
PHYSICAL REVIEW B 86, 085307 (2012)

Interplay between phonon and impurity scattering in two-dimensional hole transport
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We investigate temperature-dependent transport properties of two-dimensional p-GaAs systems taking into
account both hole-phonon and hole-impurity scattering effects. By analyzing the hole mobility data of p-GaAs
in the temperature range 10 K < T < 100 K, we estimate the value of the appropriate deformation potential for
hole-phonon coupling. Due to the interplay between hole-phonon and hole-impurity scattering the calculated
temperature-dependent resistivity shows interesting nonmonotonic behavior. In particular, we find that there is
a temperature range (typically 2 K < T < 10 K) in which the calculated resistivity becomes independent of
temperature due to a subtle cancellation between the temperature-dependent resistive scattering contributions
arising from impurities and phonons. This resistivity saturation regime appears at low carrier densities when the
increasing resistivity due to phonon scattering compensates for the decreasing resistivity due to the nondegeneracy
effect. This temperature-independent flat resistivity regime is experimentally accessible and may have already
been observed in a recent experiment.
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I. BACKGROUND

The room-temperature resistivity of a metal (as well as most
metallic electronic materials, e.g., doped semiconductors) is
mainly limited by the electron-phonon interaction,1 i.e., by
phonon scattering, with a notable exception being doped
graphene with its very weak electron-phonon coupling.2

The electron-phonon scattering contribution to the resistivity
falls off strongly at very low temperatures (T < TBG) in
the so-called Bloch-Grüneissen (BG) regime,1 due to the
exponential suppression of the bosonic thermal occupancy
of the phonons. At low temperatures therefore the electronic
conductivity of metallic systems is invariably limited by
disorder, i.e., by electron-impurity scattering, which gives rise
to the zero-temperature residual resistivity of metals at low
temperatures where the phonon scattering contribution has
vanished. In general, the impurity scattering contribution to the
metallic resistivity is temperature independent, at least in three-
dimensional (3D) metals, because the impurities are quenched,
and the temperature scale is therefore the Fermi temperature
(TF ∼ 104 K in 3D metals), the impurity scattering contribution
to the resistivity is essentially temperature independent in the
0–300-K regime. This, however, is not true if TF is low as it
could be in 2D semiconductor-based systems with their tunable
carrier density where at low densities TF could be just a few
K. In fact, for 2D GaAs hole systems (2DHS), the situation
with TF < 1 K can easily be reached for a 2D hole density
∼1010 cm−2.3,4 This situation, which has no known analog
in 3D metallic systems, leads to very strong experimentally
observed temperature-dependent 2DHS resistivity in the T �
1-K temperature range arising entirely from electron-impurity
scattering since the phonon scattering is completely thermally
quenched at such low temperatures. As an aside, we note that
the temperature dependence of 2D electronic resistivity arising
from impurity scattering in 2D GaAs based electron systems
is rather weak due to the much lower effective mass of 2D
electrons (me ∼ 0.07m0, where m0 is the vacuum electron
mass), leading to much higher TF, compared with 2D holes
(mh ∼ 0.4m0) in GaAs-based 2D heterostructures.

The goal of the current work is to explore the interplay
between impurity scattering and phonon scattering in the
temperature-dependent resistivity of 2DHS in GaAs-based
2D systems. At higher temperature (�100 K), the GaAs
carrier resistivity is completely dominated by longitudinal
optical (LO) phonon scattering, which has been extensively
studied5 and is not a subject matter of interest here since
the resistivity limited by LO-phonon scattering manifests the
strong exponential temperature dependence ∼e−h̄ωLO/kBT with
h̄ωLO ∼ 36 meV.

Our interest is in the interplay between acoustic-phonon
scattering and impurity scattering in the low to intermediate
temperature regime (T ∼ TBG − TF) where both impurity
scattering and acoustic-phonon scattering contributions to
resistivity would show nontrivial temperature dependence. In
particular, we are interested in the question of whether an
interplay between the two scattering processes could lead to an
approximately constant (i.e., temperature independent) resis-
tivity over some intermediate temperature range (1 K < T <

40 K). Part of our motivation comes from a recent experiment6

which discovered such an intermediate-temperature “resis-
tivity saturation” phenomenon in a 2D GaAs-based electron
system in the presence of a parallel magnetic field (which
presumably serves to enhance the electron effective mass
due to the magneto-orbital coupling, thus reducing the Fermi
temperature of the electron system7). A second motivation
of our work is estimating the deformation potential coupling
strength for hole-acoustic-phonon scattering in 2DHS in GaAs.
It turns out that the electron-phonon deformation coupling is
not known in GaAs, and a quantitative comparison between our
theoretical results and experimental transport data could lead to
an accurate estimation of the deformation potential coupling
in the GaAs-based 2DHS. We mention in this context that
the accurate evaluation of the electron deformation potential
coupling in 2D GaAs systems is also based on a quantitative
comparison of the experimental and theoretical transport
data.5,8

The basic physics we are interested in (see Fig. 1) is
a situation where the acoustic-phonon contribution to the
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FIG. 1. (Color online) (a) Schematic resistivity behavior in
the presence of both hole-impurity scattering and acoustic-phonon
scattering as a function of temperature. Typically T1 ∼ TF and
T2 ∼ 5–10 K depending on the carrier density.

resistivity increases linearly with increasing temperature (T >

TBG), but the impurity contribution decreases with increasing
temperature (T � TF) as happens in a nondegenerate clas-
sical system where increasing temperature must necessarily
increase the conductivity since the electrons are classically
moving “faster.” (We emphasize that such a situation is
physically impossible in 3D metals since T > 104 K would be
required, but is routinely achieved in 2D semiconductor-based
systems where very low carrier density could lead to very
low values of TF.) We explicitly consider a situation with
T � TLO, where TLO ∼ 100 K in GaAs where LO phonons
start contributing to the resistivity in a substantial manner.
Now we ask the question of whether it is possible for the
increasing temperature-dependent contribution to the hole
resistivity arising from enhanced phonon scattering at higher
temperatures could be approximately canceled over a finite
temperature range by the decreasing temperature-dependent
contribution arising from impurity scattering with increasing
temperature due to the quantum-classical crossover, i.e.,
the nondegeneracy, effects. Some early theoretical work9

indicated that the interplay between phonon scattering and
nondegeneracy may indeed lead to a partial cancellation of
different temperature-dependent contributions, producing an
interesting nonmonotonicity (see Fig. 1) in the resistivity
as a function of temperature in the 1–10-K range for low-
density, high-mobility 2DHS in GaAs. In the current work,
we look into this issue at great depth in view of the recent
experimental work. In addition, we obtain the appropriate
2DHS deformation potential coupling constant by comparing
our theoretical results to existing 2DHS hole transport data.

II. INTRODUCTION

The temperature-dependent transport in 2D systems has
been a subject of intense activity since the observation of an
apparent electronic metal-insulator transition (MIT), which
represents the experimental observation of a transition from
an apparent metallic behavior (i.e., dρ/dT > 0, where ρ is the
2D resistivity) to an insulating behavior (i.e., dρ/dT < 0) as
the carrier density is reduced. The remarkable observation

of the anomalous metallic temperature dependence of the
resistivity is observed mostly in high-mobility low-density 2D
semiconductor systems.10,11 The low-temperature anomalous
metallic behavior discovered in 2D semiconductor systems
arises from the physical mechanism of strong temperature-
dependent screening of charged impurity scattering.10 At
low temperatures (T � TF, where TF = EF/kB is the Fermi
temperature with the Fermi energy EF) the main scattering
mechanism in resistivity is due to impurity disorder from un-
intentional background charged impurities and/or intentional
dopants in the modulation doping. The resistivity ρimp(T )
limited by the charged impurities increases linearly with
temperature at lower temperatures (T < TF) due to screening
effects. This is a direct manifestation of the weakening of
the screened charged disorder with increasing temperature10,12

or equivalently an electron-electron interaction effect in the
so-called ballistic regime.13 For T � TF, ρ(T ) decreases as
TF/T due to nondegeneracy effects and the quantum-classical
crossover occurs at the intermediate temperature regime
around T ∼ TF.12

The temperature-dependent resistivity5 limited by acoustic
phonons ρph(T ) undergoes a smooth transition from a linear-T
dependence at high (T > TBG) temperatures to a weak high
power T a dependence with a � 3 as the temperature is reduced
below kBTBG = 2kFvph, where kF is the Fermi wave vector of
the 2D hole system and vph is the longitudinal or transversal
sound velocity. The characteristic temperature TBG is referred
to as the Bloch-Grüneisen (BG) temperature. Note that TBG

is much smaller than the Debye temperature since the inverse
lattice constant greatly exceeds kF. In the BG regime (T <

TBG) the scattering rate is strongly reduced by the thermal
occupation factors because the phonon population decreases
exponentially and the phonon emission is prohibited by the
sharp Fermi distribution, which gives rise to high power-law
behavior (a � 5 with screening effects, but a � 3 without
screening) in the temperature-dependent resistivity. Thus the
phonon contribution to the resistivity is negligible compared
to the charged impurities and the phonon contribution to the
resistivity shows very weak temperature dependence for T <

TBG. For temperatures T > TBG, since the electron-phonon
scattering becomes proportional to the square of the oscillation
amplitude of ions, the ρph depends linearly on the temperature.
We note that at low carrier density where kF is small, TBG can
be very low.

In this paper we investigate the temperature-dependent
transport properties of p-type GaAs-based 2DHSs for the
temperatures T � 100 K by taking into account both hole-
phonon and hole-impurity scatterings. In p-GaAs, holes inter-
act with acoustic phonons through a short-range deformation
potential as well as through a long-range electrostatic potential
resulting from the piezoelectric effect. The precise value of the
deformation-potential coupling constant D is very important
to understand 2D p-GaAs carrier transport properties. For
example, the mobility is strongly related to the deformation
potential, μ ∼ D−2. However, the precise value of D for
p-GaAs has not been available, so the value of the n-GaAs
deformation potential (D = 12 eV, Ref. 5) is used uncritically.
Thus the current investigation of the transport properties of
p-GaAs systems is motivated by getting the exact value of the
deformation potential constant D in p-GaAs. We find that the
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fitted value of deformation-potential coupling could change
by as much as 60% (i.e., D = 7.6–12.7 eV) depending on
the value of the depletion density ndepl. When we assume
ndepl = 0, we obtain D = 12.7 eV as the most suitable value for
the p-GaAs acoustic-phonon deformation coupling constant
by fitting the available experimental data.14 The value of
D = 12.7 eV is larger than the generally accepted value in
bulk GaAs (D = 7 eV),15 but comparable to the value of
the n-GaAs (12–14 eV).8,16,17 However, due to the lack of
knowledge about ndepl we have the uncertainty in the value
of deformation potential coupling. To precisely determine
the value of D for holes requires a careful measurement of
ρ(T ) over the T = 1–50 K range in a high mobility and high
density (n � 5 × 1011 cm−2) sample. Note that our finding
of the apparent dependence of the GaAs 2D hole deformation
potential coupling on the background (and generally unknown)
depletion charge density in the 2DHS is obviously not a real
effect since the hole-phonon coupling strength cannot depend
on the depletion charge density. The apparent dependence
we find arises from the fact that the calculated resistivity
depends strongly on the depletion density whose precise value
is unknown.

Other motivation of our work is to investigate the nontrivial
nonmonotonic behavior of the temperature-dependent resis-
tivity observed experimentally. In the presence of the hole-
phonon and hole-impurity scattering a nonmonotonicity arises
from a competition among three mechanisms:4,9,18 screening
which is particularly important for T < TF, nondegeneracy
and the associated quantum-classical crossover for T ∼ TF,
and the phonon-scattering effect which becomes increasingly
important for T > 5–10 K, depending on the carrier density.
In Fig. 1 we show the schematic resistivity behavior of
the p-GaAs in the presence of both charged impurity and
phonon scatterings. At low temperatures (T < T1 ∼ TF), the
scattering arising from charged impurities dominates and
the resistivity increases as temperature increases due to the
screening effects. For T > T2 ∼ 5–10 K the scattering by
acoustic phonons plays a major role and limits the carrier
mobility of p-GaAs systems in this temperature range. Note
that in general T2 � TBG for p-GaAs systems. However,
at intermediate temperatures (T1 < T < T2) the competition
between acoustic-phonon scattering and impurity scattering
gives rise to a nontrivial transport behavior. We carefully
study the nontrivial transport properties of p-GaAs in the
intermediate temperature range (i.e., T1 < T < T2). Interest-
ingly we find that the approximate temperature-dependent
ρ(T ) in an intermediate temperature range can be constant,
which arises from the approximate cancellation between
the quantum-classical crossover and phonon scattering, and
is quite general. When the phonon scattering dominates
impurity scattering for T > T2 the temperature dependence
of hole mobility enables one to extract information on the
electron-phonon scattering from mobility measurements. In
this temperature range the valence-band deformation potential
can be determined by fitting theoretical calculations to the
existing carrier mobility data. In this paper we extract the
value of the deformation potential by fitting the experimental
mobility data, but uncertainty arises from the unknown values
of the depletion charge density and background impurity
charge density.

To investigate the temperature-dependent transport prop-
erties for the p-GaAs 2DHS we use the finite-temperature
Boltzmann transport theory considering scatterings by charged
random impurity centers and by electron-acoustic phonons
with finite temperature and finite wave-vector screening
through random-phase approximation (RPA).10 We also in-
clude the finite-size confinement effects (i.e., we take into
account the extent of the 2D system in the third dimension
and do not assume it to be a zero-width 2D layer). The
effect we neglect in our theory is the inelastic optical-phonon
scattering. Polar carrier scattering by LO phonons is important
in GaAs only at relatively high temperatures (T � 100 K),
becoming dominant at room temperatures. Due to the rather
high energy of the GaAs optical phonons (∼36 meV), LO
phonon scattering is completely suppressed in the temperature
regime (T < 100 K) of interest to us in this work. Resistive
scattering by optical phonons in the 2D GaAs system has been
considered in the literature.5 We note that the other scattering
mechanisms (e.g., interface roughness scattering and alloy
disorder scattering in GaxAl1−xAs, etc.) are known to be much
less quantitatively important19 than the mechanisms we are
considering (i.e., impurity scattering and acoustic phonons) in
this work.

The rest of the paper is organized as follows. In Sec. III we
present the general theory of the impurity and phonon scat-
terings, and discuss the power-law behavior of the resistivity
in the low- and high-temperature limit. In Sec. IV we show
our calculated resistivity taking into account hole-phonon
and hole-impurity scatterings, and demonstrate that there
is a temperature-independent region due to the competition
between the two scatterings. Finally we conclude in Sec. V
summarizing our results.

III. THEORY

In this paper we use a single band (heavy-hole band)
effective-mass approximation. In this model the complexities
of all band details (including the spin-orbit interaction) are
hidden in the effective mass. Our simple single-band model
with the experimentally measured20 effective mass (m∗ ∼
0.4m0, which is different from the theoretically proposed
value21) has been widely used to avoid the complicated
valence-band structures. In addition, it explains very well the
transport experiments of 2D quantum well (heterostructure)
systems at low hole densities.9,14,22

To investigate the temperature-dependent resistivity ρ(T )
[or equivalently conductivity σ (T ) ≡ ρ(T )−1] of p-GaAs sys-
tems we start with the Drude-Boltzmann semiclassical formula
for 2D transport. Due to the finite extent in the z direction
of the real 2D semiconductor system we have to include a
form factor depending on the details of the 2D structure. In
GaAs heterostructures, the carriers are spatially confined at
the 2D interface and there is no longer translational invariance
along the direction normal to the interface, designated as the z

direction. We assume that the confinement profile is described
by the variational wave function �(x,y,z) = ξ0(z)ei(kxx+kyy),19

where

ξ0(z) =
√

1
2b3z2 exp

(− 1
2bz

)
, (1)
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and b is a variational parameter. For a triangular well, b is
given by23

b =
(

48πm∗e2

ε0h̄
2

)1/3 (
ndepl + 11

32
n

)1/3

, (2)

where m∗ is an effective mass, ε0 is the dielectric constant,
ndepl is the depletion charge per unit area, and n is the 2D
carrier density.

The density of states of 2DHS with parabolic energy
dispersion ε(k) = h̄2k2

2m∗ is given by

D(ε) =
{
D0 (ε > 0),

0 (ε < 0),
(3)

where D0 = gsm
∗

2πh̄2 and gs = 2 is the spin degeneracy factor. The
carrier density n is given by

n = D0

∫ ∞

0
dεf (ε) = D0kBT ln

[
1 + exp

(
μ(T )

kBT

)]
, (4)

where f (ε) = [eβ(ε−μ) + 1]−1 is the Fermi distribution func-
tion and β = 1/(kBT ). Alternatively, the chemical potential
μ(T ) at a finite temperature T can be expressed as

μ(T ) = kBT ln[exp(EF/kBT ) − 1], (5)

where EF = n/D0. Note that limT →0 μ(T ) = EF. From
Eqs. (4) and (5),

∂n

∂μ
= D0

[
1 − exp

(
− EF

kBT

)]
. (6)

The finite temperature Thomas-Fermi (TF) screening wave
vector qTF(T ) is defined by

qTF(T ) = 2πe2

ε0

∂n

∂μ
= qTF

[
1 − exp

(
− EF

kBT

)]
, (7)

where qTF = 2πe2

ε0
D0 = gse

2m∗

ε0h̄
2 . Note that

qTF(T ) =
{

qTF (T → 0),

qTF
(

EF
kBT

)
(T → ∞).

(8)

A. Electron-phonon interactions

The electron-longitudinal acoustic-phonon interaction
Hamiltonian for a small phonon wave vector Q is

HDP( Q) = D Q · δR, (9)

where D is the acoustic-phonon deformation potential and δR
is the displacement vector. Note that the position operator in a
simple harmonic oscillator with mass m and angular frequency
ω is given by

x =
√

h̄

2mω
(a + a†), (10)

where a and a† are the annihilation and creation operators,
respectively. Similarly, δR for Q can be expressed in terms of
phonon annihilation and creation operators as

δR( Q) =
√

h̄

2ρmωQ
êQ(aQ + a

†
− Q), (11)

where ρm is the mass density, ωQ = vlQ, vl is the longitudinal
sound velocity, and êQ is the phonon polarization unit vector.
Thus the electron-phonon interaction by the deformation
potential coupling can be expressed as

Hep = D
∑

Q

√
h̄

2ρmωQ
Q(aQ + a

†
− Q)ρ( Q), (12)

where ρ( Q) is the electron density operator.
For the piezoelectric scattering in polar semiconductors

(i.e., GaAs) the scattering matrix elements are equivalent to
the substitution of the deformation with the following form:24

D2 → (eh14)2A

Q2
, (13)

where h14 is the basic piezoelectric tensor component and A is
a dimensionless anisotropy factor that depends on the direction
of the phonon wave vector in the crystal lattice. We provide
details of the parameter A in the following subsection.

B. Boltzmann transport theory

We calculate the temperature dependence of the hole
resistivity by considering screened acoustic-phonon scattering.
We include both deformation potential and piezoelectric
coupling of the 2D holes to 3D acoustic phonons of GaAs.
Details of the acoustic-phonon scattering theory are given in
Ref. 5.

The transport relaxation time τ (εk) at an energy εk and a
2D wave vector k is given by

1

τ (εk)
=

∫
d2k′

(2π )2
Wk,k′(1 − cos φkk′)

1 − f (εk′ )

1 − f (εk)
, (14)

where Wk,k′ is the scattering probability between k and k′

states, and φkk′ is the scattering angle between k and k′ vectors.
First, consider impurity scattering. Assume that impurity

charges are distributed randomly in a 2D plane located at
(−dimp) ẑ with a 2D impurity density nimp. Then the effective
impurity potential for a 2D wave vector q is given by

Vimp(q,d) =
∫ ∞

0
dzξ 2

0 (z)

(
2πe2

ε0q
e−q(dimp+z)

)

=
(

2πe2

ε0q
e−qdimp

) (
b

b + q

)3

. (15)

From Fermi’s “golden rule,” Wk,k′ for the impurity scattering
has the following form:

W
imp
k,k′ = 2π

h̄

|Vimp(q,d)|2
ε2(q,T )

nimpδ(εk − ε′
k), (16)

where q = k − k′. The dielectric function ε(q,T ) takes into
account the screening effects of electron gas at a wave vector
q and a temperature T . We will consider screened scattering
within RPA approximation defined by

ε(q,T ) = 1 + qs(q,T )

q
, (17)

where qs(q,T ) is the temperature- and wave-vector-dependent
screening wave vector.25 In the long-wavelength limit (q = 0),
qs(q,T ) is given by Eq. (7).
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For electron-phonon scattering, Wk,k′ for the electron-
longitudinal acoustic-phonon interaction has the following
form:1

W
ph
k,k′ = 2π

h̄

∫
dqz

2π

|C(q,qz)|2
ε2(q,T )

�(εk,ε
′
k)|I (qz)|2, (18)

where Iz(qz) is the wave-function overlap at qz defined by

Iz(qz) =
∫

dzξ 2
0 (z)eiqzz. (19)

Note that from Eq. (1), |Iz(qz)|2 = b6

(b2+q2
z )2 .

The factor C(q,qz) is the matrix element for acoustic-
phonon scattering. From Eq. (11), for the deformation potential
(DP),

|CDP(q,qz)|2 = D2h̄Q

2ρmvl
, (20)

while for the piezoelectric potential (PE),5

|CPE,λ(q,qz)|2 = (eh14)2h̄Aλ(q,qz)

2ρmvλQ
, (21)

where Q = (q,qz), vl (vt) is the longitudinal (transverse) sound
velocity and

Al(q,qz) = 9q2
z q

4

2
(
q2

z + q2
)3 , At(q,qz) = 8q4

z q
2 + q6

4
(
q2

z + q2
)3 . (22)

The factor �(ε,ε′) is given by

�(ε,ε′) = Nqδ(ε − ε′ + h̄ωq) + (Nq + 1)δ(ε − ε′ − h̄ωq),

(23)

where Nq = (eβh̄ωq − 1)−1 is the phonon occupation number.
Note that the first and second terms in Eq. (23) correspond to
absorption and emission of phonons, respectively.

Finally, the total transport relaxation time is given by

1

τtot(ε)
= 1

τimp(ε)
+ 1

τDP(ε)
+ 1

τPE,l(ε)
+ 2

τPE,t(ε)
, (24)

where in the last term the degeneracy of the transverse modes
has been taken into account. Then electrical conductivity in a
2DHS is given by

σ = gse
2
∫

d2k

(2π )2

v2
k

2
τtot(εk)

(
−∂f

∂ε

)
ε=εk

, (25)

where vk is the mean velocity at k. By inverting the conduc-
tivity we have the resistivity, i.e., ρ(T ) = σ−1(T ).

C. Quasielastic limit

For a degenerate system (kBT � EF), all the scattering
events at an energy ε take place in a thin shell around the energy
circle and the scattering can be considered as quasielastic. For
electron-phonon scatterings, the transport relaxation time in
Eq. (14) is given by

1

τ (ε)
= 2π

h̄
D0

∫
dφ

2π

∫
dqz

2π

|C(q)|2
ε2(q)

|I (qz)|2G(q)(1 − cos φ),

(26)

where q = 2kF sin(φ/2) and G(q) is given by

G(q) = β

∫
dεf (ε){[1 − f (ε + h̄ωq)]Nq

+ [1 − f (ε − h̄ωq)](Nq + 1)}
= 2βh̄ωqNq(Nq + 1). (27)

Thus for DP, Eq. (26) becomes5,8

1

τDP(ε)
= 3D2m∗bkBT

16h̄3ρmv2
l

∫ π

0

dφ

π

(1 − cos φ)

ε2(q,T )

× (βh̄wq)2Nq(Nq + 1), (28)

while for PE,

1

τPE,λ(ε)
= cλ(eh14)2m∗kBT

2h̄3ρmv2
λ

∫ π

0

dφ

π

(1 − cos φ)

qε2(q,T )

× (βh̄wq)2Nq(Nq + 1)fλ(q/b), (29)

where cl = 9/32, ct = 13/32 and

fl(w) = 1 + 6w + 13w2 + 2w3

(1 + w)6
,

(30)

ft(w) = 13 + 78w + 72w2 + 82w3 + 36w4 + 6w5

13(1 + w)6
.

For simplicity, consider the fλ(q/b) = 1 case assuming
b � 1 in the extreme 2D limit. Then, in the high-temperature
limit,

1

τDP(T )
≈ 3D2m∗bkBT

16h̄3ρmv2
l

∝ T ,

(31)
1

τPE,λ(T )
≈ cλ(eh14)2m∗

2h̄3ρmv2
λ

4

π

T

TBG
∝ T ,

while in the low-temperature limit,

1

τDP(T )
≈ 3D2m∗bkBT

16h̄3ρmv2
l

4 × 6!ζ (6)

πx2
TF

(
T

TBG

)5

∝ T 6,

(32)
1

τPE,λ(T )
≈ cλ(eh14)2m∗

2h̄3ρmv2
λ

4 × 5!ζ (5)

πx2
TF

(
T

TBG

)5

∝ T 5,

where xTF = qTF/(2kF). Note that the resistivity is proportional
to the inverse relaxation time, thus it follows the same power-
law dependence in the high- or low-temperature limit.

For the charged impurity with temperature-dependent
screening wave vector the asymptotic low- and high-
temperature behaviors of 2D resistivity for a δ-layer system
are given by26

ρimp(T � TF) ∼ ρ0

[
1 + 2xTF

1 + xTF

T

TF
+ C

(
T

TF

)3/2
]

, (33)

ρimp(T � TF) ∼ ρ1
TF

T

[
1 − 3

√
πxTF

4

(
TF

T

)3/2
]

, (34)

where ρ0 = ρ(T = 0), ρ1 = (h/e2)(nimp/nπx2
TF), and C =

2.646[xTF/(1 + xTF)]2. At low temperatures (T < TF) the
resistivity increases linearly due to screening (or electron-
electron interaction) effects on the impurity scattering.10,12

To get the linear temperature-dependent resistivity at low
temperatures it is crucial to include the temperature-dependent
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screening wave vector.10 At high temperatures (T > TF) ρ(T )
decreases inverse linearly due to nondegeneracy effects. Thus
it is expected that the resistivity has a maximum value and
the quantumclassical crossover occurs at the intermediate-
temperature regime around TF. When we consider both
hole-phonon and hole-impurity scatterings the temperature-
dependent resistivity becomes nontrivial due to the competi-
tion between these two independent scattering mechanisms.
Since the resistivity limited by charged impurities decreases
at high temperatures, phonon scattering eventually takes
over and ρ(T ) increases with T again, which gives rise
to nonmonotonicity in ρ(T ). The nonmonotonicity becomes
pronounced in the systems with strong impurity scattering or at
low carrier density. For weaker impurity scattering the phonon
scattering dominates before the quantum-classical crossover
occurs, so the overall resistivity increases with temperature.
At higher carrier densities, TF is pushed up to the phonon-
scattering regime, and the quantum-classical crossover physics
is overshadowed by phonons so that nonmonotonicity effects
are not manifest.

IV. NUMERICAL RESULTS

A. Determination of deformation potential

In this section we provide the numerically calculated
temperature dependence of the hole resistivity by consider-
ing both screened acoustic-phonon scattering and screened
charged impurity scattering. In the calculation of phonon
scattering we use the parameters corresponding to GaAs: m∗ =
0.38 me, vl = 5.14 × 105 cm/s, vt = 3.04 × 105 cm/s, ρm =
5.3 g/cm3, and eh14 = 1.2 × 107 eV/cm. For the deformation
potential, we fitted several available mobility data sets14,27 and
the best fitted value we obtained is D = 12.7 eV for ndepl = 0
(see Fig. 2). In the following calculations we use this value as
a deformation potential of p-GaAs.

To obtain the best-fitted value of the deformation potential,
in Fig. 2, we calculate the total mobility μ = σ/ne with
Eqs. (24) and (25) as a function temperature for different
values of the deformation-potential constant D. Knowing the

FIG. 2. (Color online) Mobility as a function of temperature
for several values of D with n = 2 × 1011 cm−2, nimp = 1.22 ×
1010 cm−2, ndepl = 0 and dimp = 0. Black dots represent the experi-
mental data (Ref. 14).

FIG. 3. Fitted deformation potential D as a function of depletion
density ndepl for a sample with n = 2 × 1011 cm−2 and dimp = 0.

precise value of the deformation-potential coupling constant D
is very critical because μ ∼ D−2, i.e., the calculated mobility
will be uncertain by a factor of 4 with values of D differing
by a factor of 2. In this calculation we consider two different
scattering mechanisms: remote impurity scattering and
acoustic-phonon scattering. We first fit the low-temperature
data (T � 4 K) to find the charged impurity density, nimp,
because the phonon scattering is severely suppressed and the
charged impurity scattering determines the carrier mobility
in this temperature range. We set dimp = 0 for simplicity and
carried the effect of impurity by nimp. For ndepl = 0, we find
that nimp = 1.22 × 1010 cm−2 gives the best fitted mobility
at low temperatures for the data set. With this impurity
density we calculate the mobility data at high temperatures
(20 K < T < 60 K) by changing deformation potential. From
Fig. 2, we get D = 12.7 eV as the most suitable value for the
p-GaAs acoustic-phonon deformation coupling constant.

In Fig. 3 we show the deformation potential coupling
as a function of the depletion density for a hole density
n = 2 × 1011 cm−2. The calculated deformation potential D

strongly depends on the depletion density ndepl for ndepl <

1012 cm−2, but for higher densities (ndepl > 1012 cm−2 it
decreases slowly, as seen in Fig. 3. ndepl is a measure of fixed
charges in the background and typically ndepl is unknown.
Thus the uncertainty in the value of deformation potential
coupling (both for electrons and for holes) could be a result
of our lack of knowledge about ndepl. When ndepl = 0 we
get D = 12.7 eV. We use D = 12.7 eV in the remaining
calculations with ndepl = 0. However, the different values of
D do not change the results qualitatively.

B. Acoustic-phonon-limited transport

Using the theoretical model outlined in Sec. III we study
hole transport limited by acoustic phonons in this subsection.
In Fig. 4 we show the calculated scattering rates τ−1

s and
transport relaxation rates τ−1

t due to acoustic phonons, as a
function of the hole energy. The relevant transport relaxation
rate, τ−1

t , has been obtained in Eq. (26). The two characteristic
times shown in Fig. 4 differ by the important (1 − cos θ )
factor.28 The scattering rate τ−1

s is given by making the
replacement (1 − cos θ ) → 1 in the integrand for the formula
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FIG. 4. (Color online) The relaxation rate (solid line) and scat-
tering rate (dashed line) as a function of hole energy E for (a)
T = 10 K and (b) T = 1 K with n = 1011 cm−2, nimp = 0, ndepl = 0,
and D = 12.7 eV. DP and PE represent the deformation potential and
piezoelectric potential contributions, respectively.

for τ−1
t given in Eq. (26). τt determines the conductivity (or

mobility), σ = neμ = ne2τt/m, where n is the carrier density
and μ is the mobility, whereas τs determines the quantum
level broadening, γ = h̄/2τs, of the momentum eigenstates.
The scattering time τs is related to the imaginary part of the
single-particle self-energy and simply gives the time between
scattering events between a hole and an acoustic phonon. The
difference between τt and τs arises from the subtle effect of
the wave-vector-dependent transition rate.28 The large-angle
scattering events (or large momentum transfer) contribute
significantly to the transport scattering events, but small-
angle scattering events where cos θ ≈ 1 makes a negligible
contribution to τt, while all scattering events contribute equally
to τs. Our result for the individual DP and total PE rates
are given in Fig. 4 for n = 1011 cm−2 at two different
temperatures T = 10 K and T = 1 K. In this calculation
we take D = 12.7 eV which is the best-fitted values of the
experimental data. We find that τt/τs ≈ 1, since the screened
electron-acoustic mode phonon interactions are of relatively
short range. It has been known that the ratio τt/τs from remote
ionized impurities is much bigger due to the long-range nature
of the electron-impurity interaction.29

Figure 5(a) shows acoustic-phonon-limited resistivity of
2DHS in the absence of impurity scattering as a function of

FIG. 5. (Color online) (a) Acoustic-phonon-limited resistivity of
2DHS as a function of temperature for n = 108, 109, 1010, 1011,
1012 cm−2 and (b) the calculated exponent a in ρ(T ) ∝ T a which is
obtained from logarithmic derivatives of (a).

temperature for different hole densities n = 108, 109, 1010,
1011, 1012 cm−2. The calculated resistivities clearly demon-
strate the two different regimes: BG region characterized by
high power-law behavior for T < TBG and equipartition region
with ρ ∼ T behavior for T > TBG. The transition temperature
TBG increases with density since TBG ∝ √

n. As the density
increases the calculated resistivity at a fixed temperature
decreases. In Fig. 5(b) we show the logarithmic derivatives
of the acoustic-phonon-limited resistivity, which give rise to
an approximate temperature exponent of acoustic-phonon-
limited resistivity by writing ρ ∼ T a , i.e., a = d ln ρ/d ln T .
At the low-temperature BG regime T < TBG the numerically
evaluated exponent a varies from 4 to 6 depending on
the carrier density. But at high temperatures the exponent
approaches to 1 as we expected, i.e., ρ(T ) ∝ T .

Figure 6(a) shows acoustic-phonon-limited mobility of
2DHS in the absence of impurity as a function of temperature
for different hole densities n = 108, 109, 1010, 1011, 1012 cm−2.
At high temperatures (T > 10 K) the calculated mobilities
show very weak density dependence for the density range
n = 1010–1012 cm−2 and decrease approximately as μ ∼
T −1. Thus the reciprocal mobility increases linearly with
temperature, i.e., 1/μ = 1/μ0 + αT , where α is the slope in
the relation between μ−1 and T . Figure 6(b) shows density
dependence of the slope α for nimp = 0 and 5 × 109 cm−2 in
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FIG. 6. (Color online) (a) Acoustic-phonon-limited mobility of
2DHS as a function of temperature for n = 108, 109, 1010, 1011,
1012 cm−2. (b) Density dependence of coefficient α for nimp = 0 and
5 × 109 cm−2, where 1/μ = 1/μ0 + αT in 10 K < T < 60 K range.

the temperature range 10 K < T < 60 K. The slope α first
increases with n, reaches its maximum at n ∼ 1011 cm−2, and
decreases very slowly for n � 1011 cm−2. This nonmonotonic
behavior is different from that of the n-type GaAs, in which
the slope α has a minimum value rather than a maximum.5,30

C. Nonmonotonic resistivity in p-GaAs

In this subsection we study the transport in the presence
of both acoustic-phonon and impurity scatterings and the
nonmonotonic behavior in temperature due to the competition
between these two scatterings. In Figs. 7 and 8 we show
our calculated total resistivity ρ(T ) arising from screened
charged impurity scattering ρimp(T ) and phonon scattering
ρph(T ) as a function of temperature. In Fig. 7(a) the total re-
sistivity ρ(T ) is shown for different impurity densities nimp =
0,1,2,3,5,7,10 × 109 cm−2 with a fixed dimp = 0. In Fig. 8(a)
the total resistivity ρ(T ) is shown for different impurity lo-
cation from the interface dimp = 0,5,10,15,20,25,30 nm with
a fixed impurity density nimp = 5 × 109 cm−2. Figures 7(b)
and 8(b) are the same as Figs. 7(a) and 8(a), respectively,
but rescaled by ρ0 = ρ(T = 0.1 K). In a real system the
amount of random disorder depends on the strength and
the spatial distribution of all the random impurity scattering
centers. However, in these calculations we assume that the
charged impurities are randomly distributed in a 2D plane

FIG. 7. (Color online) (a) Resistivity of 2DHS as a function
of temperature for nimp = 0,1,2,3,5,7,10 × 109 cm−2 with n =
1010 cm−2, ndepl = 0, and dimp = 0. Dotted lines indicate the cal-
culated resistivity due to the charged impurity scattering alone.
(b) Same as (a) but rescaled by ρ0 = ρ(T = 0.1 K).

located at dimp from the interface. The calculation is carried
out with the hole density n = 1010 cm−2 which corresponds
to the Fermi temperature TF ≈ 0.7 K. The dotted lines in
Figs. 7 and 8 indicate the calculated resistivity due to the
charged impurity scattering alone, ρimp(T ). To calculate the
total resistivity ρ(T ) we use the total scattering rate of Eq. (24)
because Matthiessen’âs rule, which is implicitly assumed
ρ(T ) = ρimp(T ) + ρph(T ), is known to be not strictly valid
at finite temperatures.

As shown in Fig. 7, when the charged impurity density
nimp increases the impurity scattering effects become stronger,
while the phonon-scattering effects are unaffected. Therefore
at high impurity densities the impurity scatterings are dominant
over phonon scatterings. The calculated ρ(T ) increases at
lower temperatures (T < 1 K) due to screening effects, then
the quantum-classical crossover occurs at the intermediate-
temperature regime around T ∼ 1.5 K where nondegeneracy
effects make resistivity decrease as ρ ∼ T −1. At higher
temperatures (T � 10 K) phonon scattering takes over and
ρ(T ) increases with T . Thus for large impurity densities the
temperature dependence of the calculated resistivity shows a
nontrivial nonmonotonic behavior, arising from a competition
among three mechanisms discussed above, i.e., screening
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FIG. 8. (Color online) (a) Resistivity of 2DHS as a function of
temperature for dimp = 0,5,10,15,20,25,30 nm with n = 1010 cm−2,
nimp = 5 × 109 cm−2, and ndepl = 0. Dotted lines indicate the
calculated resistivity due to the charged impurity scattering alone.
(b) Same as (a) but rescaled by ρ0 = ρ(T = 0.1 K).

which is particularly important for T < 1 K, nondegeneracy
and the associated quantum-classical crossover for T ∼ TF,
and the phonon-scattering effect which becomes increasingly
important for T > 10 K. At lower impurity densities the
quantum-classical crossover effects are not particularly shown
in Fig. 7 because phonon scattering becomes more important
than the classical behavior ρ ∼ T −1, and the system makes a
transition from the quantum regime to the phonon-scattering
dominated regime. The linear rise in ρ(T ) for T > 10 K in
Fig. 7 is the phonon-scattering effect.

The same results shown in Fig. 7 are expected by varying the
impurity location because the scattering limited by the remote
impurity becomes weaker as the distance of the impurity from
the interface increases. In Fig. 8 we show the several different
kinds of nonmonotonic behavior by varying the impurity
location. When the impurities are located very close to the
interface (top lines in Fig. 8) the nonmonotonic behavior
of the resistivity clearly appears in the temperature range
we consider (i.e., T < 100 K) due to competition among
the three mechanisms discussed above. As the separation
increases the nonmonotonicity becomes weaker because of the
reduction of the charged impurity scattering and the associated
weakening of screening effects. In addition, the increase of
the separation gives rise to the shift of the local maximum
peak to the lower temperature. For large separations (bottom

lines in Fig. 8) the local maximum peak does not appear in the
calculated resistivity because it shifts to very low temperatures
(T < 0.1 K).

One interesting finding in our calculation is the tempera-
ture region where the calculated resistivity is approximately
constant, as indicated by the dashed box in Figs. 7 and 8. The
temperature range of the constant resistivity appears when the
increasing resistivity due to phonon scatterings compensates
for the decreasing resistivity due to the nondegeneracy effects.
The flat region depends critically on the impurity density
and the location of the impurities, and can be observed in
experiments by varying the doping density and location. In
Fig. 7 a flat region spanning around 2 K < T < 10 K appears
at an impurity density nimp = 3 × 109 cm−2 for dimp = 0.
In Fig. 8 the flat region for 2 K < T < 10 K appears at
dimp = 5 nm with an impurity density nimp = 5 × 109 cm−2.
It is therefore possible in some situations for a complete
accidental cancellation between the increasing temperature de-
pendence of the phonon-induced resistivity and the decreasing
temperature dependence of the quantum classical crossover
effect from impurity scattering in a narrow intermediate
temperature regime. We believe that this has recently been
observed experimentally,6 but a detailed comparison with
experiment is not possible due to the complications of the
parallel magnetic field used in the experimental measurement
to induce magneto-orbital coupling.

V. CONCLUSION

To conclude, we have calculated the temperature-dependent
transport properties of p-type GaAs-based 2DHSs for tem-
peratures T � 100 K by taking into account both hole-
phonon and hole-impurity scatterings. Our theory includes
temperature-dependent screening of both charged impurity
scattering and phonon scattering. We extract the deformation
potential D of the hole-phonon coupling constant by fitting
the experimentally available mobility data. We find that the
deformation potential coupling varies (i.e., D = 7.6–12.7 eV)
depending on the value of the depletion density ndepl, which is
not known. When we assume ndepl = 0 we obtain D = 12.7 eV
for the p-GaAs acoustic-phonon deformation potential, which
is larger than the generally accepted value in bulk GaAs
(D = 7 eV),15 but comparable to the value of the n-GaAs
(12–14 eV),8,16,17 in 2D electron systems.

We also investigate the nonmonotonicity of ρ(T ) arising
from the competition among three mechanisms: screening,
nondegeneracy, and phonon scattering. Both screening and
phonon-scattering mechanisms give rise to monotonically
increasing ρ(T ) with T (at low temperature for screening,
and at high temperatures for phonons), but nondegeneracy
effects produce a ρ(T ) decreasing with increasing T for
T > TF. Since phonon scattering is the dominant temperature-
dependent scattering mechanism in GaAs holes for T �
5–10 K, depending on the density, the stronger nonmono-
tonicity appears when the impurity scattering is dominant over
phonon scattering below T ∼ 5–10 K. We carefully study the
nontrivial transport properties of p-GaAs at the intermediate
temperature range (i.e., 2 K < T < 10 K). Interestingly we
find that the approximate temperature independence may
appear in which ρ(T ) saturates in an intermediate-temperature
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range, arising from the approximate cancellation between the
quantum-classical crossover and phonon scattering. Since this
flat region of the temperature-dependent resistivity depends
critically on the impurity density and the location of the
impurities, it can be observed in experiments by varying
the doping density and location. We believe that a recent
measurement6 has observed this saturation effect. We note that
the approximate effective model we use is the proper model
in the low-density hole systems, and more importantly our

qualitative finding of the appearance of the plateau structure is
completely independent of the model because it arises from the
competition between between the quantum-classical crossover
and phonon scattering.
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