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The quantum Hall effect (QHE) and the Shubnikov–de Haas effect in the QHE regime are investigated
experimentally using modulation doped n-type GaAs/GaAlAs quantum wells additionally doped in the well with
beryllium. It is known that acceptor states introduced by Be atoms have a localized character in the conduction
band due to a combined effect of the well and a magnetic field parallel to the growth direction and that they
possess discrete energies above the corresponding conduction Landau levels. It is presently shown that the
localized magnetoacceptor (MA) states lead to two observable effects in magnetotransport in the ultraquantum
limit: magnetic thaw down and magnetic boil-off of two-dimensional (2D) electrons. Both effects are related to
the fact that electrons occupying localized MA states cannot conduct. Thus in the thaw down effect the electrons
fall down from the MA states to the free Landau states, which leads to a shift of the Hall plateau toward higher
magnetic fields as a consequence of an increase of the 2D electron density Ns . In the boil-off effect the electrons
are pushed from the free Landau states to the MA states which leads to a dramatic increase of resistance, as a
consequence of the decrease of Ns . Differences between the above effects and those induced by magnetodonors
in 2D systems are emphasized. We analyze the magnetic boil-off effect theoretically assuming that it is caused
by the quantum Hall electric field present in our experiments. It is demonstrated that a sufficiently strong electric
field in the crossed-field configuration can indeed populate localized MA states above the Landau levels.
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I. INTRODUCTION

Impurities play an important role in the physical phenomena
observed on a two-dimensional electron gas (2DEG) confined
in semiconductor heterostructures. Impurities provide one of
the dominant scattering modes for electrons, they are also
a source of 2D electrons in quantum wells (QW). Using
the possibilities of modulation doping the impurities can be
introduced directly into the well as well as into confining
barriers. In a large majority of cases donors are introduced
into the barriers in order to provide electrons without reducing
their mobility. The presence of donors results in smooth
long-range potential fluctuations, both attractive and repulsive.
In consequence, in the presence of a magnetic field the Landau
levels (LLs) are almost symmetrically broadened,1–3 giving
rise to the well known quantum Hall effect.4,5

Some time ago new discrete states in the conduction bands
of heterostructures were proposed by Kubisa and Zawadzki.6

These states are introduced into the conduction band by
magnetoacceptors placed in the well. Usually an acceptor,
being a negatively charged center, repulses a conduction
electron. However, in a QW a combined effect of the confining
potential and of the Lorentz force caused by magnetic field
parallel to the growth direction keeps the electron near the
acceptor. In our QWs the additional acceptor potentials are
not random. The acceptors are put by selective doping into
specific planes of the GaAs well or at the GaAlAs/GaAs
interface. Thus the repulsive potentials are strong and they
have short-range character. They result in discrete electron
levels above free electron LLs. The existence of such states
in GaAs/GaAlAs heterostructures was convincingly demon-

strated with the use of interband and intraband magneto-optical
experiments.7,8

The purpose of the present paper is to demonstrate the effect
of discrete states due to magnetoacceptors in magnetotransport
phenomena. The role of impurities in magnetotransport exper-
iments is particularly important. For example, the width of
the quantum Hall plateaus depends strongly on the impurity
concentration.9 Haug et al.10 showed that the nature of
impurities, attractive or repulsive, introduces an asymmetry
of the Hall plateaus with respect to the classical Hall effect:
ρo

xy = B/Nse. For donor-doped samples the plateaus shift
toward lower magnetic fields (i.e., larger filling factors ν =
hNs/eB), whereas for acceptor-doped samples the plateaus
shift toward higher magnetic fields (smaller filling factors).
The results were interpreted in terms of an asymmetry of
the density of states. In another study, performed on Si
metal-oxide-semiconductor field-effect transistors, Furneaux
and Reinecke11 investigated the effect of driftable Na+ ions
on the width and position of Hall plateaus. Also these authors
interpreted their results in terms of an asymmetric distribution
of localized states on the edges of overlapping Landau levels.
Raymond et al.12 studied experimentally and theoretically the
effects of additional attractive or repulsive ionized impurities
on the resistivity components ρxx and ρxy in the QHE
regime. The authors investigated experimentally a number
of GaAs/GaAlAs asymmetric modulation-doped QWs with
additional δ doping by Si donors or Be acceptors in the GaAs
channel or at the AlGaAs/GaAs interface. The main result
of this study is that the whole ν = 1 plateau of QHE shifts
with respect to the classical Hall effect in case of additional
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doping with acceptors. In the present paper we will show that
the shift of the ν = 1 Hall plateau can be explained by the
existence of localized magnetoacceptor states above the free
Landau states. We call the electron transfer from the upper
localized states to the lower Landau states, as a magnetic field
increases, the thaw down effect. We will also show that, in the
ultraquantum limit of magnetic fields, the Hall electric field
can push the conducting electrons from the free Landau states
to the localized acceptor states at higher energies. This process,
which we call the boil-off effect, can be considered to be an
inverse process to the freeze-out effect in which the conducting
electrons from the free Landau states fall to localized donor
states at lower energies.13

Our paper is organized as follows. In Sec. II we present char-
acteristics of the investigated samples as well as experimental
techniques. Section III describes an experimental study of the
magnetic thaw down of 2D electrons from magnetoacceptor
states in the ultraquantum limit, as well as an experimental
study of the electron boil-off effect into magnetoacceptor
states. Section IV contains a theory in which we calculate
probabilities of electron transitions from the Landau states to
magnetoacceptor states due to ionized impurities and acoustic
phonons in the presence of a strong electric field in the
crossed-field configuration. In Sec. V we briefly discuss our
results, the paper is concluded by a summary.

II. SAMPLE CHARACTERISTICS AND EXPERIMENTAL
TECHNIQUES

Our samples were modulation-doped GaAs/Ga1−xAlxAs
asymmetric single quantum wells grown by molecular beam
epitaxy. As shown in Fig. 1, all investigated samples were δ

doped in the GaAlAs barrier on one side, forming two planes
of Si donors: The one closer to the interface contained parent
donors providing the conducting 2D electrons. Moreover,
except for the reference samples, additional Be impurities were
introduced via a δ-doped layer located either at the interface
or in the quantum well. The characteristics of the investigated
samples are given in Table I.

Two different techniques were used in transport experi-
ments performed on symmetric double-cross samples. In the
first technique we impose the current and measure voltage
drop across the sample. This is done with a dc current

FIG. 1. Typical structure of modulation doped GaAs/GaAlAs
quantum wells: z0 is the position of the δ layer of additional acceptors,
d is the spacer thickness, and w is the width of the GaAs channel.

source Keithley 220 and HP 34401 voltmeters to measure the
Hall voltage (Vxy) and the Shubnikov–de Haas voltage (Vxx)
within a current intensity range 10 nA–10 μA. In the second
technique we impose the voltage and measure the current. This
is performed using an ac voltage generator of EGG lock-in
amplifiers 7225, as well as a current amplifier NF LI 76. A
low-frequency voltage (17 Hz) was applied to the sample,
current and voltages were measured at the same frequency.

III. EXPERIMENTAL STUDY OF MAGNETIC THAW
DOWN AND BOIL-OFF EFFECTS

In this section we describe results obtained using both
techniques, that is, using either a current-driven source or a
voltage-driven source. We begin with the results obtained with
the dc current-driven source. The low current density was
equal to 10 or 100 nA (see Figs. 2 to 5). Next we present
results obtained at higher currents (up to a few μA) shown
in Figs. 7 and 8. Finally, we present results obtained using a
voltage-driven ac source, see Figs. 9 and 10.

We observed that, at low currents, all the reference samples
exhibited for the filling factor ν = 1, a common crossing point
of the Hall plateaus at different temperatures, including the
crossing with the classical Hall line (see Fig. 2). The Hall
plateaus, as well as the corresponding field regions where

TABLE I. Samples characteristics: NA is the density of additional acceptors, x is the Al percentage, Ns is the density of 2D electrons,
μ is the mobility of 2D electrons at low temperatures, and �Ns is the additional electron density. In sample 35A54 there are two additional
Be-doping layers.

Add. Acceptors x z0 d w Ns μ �Ns

Samples NA (cm−2) (%) (Å) (Å) (Å) (×1011 cm−2) (×105 cm2/V s) (×1011 cm−2)

S908 Reference (0) 25 400 250 2.2 8.9
B9B11 Reference (0) 33 250 250 2.05 4
B9B18 Be (1 × 1010) 33 +20 250 250 2.18 0.8 1.3 × 1010

35A52 Reference (0) 26.8 400 250 2.7 5
35A53 Be (2 × 1010) 26.8 +25 400 250 2.5 0.88 2.1 × 1010

(2 × 1010) 0
35A54 Be 26.8 400 250 2.25 0.36 3.8 × 1010

(2 × 1010) +25
35A55 Be (4 × 1010) 26.8 +25 400 250 1.36 0.53 3.5 × 1010
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FIG. 2. Transport characteristics at low current around the filling
factor ν = 1 of reference sample SA908 at different temperatures
versus magnetic field. The Hall plateau as well as the region of
ρxx = 0 are symmetric with respect to the crossing point of the Hall
resistance ρ0

xy .

ρxx = 0, were still symmetric with respect to this crossing
point. In consequence, this point in the middle of the plateau
ν = 1 can be used to determine 2DEG density Ns , see Fig. 2.

For structures with additional acceptor impurities we
observe a shift toward higher magnetic fields of the ν = 1
plateau, see Fig. 3. However, under quantizing magnetic field,
the crossing point between the higher temperature Hall curves
and the lower temperature Hall curves is still in the middle
of the ν = 1 plateau, see Fig. 4. We observe for all the
investigated samples with additional acceptor states that, as
the temperature is increased, the ν = 1 plateau disappears
and is replaced by an inflexion point, while even-ν plateaus
are still well defined. This shows that, although exchange
effects leading to the enhancement of the spin splitting almost
disappear at higher temperatures, the Hall line still crosses
the low-temperature ν = 1 Hall plateau in the middle. Thus
the crossing point does not depend on the temperature. The
shift �B of the middle of ν = 1 plateau increases with the

FIG. 3. Transport characteristics at low current of sample 35A55
doped with high density of additional acceptors versus magnetic field.
A clear shift of ν = 1 plateau toward higher magnetic fields with
respect to the classical Hall line is observed.

FIG. 4. Transport characteristics at low current of sample B9B18
at T = 1.8 K and T = 4.2 K versus magnetic field. A shift of ν = 1
plateau is observed but the crossing point between the Hall resistance
at both temperatures is still in the middle of the ν = 1 plateau, as
shown in the inset.

density of additional acceptors, see Fig. 5. If we reasonably
assume that this point still gives the value of Ns at the
corresponding magnetic field, we measure experimentally an
increase �Ns which is approximately equal to the density NA

of Be acceptors, see Table I. As shown in Fig. 6, for magnetic
fields higher than that corresponding to ν = 2, the Fermi level
is between the acceptor levels 0±

A and the Landau levels 0±, so
that the electrons from the localized states 0±

A fall down to the
0± Landau states and they can conduct. We call this process
the thaw down effect. It is manifested by the experimentally
verified equality NA ≈ �Ns , saying that the additional free
electron density �Ns comes from the emptying of acceptor
states. This effect is a direct consequence of the particularity
of magnetoacceptor states which represent localized states

FIG. 5. Hall resistivity at low current, at T = 1.5 K, normalized
by the value of B2, corresponding to the filling factor ν = 2, for
four samples with different acceptor densities (see Table I). The shift
�B of the middle of the ν = 1 plateau increases with the density
of additional acceptors, which is a manifestation of the thaw down
effect.
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FIG. 6. Free Landau states and discrete magnetoacceptor states
in the QHE regime. As the magnetic field is increased and the Fermi
level is below acceptors levels, the localized electrons at acceptors
thaw down into delocalized Landau states, see text.

above the corresponding free Landau states. We mention that
in samples with low densities of additional acceptors and high
electron mobilities the thaw down effect was observed also at
very low temperatures for the filling factor ν = 3.16

Next we consider magnetotransport phenomena observed
at higher currents. In the plateau region the Hall resistivity ρxy

is quantized in integer values of h/ie2, while the longitudinal
resistivity ρxx vanishes giving rise to a dissipationless state.
Ebert et al.14 and Cage et al.15 demonstrated that the dissi-
pationless state suddenly disappears when the electric current
exceeds a critical value. This is the so-called QHE breakdown.
Many experimental and theoretical studies were carried out
to understand the origin of this phenomenon (see Ref. 12 and
the references therein). In our current-driven experiments we
observed the QHE breakdown when the current density was
increased, see Fig. 7. However, for samples with additional
acceptors, and particularly for sample 35A55 whose density
of Be atoms NA = 4 × 1010 cm−2 is nearly equal to one third
of the electron density Ns , instead of the QHE breakdown a
huge increase was observed for both ρxx and ρxy resistivities
at magnetic fields beyond ν = 1, see Fig. 8.

In order to verify these surprising results we performed
transport experiments using the voltage-driven technique. In
this case, instead of applying a dc current, we applied an ac
voltage on opposite ends of the sample. For samples without

FIG. 7. Transport characteristics of reference sample 32A52
measured for higher currents in dc experiments. Breakdown of QHE
is observed at higher currents.

FIG. 8. Transport characteristics of sample 35A55 measured for
higher currents in dc experiments. At higher currents a sharp increase
of both ρxx and ρxy is observed in the ultraquantum limit of magnetic
field ν < 1.

additional acceptors, when the voltage was increased, we
observed the well known QHE breakdown, see Fig. 9.

The main effect is an increase of ρxx , particularly in the
plateau regime. The effect of breakdown on ρxy is small,
as seen in Fig. 9(b). In contrast, for sample 35A55 we
observe a dramatic difference between the low-voltage and
high-voltage curves, see Fig. 10. At the field B = 12 T and
the polarization voltage 1V the resistance ρxy increases up to
140 k�, whereas for the voltage 10 mV it is always below
40 k�. The phenomenon reported in Figs. 8 and 10 on sample
35A55 occurred when the magnetic field was above the value
of 6 T corresponding to the filling factor ν = 1.

We interpret this large increase of resistivity components as
a consequence of a strong decrease of 2DEG density Ns caused
by an increasing Hall electric field Fy . In our experiments the
Hall electric field is always stronger than the applied driving
field Fx . This is particularly true in the ultraquantum limit
when the filling factor reaches ν = 1. We demonstrate in
Sec. IV that a sufficiently high Hall electric field induces
transitions of electrons into empty localized acceptor states
(the boil-off effect). This effect diminishes the free-carrier
density. The existence of empty acceptor states implies that the
Fermi level is below them which occurs in the ultraquantum
limit. We mention that in the quantum limit, that is, for larger
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FIG. 9. Transport characteristics of reference sample 32A52
measured for different voltages in ac experiments. At higher voltages
the breakdown of QHE is observed.

values of the filling factor (ν = 2,3, . . .) the situation for
boil-off is less favorable: The Hall electric field Fy is much
smaller (two, three times) and the total density Ns of 2D
electrons is distributed on several Landau levels. Consequently
the process of localization on empty acceptor states is only
efficient for a fraction of 2D electrons (1/2, 1/3,. . .).

We observe that the resistivity components measured with
the current-driven technique (see Fig. 8) have a steeper slope
as functions of the magnetic field than the ones obtained
using the voltage-driven measurements (Fig. 10). In our dc
conditions the boil-off process has an avalanche character
because an increase of Fy induces a decrease of Ns , which in
turn induces an increase of the Hall voltage when the current
is kept constant, and consequently an increase of Fy . This is
what we observe.

IV. THEORY

We demonstrate here that, in the presence of a sufficiently
high Hall electric field, electrons can make transitions between
free Landau states |ψL〉 and magneto-acceptor states |ψA〉. The
transitions are induced by the impurity scattering or by the
acoustical phonon scattering. They result in a new statistical
occupation of the localized acceptor states and a new value of
the number of conducting electrons.

FIG. 10. Transport characteristics of sample 35A55 measured for
different voltages in ac experiments. At higher voltages a strong
increase of the Hall and longitudinal resistivities are observed.

We demonstrate first that, in the presence of a sufficiently
high Hall electric field, electrons can make transitions from
free Landau states |ψL〉 into magnetoacceptor states |ψA〉. In
the QHE regime, the electron is subjected to an external mag-
netic field B and the Hall electric field F in the perpendicular
direction. Thus we deal with the electron in crossed electric
and magnetic fields, and the current flows in the direction
perpendicular to both B and F. The quantum eigenenergies for
this problem are

E =
(

n + 1

2

)
h̄ωc − eFY0 − 1

2
m∗ F 2

B2
, (1)

where ωc = eB/m∗ and Y0 = kxl
2
B is the center of the

magnetic motion if we choose the asymmetric gauge A =
[−By,0,0]. In the following we consider the Landau level
n = 0 and omit the shift of all levels due to the electric field
given by the last term in Eq. (1). As indicated above, localized
magnetoacceptors states have energies above the free Landau
states.6 For an acceptor centered at r0(x0,y0) a variational wave
function |ψ ′

A〉 is

〈r|ψ ′
A〉 = ψ ′

A(r − r0) = Ce− α2

4 |r−r0|2−β|r−r0|, (2)

where α and β are the variational parameters and lB =√
h̄/eB is the magnetic length.6 The above wave function is

characterized by the the quantum numbers N = 0 and M = 0,
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FIG. 11. A free 2D electron makes a transition to a magnetoac-
ceptor state. The displacement y0 is defined by the distance for which
the electrostatic potential loss is compensated by the positive acceptor
energy ε0.

where M is the eigenvalue of the angular momentum. We
remark that this function is written for the symmetric gauge
A = [−By/2,Bx/2,0]. The binding energy of this state is
ε0 = 1,85 meV at B = 5 T (see Ref. 6 for the calculation
of the binding energy in the GaAs/GaAlAs quantum well).
The corresponding variational parameters are α = 0.9/a0 and
β = 0.2/a0, where a0 is the effective Bohr radius for GaAs:
a0 = 94 Å. In the presence of the Hall electric field, a localized
acceptor state can have the same energy as a free Landau
state, see Fig. 11. Therefore, as a consequence of impurity
interactions, a 2D electron can make a transition from the free
state centered at the origin to the localized state centered at r0.
This is related to a displacement of the orbit center y0.

Our calculation of the transition rate for one electron is
based on the Fermi golden rule for the impurity-induced
transitions between the free state |ψL〉 whose energy is E0, and
the acceptor state |ψA〉 whose energy is EA = E0 − eFy0 +
ε0, where we have put Y0 = y0, see Fig. 11. We start with
the general expression for impurity-induced transitions in two
dimensions (see Ref. 16),

Wr0 = 2π

h̄
δ(EA − E0)

∣∣∣∣
∫

r

d3r|f0(z)|2ψL(r)ψA(r − r0)V (r)

∣∣∣∣
2

,

(3)

where V (r) is the impurity Coulomb potential and f0(z) is the
envelope function of the first electric subband. We describe
the ground Landau state for n = 0 in the form

〈r|ψ ′
L〉 = ψ ′

L(r) = 1√
2πlB

e−r2/4l2
B . (4)

Also this function is written in the symmetric gauge and is
characterized by the quantum numbers N = 0 and M = 0.
When performing the calculations below we transform both
functions 〈r|ψ ′

A〉 → 〈r|ψA〉 and 〈r|ψ ′
L〉 → 〈r|ψL〉 into the

asymmetric gauge in order to be consistent with the gauge
used in Eq. (1), see the Appendix. Using Eqs. (2) and (4)
we neglect the effect of the electric field on ψ ′

A(r) and ψ ′
L(r)

wave functions.
Equation (3) takes into account an effective 2D potential

averaged over the envelope function f0(z). With the help of

Ref. 1 this integral can be written in the form

Wr0 = 2π

h̄
δ(EA − E0)

∣∣∣∣
∫

q⊥
d2q⊥

S

(2π )2
f 2D

A,L(q)Fi(q⊥)

∣∣∣∣
2

, (5)

where f 2D
A,L(q) is the form factor of the 2D wave function,

f 2D
A,L(q) =

∫
x,y

ψL(r)ψA(r − r0)eiq⊥.rdxdy, (6)

whereas the envelope function f0(z) is included in Fi ,1

Fi(q⊥,zi) = e2

2Sκ(q⊥ + qs)

∫ ∞

−∞
|f0(z)|2e−q⊥|z−zi |dz. (7)

Here κ is the dielectric permittivity of GaAs (we take κ = 12.8
following Ref. 6). If we assume that the impurity is located in
the well at the maximum of f0(z), there is zi = 0 and Eq. (7)
becomes

Fi(q⊥,zi) = e2

2Sκ(q⊥ + qs)

1

(1 + q⊥/b)3
. (8)

In the polar coordinates (q⊥,θ ) we have dqxdqy = q⊥dq⊥dθ

and Eq. (5) becomes

Wr0 = 2π

h̄
δ(EA − E0)

(
e2

2(2π )2κ

)2

×
∣∣∣∣
∫

q⊥,θ

q⊥dq⊥dθ

(q⊥ + qs)(1 + q⊥/b)3
f 2D

A,L(q)

∣∣∣∣
2

. (9)

To obtain the full rate of transitions between a free state and an
acceptor state, one should sum over the density of final states.
This gives

WL,A =
∫

r0

Wr0NAdx0dy0 =
∫

E

Wr0NA

dE

eF
dx0. (10)

To make the calculation tractable, we approximate Wr0 by
its value for x0 = 0, and sum over an interval 2lB in which
the overlap between the initial and final wave functions is
finite. We finally obtain the following transition rate for one
electron:

W
imp
L,A = lBNAe4

2(2π )28π2heFκ2

×
∣∣∣∣
∫

q⊥,θ

q⊥dq⊥dθ

(q⊥ + qs)(1 + q⊥/b)3
f 2D

A,L(q)

∣∣∣∣
2

. (11)

The reciprocal process, characterized by the transition rate
for one electron W

imp
A,L, is described by the above formula

with NA replaced by the density of Landau states eB/h. In
our case (ν = 1) there is eB/h = Ns . For sample 35A55
we have Ns = 1.36 × 1011 cm−2 and NA = 0.4 × 1011 cm−2.
Therefore, considering one electron, transitions to free states
are more probable than transitions to acceptor states. This is
seen in Fig. 12, where W

imp
A,L > W

imp
L,A. We remark that Eq. (11)

gives

Ns × W
imp
L,A = NA × W

imp
A,L. (12)
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FIG. 12. Calculated electron transition rates of impurity-induced
(imp) and phonon-induced (ph) transitions versus electric field.
Calculations are carried for B = 5 T.

Figure 12 shows the numerically calculated transition rates
as functions of the electric field. There is a steep increase of
transition rates when the electric field exceeds 200 V/cm. This
occurs as a result of overlap of the Landau and acceptor wave
functions. Because of the Gaussian shape of both functions
the overlap increases exponentially as the orbit centers come
close at higher electric fields. The impurity-induced transitions
between |ψL〉 and |ψA〉 states in the presence of an electric field
occur in both directions. In order to fill the acceptor states, the
impurity scattering must dominate over the phonon-induced
relaxation. The latter enables efficient electron recombination
from the acceptor states to the free states at lower energies,
as shown in Fig. 13. Let us consider the acoustical phonon
scattering and calculate the corresponding transition rate for
one electron. As seen in Fig. 13, the energy conservation must
fulfill the dispersion relation for acoustic phonons, that is,
EA − E0 = h̄csq0. Because of the electric potential drop, there
is EA − E0 = eFy0 + ε0, which gives h̄csq0 = eFy0 + ε0.
This determines the phonon wave vector q0 as a function of

FIG. 13. A localized electron scattered by a phonon to a free
state. The energy change fulfills phonon dispersion relation ε(q0) =
h̄csq0 = ε0 + eFy0.

y0. This equality is imposed in the Fermi golden rule by the
Dirac δ function. The transition probability due to phonons
is16

Wr0 = 2π

h̄

∫
q

�d3q
(2π )3

h̄(nq + 1)q2E2
1

2μv�csq

× |fA,L(q)|2δ(EA − E0 − h̄csq), (13)

where E1 is the deformation potential of the electron-phonon
interaction, � is the crystal volume, μv is the crystal density,
cs is the sound velocity, and

fA,L(q) = f 2D
A,L(q⊥)

∫
z

f 2
0 (z)eiqzzdz = f 2D

A,L(q⊥)(
1 + q2

z /b
2
)3/2 (14)

is the form factor of the complete 3D wave function, with
b calculated from the heterostructure characteristics.17 For
sample 35A55 we calculate b = 3 × 108 m−1.

Introducing cylindrical coordinates (q⊥,θ,qz) we have
dqxdqydqz = q⊥dq⊥dθdqz. Then Eq. (13) gives

Wx0,y0 = E2
1

8π2μvh̄c2
s

∫ q0

qz=0

dqz(
1 + q2

z /b
2
)3

×
∫

q⊥ ,θ

q⊥dq⊥dθ q(nq + 1)δ(q0 − q)

×
∣∣∣∣
∫

x,y

ψL(r − r0)ψA(r)eiq⊥.rdxdy

∣∣∣∣
2

, (15)

where the value q0 is given by the relation h̄csq0 = eFy0 +
ε0. When qz is fixed, q2 = q2

⊥ + q2
z and q⊥dq⊥ = qdq. We

replace the integration over q⊥ by an integration over q which
is straightforward. In addition, we approximate (nq + 1) ≈ 1
because at 4.2 K there are very few phonons. This gives

Wx0,y0 = E2
1

8π2μvh̄c2
s

∫ q0

qz=0

dqz

(1 + q2
z /b

2)3

∫
θ

dθ q2
0

×
∣∣∣∣
∫

x,y

ψA(r)ψL(r − r0)eiq⊥ x cos θ eiq⊥ y sin θdxdy

∣∣∣∣
2

,

(16)

where q⊥ =
√

q2
0 − q2

z in the last integral. The total transition
rate is obtained by summing over all final free states r0. To
make the calculation tractable we restrict again the integration
over y0 to an interval of the width 2lB in which the overlap
of the wave functions is significant. Also, we take in Wr0

approximately x0 = 0. This gives

WA,L = 2lBNs

∫ +∞

y0=−∞
W0,y0 dy0, (17)
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and we finally obtain for one electron

W
ph
A,L = lBNsE2

1

4π2μvh̄c2
s

∫
y0

dy0

∫
qz,θ

dqzdθ

(1 + q2
z /b

2)3 q2
0

×
∣∣∣∣
∫

x,y

ψL(r − r0)ψA(r)eiq⊥(x cos θ+y sin θ)dxdy

∣∣∣∣
2

.

(18)

The values of W
ph
A,L were calculated numerically and the results

are shown in Fig. 12. It can be seen that the electric field
has little influence on the phonon transition rate. The latter
remains almost constant at the considered electric field interval
because the recombination to a lower energy state exists even
at vanishing electric field.

Now we calculate the occupation of the electron states
by counting the incoming and the outgoing electrons. We
define the occupancy fL as a ratio of the number of occupied
free states to the total number of these states. Similarly, the
occupancy fA is the ratio of the number of occupied acceptor
states to the total number of these states. To obtain the steady
state solution for the occupancy functions we make equal the
number of electrons per unit time going into acceptor states
(term on the left in equation below) and the number of electrons
per unit time going out of these states (term on the right). This
results in the master equation

W
imp
L,ANsfL(1 − fA) = (

W
ph
A,L + W

imp
A,L

)
NAfA(1 − fL). (19)

At a vanishing electric field, the phonon scattering rate remains
nearly constant, while impurity scattering rate is vanishingly
low. Thus, W imp � W ph. In this limit the master equation gives
fA = 0, which signifies that at low electric fields the acceptor
states remain empty. In contrast, at high enough electric fields,
when W imp � W ph, phonons do not provide a sufficiently
effective recombination process and the impurity scattering
redistributes electrons between free and acceptor states. In this
limit the master equation is

W
imp
L,ANsfL(1 − fA) = W

imp
A,LNAfA(1 − fL). (20)

Applying Eq. (12), we have fL(1 − fA) = fA(1 − fL), whose
solution is fA = fL, that is, it gives equal occupancy for
both kinds of states. To calculate this occupancy we use
conservation of the electron number

NAfA + NsfL = Ns. (21)

As a consequence, we obtain for sample 35A55 (Ns = 1.36 ×
1011 cm−2 and NA = 0.4 × 1011 cm−2)

f = fA = fL = Ns

Ns + NA

= 3/4. (22)

The above result shows that 1/4 of the free electrons are
trapped on the acceptor states, and, as acceptor states are
less numerous, 3/4 of them are populated. Thus, the electric
field makes the conducting electron density smaller. This leads
to what we called the “boil-off effect,” The corresponding
experimental situation is shown in Figs. 8 and 10. For
intermediate electric fields the general solution is obtained

FIG. 14. Calculated occupancy functions for free and acceptor
electrons versus electric field for sample 35A55. Above the critical
field of 200 V/cm acceptor states become populated and occupancy
of the free states diminishes.

by solving the set of equations

W
imp
L,ANsfL(1 − fA) = (

W
ph
A,L + W

imp
A,L

)
NAfA(1 − fL), (23)

NAfA + NsfL = Ns. (24)

The transition rates depend on the electric field and so do the
solutions fA and fL. One finds

fA = −(η + 1) +
√

(η + 1)2 + 4λη

2λη
(25)

and

fL = 1 − ηfA, (26)

where we define λ = W
ph
A,L/W

imp
A,L and η = NA/Ns . Solutions

are shown as functions of the electric field in Fig. 14. It is seen
that, above the critical field, the electrons are trapped in the
acceptor states. The critical field above which the localization
begins is about 200 V/cm.

V. DISCUSSION

Previous theoretical analysis showed that in the QHE
conditions one can deal with discrete acceptor levels above
conduction Landau levels.6 As a result, in the ultraquantum
limit of magnetic fields and low temperatures the electrons fall
down from localized acceptor states to free Landau states and
begin to conduct. This process, which we call the thaw down
effect, is quite natural and we confirm it experimentally. In
addition, there exists a possibility to observe an effect inverse
to the magnetic freeze-out, in which the electrons go from the
free Landau states to the localized acceptor states at higher
energies. As a result, these electrons cease to conduct. We
call this process the boil-off effect, as proposed originally in
Ref. 6. In our experiments the effect is induced by the Hall
electric field. The main problem with this interpretation is
that the average experimental electric field necessary to the
boil-off of electrons in our GaAs/GaAlas samples is around
2 V/cm, whereas the field predicted by the theory is around
200 V/cm, see Fig. 14. However, in studying the breakdown
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of QHE many authors observed a large discrepancy between
the value of the local electric field and its mean value. The
reason for this discrepancy is an important inhomogeneity of
the in-plane electric field in the QHE regime.16,18 Concerning
the QHE breakdown, this inhomogeneity was observed and
studied by many authors. Chaubet et al.16 demonstrated, using
a theoretical and experimental study of transport effects and
Landau emission, that the important physical parameter in
QHE regime is the local electric field and not the mean
electric field. It is well known that the in-plane electric field
is quite large in the vicinity of current contacts. Klass et al.19

and Komiyama et al.20 performed experiments on Far Infra
Red (FIR) emission due to high local electric fields near the
contacts. Also Ikushima et al.21 observed in the QHE regime
the FIR emission on the edges of the sample, where the
local electric field is much higher than in the inner part. In
our case of modulation doped quantum wells with a large
density of acceptor atoms in the GaAs channel, the electric
field inhomogeneity can be larger than in additionally undoped
samples. We believe that the discrepancy between the predicted
theoretical value and the average experimental value of the
critical electric fields which create the boil-off of 2D electrons
is only apparent.

As we showed above, the present theory predicts that 1/4
of free electrons can pass to localized magnetoacceptor states
and cease to conduct. The experimental increase of resistance
shown in Fig. 8 seems to suggest that in reality the transfer of
conducting electrons is considerably larger. This result could
be reproduced theoretically if a magnetoacceptor could trap
more than one conduction electron. We will investigate this
possibility in a future work.

VI. SUMMARY

The purpose of our work was to detect localized magne-
toacceptor states in the 2D conduction band by means of the
quantum transport. The MA states had been seen in cyclotron
resonance experiments but the transport evidence of their
existence was missing. With this aim in mind we investigated
the quantum Hall effect and the Shubnikov–de Haas effect in
n-type modulation doped GaAs/GaAlAs quantum wells addi-
tionally doped with Be atoms in the conducting channel. The
Be atoms are known to create acceptor states in GaAs. Such
2D acceptors localize conduction electrons by a combined
effect of the well and a magnetic field. The localized electron
states due to acceptors have discrete energies in the conduction

band above the corresponding Landau levels. We observed two
effects in the high quantum limit of magnetotransport which
we attributed to the localized MA states. The first, which we
called the magnetic thaw down effect, is caused by electrons
falling down from the MA states to the Landau states when, at
a high magnetic field, the Fermi energy is below the MA levels
but above the Landau levels. This is manifested experimentally
by a shift of the Hall plateau toward higher magnetic fields.
The situation can be regarded as an inverted process to that of
electron freeze-out from the Landau levels to magnetodonor
levels which leads to an increase of resistance due to a decrease
of the electron density. The second effect, which we called
the magnetic boil-off, is caused by the Hall electric field
pushing electrons from the filled Landau levels to the empty
MA levels. This process has an avalanche character in our
experimental conditions of the constant current, leading to a
dramatic increase of magnetoresistance in the ultraquantum
limit of magnetic fields. Our work provides an experimental
evidence for both effects and our theoretical analysis shows
that it is possible to redistribute electrons between free and
localized states in the conduction band by an electric field
transverse to magnetic field.
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APPENDIX

We consider here the gauge aspects of our calculations
which are not trivial. Equations (2) and (4) give the wave func-
tions in the symmetric gauge A′ = [− 1

2B(y − y0), 1
2B(x −

x0),0]. On the other hand, the energies of Eq. (1) are given
in the asymmetric gauge A = [−By,0,0]. To use the same
gauge throughout we transform the wave function ψ ′

A and ψ ′
L

to the asymmetric gauge by performing the transformation22,23

A = A′ + ∇χ, (A1)

ψ = ψ ′exp

(
− ie

h̄
χ

)
. (A2)

We have χA = − 1
2By(x − x0) − 1

2Bxy0 for the acceptor state
centered at r0 = (x0,y0), and χL = − 1

2Byx for the Landau
state at r0 = 0. We found that calculations performed with ψA

and ψL functions do not differ much from those performed
with the nontransformed functions ψ ′

A and ψ ′
L.
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