)
ff + �

(2)
fz . (A7)

The first term �(2)
zz contains contributions from H	OH only,

�(2)
zz =

∫ t

0
dτ

∫ τ

0
dτ1

∫ τ1

0
dτ2TrB(LT e−iL0τ [H̃	OH(τ1),

[H̃	OH(τ2),X]]) (A8)

= −
∫ t

0
dτ (gτ )2TrB

[
LT

(
δAzSzX̃τ δA

zSz

− 1

2
{δAzSzδAzSz,X̃τ }

)]
. (A9)

Similarly, �
(2)
ff , which comprises contributions from Hff only

is found to be

�
(2)
ff = g2

4ω2

∫ t

0
dτ {(1 + iωτ − eiωτ )

× TrB[LT (S+S−A−A+X̃τ + X̃τ S
−S+A+A−)]

+ (1 − iωτ − e−iωτ )TrB[LT (S−S+A+A−X̃τ

+ X̃τ S
+S−A−A+)]}. (A10)

Here, we have used the following simplification: The time-
ordered products which include flip-flop terms only can be
simplified to two possible sequences in which L+ is followed
by L− and vice versa. This holds since

L±L±X = [H±,[H±,X]]

= H±H±X + XH±H± − 2H±XH± = 0. (A11)

Here, the first two terms drop out immediately since the
electronic jump operators S± fulfill the relation S±S± = 0.
In the problem at hand, also the last term gives zero because
of particle number superselection rules: In Eq. (13) the time-
ordered product of superoperators acts on X = [HT ,ρS(t −
τ )ρ0

B]. Thus, for the term H±XH± to be nonzero, coherences
in Fock space would be required, which are consistently
neglected (compare Ref. 36). This is equivalent to ignoring
coherences between the system and the leads. Note that

the same argument holds for any combination HμXHν with
μ,ν = ±.

Similar results can be obtained for �
(2)
fz which comprises

H± as well as H	OH in all possible orderings. Again, using that
the integrand decays on a time scale τc and expanding in the
small parameter ωτ shows that the second-order contribution
scales as ∼(gτc)2. Our findings for the first- and second-order
correction suggest that the nth-order correction scales as
∼(gτc)n. This is proven in the following by induction.

3. nth-order correction

The scaling of the nth term in the Dyson series is governed
by the quantities of the form

ξ
(n)
+−···(τ ) = gn

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτne

iωτ1e−iωτ2 . . . ,

(A12)

where the index suggests the order in which H± (giving an
exponential factor) and H	OH (resulting in a factor of 1) appear.
Led by our findings for n = 1,2, we claim that the expansion
of ξ

(n)
+−···(τ ) for small ωτ scales as ξ

(n)
+−···(τ ) ∼ (gτ )n. Then, the

(n + 1)th terms scale as

ξ
(n+1)
−(	OH)+−···(τ ) = gn+1

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn

×
∫ τn

0
dτn+1

(
e−iωτ1

1

)
e+iωτ2 · · · (A13)

= g

∫ τ

0
dτ1

(
e−iωτ1

1

)
ξ

(n)
+−···(τ1) (A14)

∼ (gτ )n+1. (A15)

Since we have already verified this result for n = 1,2, the
general result follows by induction. This completes the proof.

APPENDIX B: ADIABATIC ELIMINATION
OF THE QD ELECTRON

For a sufficiently small relative coupling strength ε the
nuclear dynamics are slow compared to the electronic QD
dynamics. This allows for an adiabatic elimination of the
electronic degrees of freedom yielding an effective master
equation for the nuclear spins of the QD.

Our analysis starts out from Eq. (35), which we write as

ρ̇ = W0ρ + W1ρ, (B1)

where

W0ρ = −i[ω0S
z,ρ] + γ

[
S−ρS+ − 1

2
{S+S−,ρ}

]

+�

[
SzρSz − 1

4
ρ

]
, (B2)

W1ρ = −i[HHF,ρ]. (B3)

Note that the superoperator W0 only acts on the electronic
degrees of freedom. It describes an electron in an external
magnetic field that experiences a decay as well as a pure de-
phasing mechanism. In zeroth order of the coupling parameter
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ε the electronic and nuclear dynamics of the QD are decoupled
and SR effects cannot be expected. These are contained in the
interaction term W1.

Formally, the adiabatic elimination of the electronic degrees
of freedom can be achieved as follows:63 To zeroth order in ε

the eigenvectors of W0 with zero eigenvector λ0 = 0 are

W0μ ⊗ ρSS = 0, (B4)

where ρSS = |↓〉〈↓| is the stationary solution for the electronic
dynamics and μ describes some arbitrary state of the nuclear
system. The zeroth-order Liouville eigenstates corresponding
to λ0 = 0 are coupled to the subspaces of “excited” nonzero
(complex) eigenvalues λk �= 0 of W0 by the action of W1.
Physically, this corresponds to a coupling between electronic
and nuclear degrees of freedom. In the limit where the HF
dynamics are slow compared to the electronic frequencies, that
is, the Zeeman splitting ω0, the decay rate γ , and the dephasing
rate �, the coupling between these blocks of eigenvalues and
Liouville subspaces of W0 is weak, justifying a perturbative
treatment. This motivates the definition of a projection operator
P onto the subspace with zero eigenvalue λ0 = 0 of W0

according to

Pρ = Trel[ρ] ⊗ ρSS = μ ⊗ |↓〉〈↓|, (B5)

where μ = Trel[ρ] is a density operator for the nuclear spins,
Trel . . . denotes the trace over the electronic subspace, and, by
definition, W0ρSS = 0. The complement of P is Q = 1 − P .
By projecting the master equation on the P subspace and
tracing over the electronic degrees of freedom we obtain an
effective master equation for the nuclear spins in second-order
perturbation theory,

μ̇ = Trel
[
PW1Pρ − PW1QW−1

0 QW1Pρ
]
. (B6)

Using Trel[SzρSS] = −1/2, the first term is readily evaluated
and yields the Knight shift seen by the nuclear spins,

Trel[PW1Pρ] = +i
g

2
[Az,μ]. (B7)

The derivation of the second term is more involved. It can be
rewritten as

−Trel
[
PW1QW−1

0 QW1Pρ
]

= −Trel
[
PW1(1 − P )W−1

0 (1 − P )W1Pρ
]

(B8)

=
∫ ∞

0
dτ Trel[PW1e

W0τW1Pρ]

−
∫ ∞

0
dτ Trel[PW1PW1Pρ]. (B9)

Here, we used the Laplace transform −W−1
0 = ∫ ∞

0 dτ eW0τ

and the property eW0τP = PeW0τ = P .
Let us first focus on the first term in Eq. (B9). It contains

terms of the form

Trel[P [A+S−,eW0τ [A−S+,μ ⊗ ρSS]]]

= Trel[S
−eW0τ (S+ρSS)]A+A−μ (B10)

− Trel[S
−eW0τ (S+ρSS)]A−μA+ (B11)

+ Trel[S
−eW0τ (ρSSS

+)]μA−A+ (B12)

− Trel[S
−eW0τ (ρSSS

+)]A+μA−. (B13)

This can be simplified using the following relations: Since
ρSS = |↓〉〈↓|, we have S−ρSS = 0 and ρSSS

+ = 0. Moreover,
|↑〉〈↓| and |↓〉〈↑| are eigenvectors of W0 with eigenvalues
−(iω0 + α/2) and +(iω0 − α/2), where α = γ + �, yielding

eW0τ (S+ρSS) = e−(iω0+α/2)τ |↑〉〈↓|, (B14)

eW0τ (ρSSS
−) = e+(iω0−α/2)τ |↓〉〈↑|. (B15)

This leads to

Trel[P [A+S−,eW0τ [A−S+,μ ⊗ ρSS]]]

= e−(iω0+α/2)τ (A+A−μ − A−μA+). (B16)

Similarly, one finds

Trel[P [A−S+,eW0τ [A+S−,μ ⊗ ρSS]]]

= e+(iω0−α/2)τ (μA+A− − A−μA+). (B17)

Analogously, one can show that terms containing two flip or
two flop terms give zero. The same holds for mixed terms that
comprise one flip-flop and one Overhauser term with ∼AzSz.
The term consisting of two Overhauser contributions gives

Trel[P [AzSz,eW0τ [AzSz,μ ⊗ ρSS]]]

= − 1
4 [2AzμAz − [AzAz,μ]]. (B18)

However, this term exactly cancels with the second term from
Eq. (B9). Thus, we are left with the contributions coming from
Eqs. (B16) and (B17). Restoring the prefactors of −ig/2, we
obtain

Trel
[
PW1Q

(−W−1
0

)
QW1Pρ

]

= g2

4

∫ ∞

0
dτ [e−(iω0+α/2)τ (A−μA+ − A+A−μ)

+ e+(iω0−α/2)τ (A−μA+ − μA+A−)]. (B19)

Performing the integration and separating real from imaginary
terms yields

Trel
[
PW1Q

(−W−1
0

)
QW1Pρ

]

= cr

[
A−μA+ − 1

2
{A+A−,μ}

]
+ ici[A

+A−,μ], (B20)

where cr = g2/(4ω2
0 + α2)α and ci = g2/(4ω2

0 + α2)ω0.
Combining Eq. (B7) with Eq. (B20) directly gives the effective
master equation for the nuclear spins given in Eq. (3) in the
main text.
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14J. Iñarrea, G. Platero, and A. H. MacDonald, Phys. Rev. B 76,
085329 (2007).

15F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H.
Willems van Beveren, I. T. Vink, H. P. Tranitz, W. Wegschneider,
L. P. Kouwenhoven, and L. M. K. Vandersypen, Science 309, 1346
(2005).

16K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004).
17A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, Phys. Rev.

Lett. 99, 036801 (2007).
18T. Kobayashi, K. Hitachi, S. Sasaki, and K. Muraki, Phys. Rev. Lett.

107, 216802 (2011).
19K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297,

1313 (2002).
20M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007).
21M. Eto, T. Ashiwa, and M. Murata, J. Phys. Soc. Jpn. 73, 307 (2004).
22H. Christ, J. I. Cirac, and G. Giedke, Phys. Rev. B 75, 155324

(2007).
23R. H. Dicke, Phys. Rev. 93, 99 (1954).
24M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).
25P. Recher, E. V. Sukhorukov, and Daniel Loss, Phys. Rev. Lett. 85,

1962 (2000).
26R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren,

J. M. Elzerman, I. T. Vink, and L. P. Kouwenhoven, Phys. Rev. B
70, 241304(R) (2004).

27E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke,
Phys. Rev. Lett. 104, 143601 (2010).

28J. Schliemann, A. Khaetskii, and Daniel Loss, J. Phys.: Condens.
Matter 15, R1809 (2003).

29H. Bruus and K. Flensberg, Many-Body Quantum Theory in
Condensed Matter Physics (Oxford University Press, New York,
2006).

30Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics
(Wiley, New York, 1999).

31S. Welack, M. Esposito, U. Harbola, and S. Mukamel, Phys. Rev.
B 77, 195315 (2008).

32J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus,
and M. D. Lukin, Phys. Rev. B 76, 035315 (2007).

33C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions: Basic Processes and Applications (Wiley,
New York, 1992).

34C. Timm (private communication).
35C. Timm, Phys. Rev. B 77, 195416 (2008).
36U. Harbola, M. Esposito, and S. Mukamel, Phys. Rev. B 74, 235309

(2006).
37H.-A. Engel and D. Loss, Phys. Rev. B 65, 195321 (2002).
38N. Zhao, J.-L. Zhu, R.-B. Liu, and C. P. Sun, New J. Phys. 13,

013005 (2011).
39S. A. Gurvitz and Ya. S. Prager, Phys. Rev. B 53, 15932 (1996).
40S. A. Gurvitz, Phys. Rev. B 57, 6602 (1998).
41H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky,

and A. Yacoby, Nat. Phys. 7, 109 (2010).
42G. S. Agrawal, Phys. Rev. A 4, 1791 (1971).
43C. Leonardi and A. Vaglica, Nuovo Cimento Soc. Ital. Fis. B 67,

256 (1982).
44V. V. Temnov and U. Woggon, Phys. Rev. Lett. 95, 243602 (2005).
45D. A. Bagrets and Yu. V. Nazarov, Phys. Rev. B 67, 085316 (2003).
46M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,

1665 (2009).
47C. Emary, C. Pöltl, A. Carmele, J. Kabuss, A. Knorr, and T. Brandes,

Phys. Rev. B 85, 165417 (2012).
48L. D. Contreras-Pulido and R. Aguado, Phys. Rev. B 81, 161309(R)

(2010).
49H. J. Carmichael, Statistical Methods in Quantum Optics 1

(Springer, Berlin, 1999).
50R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van

Beveren, J. M. Elzerman, and L. P. Kouwenhoven, Phys. Rev. Lett.
91, 196802 (2003).

51For finite polarization the initial covariance matrix has been
determined heuristically from the dark-state condition 〈A−A+〉 = 0
in the homogeneous limit.

52D. Paget, Phys. Rev. B 25, 4444 (1982).
53T. Ota, G. Yusa, N. Kumada, S. Miyashita, T. Fujisawa, and

Y. Hirayama, Appl. Phys. Lett. 91, 193101 (2007).
54R. Takahashi, K. Kono, S. Tarucha, and K. Ono, Phys. Rev. Lett.

107, 026602 (2011).
55This limit is realized if strong nuclear dephasing processes prevent

the coherence buildup of the SR evolution.
56H. J. Carmichael, J. Phys. B 13, 3551 (1980).
57S. Morrison and A. S. Parkins, Phys. Rev. A 77, 043810 (2008).
58E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin,

and J. I. Cirac, Phys. Rev. A 86, 012116 (2012).
59C.-H. Chung, K. Le Hur, M. Vojta, and P. Wölfle, Phys. Rev. Lett.
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