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Spin decoherence in graphene quantum dots due to hyperfine interaction
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Carbon-based systems are prominent candidates for a solid-state spin qubit due to weak spin-orbit and hyperfine
interactions in combination with a low natural abundance of spin-carrying isotopes. We consider the effect of the
hyperfine interaction on the coherence of an electron spin localized in a graphene quantum dot. It is known that
the hyperfine interaction in these systems is anisotropic promising interesting physics. We calculate the dynamics
of an electron spin surrounded by a bath of nuclear spins in a non-Markovian approach using a generalized
master equation. Considering a general form of the hyperfine interaction, we are able to extend the range of
validity of our results to other systems beyond graphene. For large external magnetic fields, we find within Born
approximation that the electron spin state is conserved up to small corrections, which oscillate with a frequency
determined by the hyperfine interaction. The amplitude of these oscillations decays with a power law, where
its initial value depends on the specific form of the anisotropy. Analyzing this in more detail, we identify two
distinct classes of anisotropy, which can be both found in graphene depending on the orientation of the external

magnetic field with respect to the carbon layer.
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I. INTRODUCTION

Quantum dots (QDs) in solid state nanostructures have
attracted a lot of interest in recent years, particularly since
localized spins are promising candidates'? for qubits in
spin-based quantum computers. Most of these devices are
realized in semiconducting compounds of III-V materials
implying an environment of many nuclear spins. In these
structures, the hyperfine interaction (HI) between the nuclear
spins and a central spin, for instance, an electron or a hole
spin, is a major source of both relaxation and decoherence of
the central spin.> The dynamics of these kind of spin sys-
tems has been extensively investigated both theoretically®2>
and experimentally’? covering the control of the nuclear
environment’*>? as well as the manipulation of the central
spin.**** Since these investigations exhibit a decisive role
of the HI, the use of materials with a low abundance of
spin-carrying isotopes could offer a way to improve the
properties of the qubits.

Natural candidates for this are carbon- and silicon-based
nanostructures, because the natural abundance of spin-carrying
13C and #Si is only about 1% and 5%, respectively. The experi-
mental realization of carbon-based QDs was achieved in recent
years in graphene**! as well as in carbon nanotubes.”>~> In
silicon, the qubits can be fabricated®®’ either using donor
impurities or by confining a single electron via electrostatical
gates. However, a controlled localization of the donor impu-
rities is still a challenging task, and electrostatically confined
Si QDs often involve nanostructures with other materials like
Ge, which potentially introduce additional nuclear spins; see,
for instance, Ref. 57 and references therein.

Comparing the typical energy scale of the HI in different
realizations of qubits reveals another advantage of carbon-
based systems. The hyperfine coupling constant’®>%¢! A is
significantly smaller than in GaAs, by about two orders of
magnitude. Moreover, it is even less than the corresponding
constant in Si-based systems, both donor impurities®? and con-
fined QDs,® by approximately one order of magnitude. The
same is true for GaAs QDs using the spin of a heavy hole.!>%*
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In this article we will investigate the properties of an elec-
tron localized in a QD fabricated from a graphene sheet, where
the HI is anisotropic due to the p-type nature of the electrons
in the conduction band. This type of interaction has not been
studied extensively so far, because the electronic properties of
most qubits using the electron spin are primarily of the s-type,
and, hence, these systems are governed by an isotropic HI.
Moreover, the few theoretical studies investigating anisotropic
HI"*8 so far consider only a special case, where the longitudinal
HI in the z direction deviates from the transverse interaction.
Investigations of GaAs QDs qubits using the spin of a heavy
hole analyzed a totally anisotropic HI'® or a HI, which is very
weak in the transverse direction.?’ Finally, while most of the
literature considers an isotropic HI in Si systems, there are also
studies®>% taking the anisotropic HI into account. In contrast
to these examples, we will analyze a system with a HI, which
is in all spatial directions on the same order of magnitude.
Experimentally, this physics is realized in a graphene QD,
where the anisotropy can be varied by means of an external
magnetic field.

This article is organized as follows: In Sec. II the most
important results are summarized. In Sec. III we investigate
the physical properties of our system and its Hamiltonian in
detail. This part is followed by a brief recapitulation of the
Nakajima-Zwanzig master equation in Sec. IV, which is used
to investigate the dynamics of the electron spin in Sec. V.
Finally, we conclude in Sec. VL.

II. KEY RESULTS

We study the dynamics of an electron spin S in a graphene
QD, where it is in contact with a bath of many nuclear spins
I; located at sites ry via the HI as illustrated in Fig. 1. Since
there is no gap in the energy spectrum of graphene, the
confinement of an electron is more challenging in contrast
to electrostatically defined QDs in semiconducting materials.
One possibility to construct graphene nanostructures involves
a chemical or mechanical treatment of graphene flakes, which
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FIG. 1. (Color online) Schematic illustration of a two-
dimensional quantum dot. An electron spin S is localized in a
rotational symmetric QD, where it is in contact with bath of nuclear
spins I;. Due to the confinement, the spatial distribution of the electron
in the ground state of the QD may be described by a Gaussian envelope
function ¢(r) given in Eq. (13), which in turn leads to a nonuniform HI
between the electron spin and the nuclear spins. Finally, an external
magnetic field is applied either perpendicular (B, ) or parallel (B;)
with respect to the plane of the dot.

has already been realized experimentally.**" Furthermore,
QDs can also be built by means of electrostatic potentials in
presence of a finite energy gap, which can, for instance, be
induced in single-layer graphene by the substrate or in bilayer
graphene by applying different potentials to the layers.®”"!

We assume that the graphene flake is flat throughout the
spatial extent of the QD, justifying our neglect of the influence
of spin-orbit interaction on our problem. For simplicity, we
consider further a rotational symmetric QD with the electron
sitting in its ground state. Due to the confinement, the spatial
probability distribution |¢(r)|? of the electron is nonuniform,
and, thus, the HI becomes effectively site dependent, since
the major contribution to the coupling constant A arises from
on-site terms Ay o A - |¢(ri)|*. For clarity, we omit constant
factors and refer to Eq. (15) for an exact definition of these
couplings.

The total action of the nuclear spins can be interpreted as a
nuclear magnetic field

h= ZAka, 1)
k

whose energy scale depends on the nuclear polarization p and
the hyperfine coupling constant: () o p - A. Additionally we
allow for an external magnetic field B = (0,0, B;) giving rise to
aZeeman splitting by = hys B, of the electronic energy levels,
where ys & 1.76 x 10" T~! 57! is the electron gyromagnetic
ratio. This splitting is assumed to be much larger than the
hyperfine energy: bs > A. In principle the magnetic field can
be arbitrary oriented with respect to the quantum dot plane.
In this article, however, we restrict the orientation to be either
perpendicular or parallel to this plane. Finally, we consider the
system to be at zero temperature, which in particular implies
that the thermal energy is much smaller than the spacing AE
of the QD energy levels and the electron Zeeman energy:
kg T < bs, AE.

This model is similar to previous studies of an electron
spin confined to a GaAs-QD,° but there are, however,
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TABLE I. Comparison of the most important parameters of GaAs
and graphene. The total number of nuclei N,y is estimated for a QD
of typical size R = 50 nm. While all nuclei in GaAs carry spin,
the abundance n; of '*C can in principle be modified, where the
natural abundance is only n; = 0.01. The HI constant A in GaAs is
about two orders of magnitude higher than in graphene (with n; =
1) demanding lower external magnetic fields B, and leading to a
prolonged typical hyperfine time scale ty;. The specific values of
the anisotropy constants A; in graphene depends on the orientation
of the external magnetic field, while in GaAs the HI is isotropic for
electrons.

Units GaAs BcC
Niot [1] 109 10°
nj [1] 1 0~0.01 ~ 1
N =n; - N [1] 100 103
A [ueV] 90 0.6
B, > Ay Afhys] [T] >3.5 >n;-2.6 x 1073
T X i/ A [1es] 1 100
Type of HI (LLD) L (=1/2,—1/2,1)
(AxsAy,2z) I: (1,—1/2,—1/2)

graphene-specific characteristics, which lead to new physics.
Since the natural abundance n; of spin-carrying isotopes is
small for carbon, only N = n; - Ny of all atoms Ny, within
the graphene dot carry spin, whereas all isotopes possess a spin
in many semiconducting materials like GaAs, which is the
most common material for building spin qubits. A comparison
of the most important properties of graphene and GaAs is
given in Table I. The HI coupling constant A¢ estimated®®>
for n; = 1 is about two orders of magnitude smaller than the
constant Agyas in GaAs lowering the nuclear magnetic field
by the same amount. For lower abundances the energy scale
of this so-called Overhauser field is even further reduced by
(fzz) & Agaas —> 1y - Aic. In the following, we will explicitly
distinguish between these two constants only if it is necessary
to avoid confusion, while we use the general constant A apart
from that. The comparably small hyperfine energy in graphene
extends the typical time scale ty; o< 7i/A of this interaction
significantly as compared to GaAs. Moreover, the use of
much weaker external magnetic fields B becomes possible in
a graphene QD, which can be quantified analyzing the ratio
of the HI coupling constant and the electron Zeeman energy:

A NI’Z[A/bs, (2)

where we omitted factors of order O(1) for brevity and clarity.
The exact definition is postponed to Eq. (32) in Sec. IV, where
this ratio will serve as a small parameter justifying our pertur-
bative treatment of the HI. For a natural '*C concentration of
n; = 0.01, the Zeeman energy due to a comparably weak ex-
ternal magnetic field [B| = 2.6 mT still exceeds the hyperfine
energy by more than two orders of magnitude: A ~ 1072,

Besides this experimentally motivated advantage, the study
of a graphene QD is of general interest, since it demands the
investigation of an anisotropic HI, which arises from the p-type
nature of the electrons:

Hyr = Ah S, 4 hhoSe 4 Ayhy S, 3)
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This anisotropy is expressed in terms of three coupling
constants A, Ay, and A,, where the isotropic limit is given
by A, = A, = A; as itis, for instance, found for an electron in
GaAs. In graphene this anisotropy is related to the geometry of
the carbon plane and, hence, arises between the in-plane (X, V)
and out-of-plane (Z) components.’® Defining the quantization
axis z by the external magnetic field B, the specific form
of the anisotropy in graphene for different orientations is
obtained by a geometric projection: {¥,y,z} — {x,y,z}. This
generally allows for a wide range of possible anisotropies. In
this article we focus on two special cases, where a magnetic
field perpendicular to the graphene plane gives rise to —2A, =
—2\, = A, =1, while an in-plane magnetic field generates
another form of anisotropy: A, = —2A, = =2, = L.

Due to the large Zeeman splitting, real spin flips between
the electron and an arbitrary nucleus are forbidden by energy
conservation, since the resulting energy difference cannot be
compensated by the hyperfine energy. Thus, only virtual spin
flip-flops, where the electron spin is flipped back and forth,
are allowed. If the characteristic time scale 7,4, for dipolar spin
interactions within the nuclear bath is much longer than the
typical time scale Ty of the HI, these virtual processes are
the only source of change in the configuration of the nuclear
spins. As a consequence of this, there is no randomizing
effect within the nuclear bath itself, and, hence, the system
is in a non-Markovian regime rather than in a Markovian
regime, where a stochastic nuclear magnetic field h would
lead to a fast decay of the electron spin. However, even in
a non-Markovian regime arbitrary states of the nuclear spin
bath will in general lead to a fast decrease of the electron
spin amplitude.®® Thus, the nuclear spins have to be prepared
in a so-called narrowed state, which is an eigenstate of the
nuclear magnetic field: fzzln) = (ﬁz)nln). Such a narrowing
can in principle be obtained by a measurement of the nuclear
magnetic field'*"'%!* or by polarizing the bath to a high degree
p ~ 1, which is, however, hardly feasible in experiments.
Hence, the experimentally most promising approaches are
realized by pumping schemes,*3* where the HI itself is
employed to achieve such a state narrowing.

Assuming a narrowed nuclear spin state, the non-
Markovian dynamics of the electron spin can be analyzed
for arbitrary anisotropy as defined in Eq. (3). The calculations
are carried out by the use of the so-called Nakajima-Zwanzig
equation,”?%>7>73 which provides an integro-differential equa-
tion for the electron subsystem only. This equation, however,
cannot be solved exactly but demands further simplifications,
which are obtained by a second order expansion in the HI. This
truncation of higher order terms, however, sets an upper bound
to the time regime ¢ < A~ !ry;, in which our predictions are
valid. For a detailed description of this expansion, we refer to
Sec. IV and turn to the results of these calculations.

The spin dynamics will be described by expectation values
of the transverse and longitudinal components, (S.)(¢) and
(S;)(¢), respectively, which allow the interpretation of our
results in terms of Bloch-like equations of motion.

The expectation value of the transverse electron spin
component exhibits two oscillating contributions, which differ
in both their amplitudes and frequencies:

(S1)(#) = 00sc(t) + O'(f;:w(l‘). 4
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The first term is given by

_ {S+)o e
Oosc(t) = 1+(A§+)\§)/4.86Xp |:1h l‘i|, (5)

which describes a simple precession with a frequency deter-
mined by the Zeeman energy w, of the effective magnetic field.
This field consists of the external magnetic field B, and the
nuclear magnetic field h. pointing in the same direction. The
second contribution oscillates with a much smaller frequency
rl_fll , where the HI time scale ty; = 2NA/|A;|n; A is depending
on both the HI energy scale A and the absolute value of
the longitudinal coupling constant |A,|. Moreover, this second
term is much smaller of order § = A?/N <« A and exhibits
a power-law decay of its amplitude. The reason for the
smallness of this contribution is the large Zeeman splitting,
which makes the virtual flip-flop processes very unlikely due
to the enormous energy cost of the electron spin flipping. For
times ¢ < yy only a numerical solution for o, (t) was within
reach, whereas for times 1y <1 K A~ gy this function is
asymptotically described by

t
oP (1) = s 1 [U sin <L> — iV cos (-)} )
t THI THI

The constants U and V' are determined by the initial value
(S+)o = (Sx)o +1(S,)o, the polarization p of the nuclear
bath and the couplings in the transverse plane, A, and A,,
respectively:

U = 23(Se)o +ir2(Sy)o 7
and
V = p- (A3(Sx)o +ir3(Sy)o). ®)

These results are true for A, > 0, from which one obtains the
time evolution of the electron spin for A, < 0 by applying the
following relation: (—|A;|,®) <> (JA;|,—w). Thus a negative
coupling in longitudinal direction can be treated as an inversion
of the effective nuclear magnetic field. From Egs. (7) and (8),
we see that there are two distinct classes of anisotropy, which
differ in the amplitude of the decaying contribution o}, (¢).
For the first class, defined by A, = A,, the constants U and V
are both proportional to the initial value of the transverse spin
(S+)o = (Sx)o + i(Sy)o. The reason for this is the preserved
rotational symmetry in the transverse plane, which is, for
instance, realized in a GaAs QD with A, = A, =X, =1 and
in a graphene QD subjected to a perpendicular magnetic field
with =24, = —2A, = A, = 1. Due to this symmetry, there is
no precisely defined direction within this plane distinguishing
between (S, )o and (Sy)o. As a consequence of this, only their
superposition (Sy)o = (Sy)o +1(S,)o matters for the initial
state preparation.

This is, however, not the case for the second class of
anisotropy defined by A, # A, which is, for example, found
in a graphene QD with in-plane magnetic field, where the
couplings are given by A, = —24, = —2A, = 1. Now, the
constants U and V describe a weighted mixture of (S,)o and
(Sy)0, which is caused by the broken rotational symmetry. This
fact, in turn, allows us to precisely define the x and y direction,
with respect to which the transverse electron spin component
can be prepared. A more detailed discussion of this is given at
the end of Sec. VB.
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In contrast to this, the longitudinal spin component does
not show qualitative differences between the two classes. Its
time evolution consists of two parts:

(S)(1) = (S2) + 0 (1) - exp [—i%t} ©))

This expectation value is dominated by a constant contribution

(S;), which is, up to small correction of order O(§), given by
the initial value (S.) ~ (S.)o. The second term behaves similar
to the decaying part of the transverse spin component o, (¢)
except for an additional overlying oscillation with frequency

w,. More importantly the constants

Axk A+ A3
U=P&m—p y}~ (10)
2R 2
and
Ay | A+
V = p.<SZ>0+)L2+)LZ . 5 (11)
X y

show only a quantitative dependence on the anisotropy, while
they are qualitatively unchanged for arbitrary anisotropy. Thus,
the longitudinal spin component shows the same qualitative
behavior for any reasonable values of A, and A,.

Finally, we focus on the implications of our general results
on the two graphene models, where the external magnetic
field is either perpendicular (L) or parallel (]|) with respect
to the carbon layer. While the former case shows the same
qualitative behavior as an isotropic system, one faces a mixing
of the initial transverse amplitudes due to the broken rotational
symmetry for the later case. Moreover, as we have shown
above, the time regime for which we find only a small
partial decay is determined by the time scale of the HI.
To be more precise, most of the electron spin is preserved
for times t <« A~ !y, Since this time scale depends on the
absolute value of the coupling constant || in the longitudinal
direction, one observes a different behavior for perpendicular
and parallel magnetic field, which is quantitatively described
by the following ratio:

w1

f%z_rzz (12)
T A

Thus, the time regime, on which only a small partial power law
decay of the spin amplitude and, vice versa, a mostly preserved
electron spin is to be expected, is prolonged by a factor of 2 for
a parallel magnetic compared to a perpendicular oriented field.
Therefore, we conclude that a parallel orientation is preferable,
although one has to prepare the transverse electron spin more
carefully at the beginning of an experiment.

III. MODEL AND HAMILTONIAN
A. Physical properties of the model

In this section, we discuss some of the physical properties
of the model introduced at the beginning of Sec. II in more
detail. For brevity and clarity, we measure all spins in units of /1
and adjust the coupling constants to give the right dimensions.

The quantum dot hosting the electron is defined by
electrostatical gates on top of a graphene sheet, where we
assume a rotational symmetric QD for simplicity. Due to the
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confinement, the QD has a discrete spectrum of bound states,
with an energy splitting between different states.”%’+"8 If the
temperature is small compared to the level spacing A E of these
bound state energies, the electron will occupy the ground state,
which we describe by an envelope function of the form

1 1/r\’ 3
¢(r)—ﬁReXP[ 2<R> } (13)
where r = |r| is the absolute value of the electron position.
This wave function is a Gaussian with a Bohr radius R, which
we will regard as the radius of our QD. Note that the envelope
function is not the exact electron wave function but should
give a good approximation to the precise solution. This can be
seen, for instance, in graphene QDs based on semiconducting
armchair nanoribbons.’® The most important aspects, which
are captured by this specific choice, are the absence of nodes
in the ground state, a peak of the wave function in the center,
as well as a strong decay inside the barriers. A QD with radius
R includes
New =7 R*/ Vo (14)

nuclei in total, where Vy = /3 a2 /4 is the (two-dimensional)
unit cell volume containing one nucleus. For a typical graphene
QD of size R = 50 nm and the graphene lattice constant given
by a = 2.46 A, there are Nio, ~ 10° nuclei within the dot.

Naturally only a fraction n; & 0.01 of these nuclei is of
the spin-carrying species '*C, while the remainder consists of
spinless '2C. However, it should in principle be possible to
modify this natural abundance by either isotopic purification
or 3C enrichment, as it was already done for other carbon
systems.>>’*80 This leads to a fraction n; = N /Ny of 3C
atoms carrying spin I = 1/2, where 0 < n; < 1. Especially
the lower bound, where the number of nuclei becomes too
small to treat them as a bath, is an interesting limit, which
is, however, beyond the scope of this article. Besides the
13C spins, we neglect all other possible sources of nuclear
spins stemming from the gate and substrate materials, which
is justified by the strong confinement of the electrons into the
graphene plane. Altogether we consider N = nj Ny, nuclear
spins I = 1/2 within the QD radius R forming a spin bath with
an arbitrary polarization p, where p = 0 for an unpolarized
bath and p = 1 for full polarization.

We first turn to the interaction between a single nuclear spin
Ik = (k. Ik, Ik 2), located at an arbitrary position r; within
the QD, and the electron spin S at position r. In general, the
HI consists of three major contributions:3!#? the Fermi contact
interaction, the anisotropic HI, and the coupling of the electron
orbital angular momentum to the nuclear spins. For a carbon
nanotube one would have to take into account all three terms
due to the curvature dependent mixture of s- and p-type wave
functions, while for a perfectly flat sheet of graphene only
the anisotropic HI is relevant,”® where the anisotropy can be
formulated in terms of coupling constants A; and the strength
of the HI is given by another constant A. This anisotropy arises
from the p-type nature of the electron wave function and is,
thus, related to the geometry of the graphene plane, where
the in-plane and out of plane components deviate. Thus, the
definition of the quantization axis via an external magnetic
field allows us to create different forms of anisotropy as stated
in Sec. II.
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Furthermore, the HI also depends on the position of the
nucleus due to the nonuniform spatial distribution of the
electron within the QD, since the HI is dominated by on-site
contributions, where the electron and the nucleus are located
at the same site. Thus, the interaction Ay at site k is determined
by the hyperfine coupling constant A and the electron envelope
function at ry:

Ay = AVolp(rpl?, (15)

where Vj is the volume of a primitive unit cell. For a fully
13C enriched system n; = 1 the hyperfine constant is’® A =
0.6 neV implying that a single scattering process is on the
order of A/Ny = n; A/N % If we relate the radial position
rr < R of an arbitrary nuclear spin to the number of nuclear
spins k within this radius r; by

2
1473 k
— | == 16
(%) =+ (16)
and use Eq. (13), we can rewrite the expression of the HI
nrA k
Ay = IT exp [_N:| 17

for a system of N = n; Ny, nuclear spins.

One important degree of freedom of an electron in graphene
has so far not been taken into account. The model used here
does not include the valley degree of freedom. The valleys cor-
respond to the two inequivalent Dirac cones of the hexagonal
Brillouin zone and must be considered in scattering processes
involving a short-range potential. As a consequence of this,
one has to check if the r—> dependency of the anisotropic
HI is sufficient to generate valley scattering. Therefore, we
additionally investigate the momentum dependence of the
coupling constants A = A(Q), where Q is the difference
between incoming and outgoing momentum. Assuming, that
the most important contributions arise from on-site terms,” we
estimate that the valley mixing Q = AK = K — K’ and valley
conserving Q = 0 processes are of comparable strength.

This result reflects the short-range nature of the anisotropic
HI leading to a broad distribution in momentum space. Hence,
the valley scattering is relevant, unless it is forbidden due to
energy conservation, which demands that the HI compensates
the energy splitting of the two valleys.®* From Eq. (17) we
know that the energy scale of scattering processes between the
electron and a single nuclear spin is on average of order ey
n;A/N ~ 107'2 eV. In typical graphene QDs, we expect a
nonzero valley splitting Ak k' because of several mechanisms.
First, every experimental setup will have deviations from an
“ideal” setup, e.g., roughness of the boundaries or adatoms,
which couple the valleys. But even in an ideal experiment, one
can expect a valley splitting due to the presence of an external
magnetic field in combination with a finite mass term induced
by the substrate.”’ Furthermore, if we assume a QD made of
a semiconducting graphene ribbon with armchair boundaries,
the valley degeneracy is also lifted by ’% ~ 10 meV, where
w = 50 nm is a typical width of a ribbon and vy = 10% m/s
is the Fermi velocity in graphene.

Finally, let us briefly comment on the dynamics within the
nuclear spin bath. This internal dynamics would be induced by
nuclear dipolar interaction, which is, however, suppressed in
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QDs due to the “frozen core” effect’’:®> and, hence, negligible.
As a consequence of this, we assume that the dynamics of the
bath can be neglected on time scales t ~ ty; relevant for the
electron spin evolution.

B. Hamiltonian

We start this paragraph by formalizing the most important
facts of the two previous sections, where we have discussed
the physical properties of our model in detail. Note that we
replace classical variables S, I, h by the respective operators
S, i, h henceforth. In the following section, we will consider
an arbitrary anisotropy, which allows us to draw conclusions
for a graphene QD subjected to either a perpendicular (L) or
a parallel (]|) oriented external magnetic field.

In any case, the respective field gives rise to a large Zeeman
splitting bg = hysB, of the electron states, which in turn
forbids real spin flip processes due to energy conservation.
As a consequence of this, the Hamiltonian can be split in an
unperturbed part Hy consisting of all Zeeman terms and a
perturbative part Hy containing the virtual flip-flop processes
of the HI.

If we choose the quantization axis along the magnetic field,
the unperturbed Hamiltonian reads

Hy = by I, + bsS, + 1.h.8., (18)

where the total z component of the nuclear spins is given by
L= " Ix... Transforming to a rotating reference frame,” one
can eliminate the nuclear Zeeman term b; fz in Eq. (18), which
allows us to write the unperturbed Hamiltonian H in compact

form:
Hy = &8, (19)
where the Zeeman energy operator is given by
& = bg — by + Ah.. (20)

The perturbative part Hy of the Hamiltonian can be written
as

Hy = )‘-xﬁx'gx + A-)fﬁyg)f = %(§+§_ + §—§+)’ 2D

where we introduced raising and lowering operators Sy =
Sy £ 1S, and generalized nuclear operators g, which are given
by

8x = MO £ A)Dh + (i FAA]
= 1Ashy + 201 (22)

Note that the bare nuclear magnetic field operators hy =
h, +ih, can also be considered in terms of single nuclear
spin raising and lowering operators located at sites k: hy =
Z k Ak 1, k,£-

From Eq. (22), it becomes obvious that there are two
classes of anisotropy with A, = A, and A, # A,, respectively.
In the former case, the generalized operators g+ ﬁi are just
multiples of the bare nuclear magnetic field operators, whereas
in the later case these operators become linear combinations
of both raising and lowering operators A, giving rise to more
flip-flop processes.
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C. Initial condition

The time evolution of the combined system, consisting of
the electron spin and N nuclear spins, is given by the action of
the total Hamiltonian H = Hy + Hy on the initial state of the
system at time t = 0, which is assumed to be a product state
of the form

[ (0)) = |n) @ [x). (23)

The z projection of the electron spin is either parallel (x = 1)
or antiparallel (| ) to the magnetic field, while the nuclear spin
bath is prepared in a so-called narrowed state at the beginning
of an experiment in order to prevent a fast decay of the electron
spin.3’(’ As discussed in detail in Sec. II, this narrowing can be
created by measuring the nuclear spin system into an eigenstate
of the z component of the nuclear magnetic field %,:

heln) = (h)aln). (24)

In general, this narrowed state is a superposition of many
degenerate eigenstates |n;) having all the same polarization

p:

&n
ny =Y ajlng). hiln;) = (ho)aln;). (25)
j=1

The corresponding eigenvalue of the nuclear field operator /.
is given by’

(he)n = pIng A. (26)
This result is obtained by converting sums into integrals using
a continuum limit, which is valid for times t < /N /2 ty,
where the corrections to the integrals are still small.

In the following, we introduce dimensionless quantities by
measuring energies in units of egy = |1 |n;A/2N, where N =
ny Nyt is the actual number of nuclear spins within the dot. This
typical energy scale for a single HI process also defines the
corresponding time scale ty; = eyy/h = 2Nh/|A;|n; A, which
serves as a measure for times henceforth. For clarity, we give
a summarizing list of the most important symbols in Table II.

TABLE II. Important symbols used in the text. In the main
part of this article, all energies (times) are measured in units of
€mr (tur), which is the typical energy (time) scale of a single HI
process. The parameters ¢y arise from expectation values of the
nuclear bath operators h - for spin 1/2 nuclei, which are characterized
by their polarization p. The effective number N is introduced to
rewrite the denominator given in Eq. (61) in a generalized form for
arbitrary anisotropy (A,,A,,A;). The total Zeeman energy is given
by w, = bs —b; + A, (ﬁz)n, where bg (by) is the electron (nuclear)
Zeeman energy and (h.), = p I n; A. For large external magnetic
fields, the small parameter A < 1 determines the perturbative regime,
while the second small parameter § quantifies the non-Markovian
corrections. The shorthands A and § allow a compact notation of our
results.

Symbol Definition Symbol Definition

€nr [A;|n;A /2N A niA /2w,

T 2NR [ |helns A A AT+ /20
Cx [1¥pl/2 8 A*/N

N NG +23) /232 5 §-(+2/2
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IV. METHOD

A. Nakajima-Zwanzig equation

A common tool to investigate systems like the one
considered in this article is the density matrix formalism.
The time evolution of the total system is described by the
von Neumann equation p(t) = —i[H,p(t)] = —iLH(r), where
the Liouville (super-)operator £ = Ly + Ly also splits in a
perturbed and an unperturbed part. The initial density matrix
is determined by the initial state of our system given in
Eq. (23): p(0) = [¥(0)) (¥ (0)] = p; ® ps(0). In order to find
the dynamics of the electron subsystem only, one can rewrite
this differential equation in terms of the Nakajima-Zwanzig
master equation,’>’> where a projection super-operator PO =
pr - Tr; O is used to perform a partial trace over the nuclear
subsystem. This choice of the projector preserves both the ini-
tial condition Pp(0) = p(0) and the electron spin expectation
values®”? (Sp) () = Tr[SgPo()] = Tr[Sgp(t)], B = z,+£. For
later convenience, we also define the complement projector Q
by P + Q = 1. Finally, the equation of motion can be written
as

hs(t) = —iLhps(r) — i f di' S5t — ps). @7)
0

where the new Liouville operator L 05 =lw, - S'Z,OAS],
originates from the action of the Zeeman energy operator
@ on the initial nuclear state p;: w, = Tr;(® - p;). While
this first part describes the precession of the electron spin
in the effective magnetic field, the second term describes the
flip-flop processes arising from the HI. In order to dissolve
the convolution between the self-energy Xs(¢) and the spin
density matrix, we perform a Laplace transformation to obtain
a much simpler algebraic form:

sps(s) — Ps(0) = =1 Lips(s) — i Xs(s)Ps(s),  (28)

1
Es(s) = —iTI'[ |:£V {Z m

=0
. 1 0. .
X (—IQCV—S+iQ£0> ]£VP1:|
=> 2. (29)
j=2

The series for the self-energy X (s) in powers of the inter-
action Liouvillian Ly is obtained by inserting the Laplace-
transformed Schwinger-Dyson identity. For the explicit calcu-
lation of these self-energy terms, it is convenient to choose a
set of four basis vectors given by i} | = %(60 +6,)and iy =
1(6¢ £ 6,), where {6;}i—, ... are the 2 x 2-Pauli matrices and
op = 1 is the identity matrix. In this basis, the electron spin
density matrix forms a four-component vector

Ps = prity + pyity + (Syi— + (S-_)iy
= (pT’p¢v<S+>ﬂ<S—>)T (30)

The unperturbed Liouvillian is given by a diagonal matrix
Lo = % ~diag(L_,—L_,—L4,L,), where the new operators

L:0; =[d,0/]+ (31)
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are defined by their action on an arbitrary nuclear spin
operator O;. The perturbative Liouvillian £y has a 4 x 4
off-diagonal form containing the generalized nuclear magnetic
field operators g.. For further details of this calculation, we
refer to Appendix A of Ref. 9 and note that the bare nuclear
magnetic field operators /1. there correspond to the generalized
operators g1 of our model. In general, all contributions
22i+D(s) to the self-energy containing odd powers of Ly
vanish, since only virtual flip-flop processes are allowed
by energy conservation. Each even summand X®/*2(s) is
associated with a small parameter’ A/, where A is given by

A =n;A/2w,. (32)

Note that one finds A o N/w,, if one measures the Zeeman
energy of the effective field in units of ey;. Experimentally, this
parameter is related to the ratio of the nuclear and the external
magnetic fields A and by, respectively, giving rise to a small
A < 1 for large external fields.

In this parameter regime, all orders higher than second
order are strongly suppressed and, thus, can be neglected. As
we show below, neglecting terms of order O(A) limits the
range of validity of our analysis to times of order ¢ < A~ ty.
In order to extent to longer times, it would be necessary to
include?! higher orders of the self-energy, which is, however,
beyond the scope of this article.

The self-energy exhibits to all orders Ly a 4 x 4 structure

E¢¢(S) EN(S) 0 0
E(s) _ E¢¢(S) Eu(s) 0 (33)
|l o 0 () T |’

0 0 T_.() Z__(s)

which shows a block-diagonal form indicating, that the
longitudinal and transverse subspaces are decoupled. In second
order, the self-energy takes the specific form

S0 = = Tr@-Frgfr + 88 Fion, (34

S0 = JTr@ g+ 88 Frhn, (39

=P =-30)6), P =-306),  (36)

2P (s) = —1Tr1@:Gr8-p1 +2-8:G100, (D)

2P (s) = JT1@:G184h1 + 8:84GrpD,  (38)

22 (s) = JT1@-Gi2-pr+8-2-G1pn, (39

£0(5) = =7 Tr1(3-G18+P1 +8:8-G1p1). (40)
The super-operators of the electron spin dynamics are given
by
Fra(Ly) = (s =iy QL1 /2)™! (41
and
G (L) = (s +iay, QL /2)7", (42)

where a4 | = %1. Using these equations in combination with
Egs. (22) and (31), we can compute all parts of the self-energy
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for arbitrary anisotropy, which is presented in detail in the
Appendix. The second order self-energy is given by
2

2 (s) = —iN

1 15, (s —iw,) + L, (s + ia),,)]

—_c_[
422

)\2
—iN ﬁﬂ[’% (s —iwn) + 15 (s +iwy)], (43)

2

2(2)(S)—iN)L—_C [1,5. (s —iwn) + 15 (s +iwy)]
1) =MV ER Cr L n) T 13, n

z
2

S . .
+iN —Sc_[15.(s —iw) + 15 (s +iwy)], (44)

412
0 =-2e. TR =-2006), 45
A2 A2
2P(5) = SN [ (0) F el () (46)
2
AR 403
=% (s5) = —1NTZ+[C,1,;Z(s) +eils ()], @D
Z
(2) . )\._)\.+
T =iN—3 [c—1 5.() + e 5.(5)]
=" 5@ (o), 48
A2 +2% -~ (“45)
£@ (o) — iy Ak ) )
S =iN——5 e Ly () + e L, ()]
Z
B _mz++(s)’ “9)

where the coefficients cy arise from the expectation values
of the operators /. with respect to nuclear magnetic field
eigenstates.””> The parameter A, = sign(},) takes into account
the effect of the sign of the longitudinal anisotropy coefficient
.. In the following all calculations are executed using i. = 1,
since the results for . = —1 can be easily derived from these
computations, as we show at the end of the following section.

For a uniformly polarized spin 1/2 system like graphene,
the coefficients ci take the simple form cy = [l F p]/2
depending on the polarization p. Moreover, the computation
of the self-energy parts creates super-operator matrix elements
[G;14n with respect to nuclear eigenstates |g),|n), which in turn
give rise to the functions

L.(s) = s[log(s F i) — log(s)] £ i. (50)

These functions are calculated applying the same continuum
limit used above to obtain Eq. (26).

Analyzing the above Egs. (43)—(49) in more detail, one
finds that all longitudinal self-energy parts have always finite
values, whereas the off-diagonal transverse parts Xi(s)
vanish for A, = A,. In contrast to this, all transverse parts
contribute for A, # A,, where the anisotropy of the HI
does not only change the prefactors, but also gives rise to
additional contributions to the transverse spin component

(S4)(@).

B. Inverse Laplace transform

With the specific form of the self-energy in second order,
we are able to calculate the time evolution of the electron spin
density matrix by solving Eq. (28). The expectation values for
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the transverse and longitudinal spin components in Laplace
space are obtained by

(85)(s) = Trs[Spps ()], (51

where 8 = z,%. The transverse components generally consist
of two parts:

. S iz (5)(S.
(82)(s) = (St)o | 1Xir(s)( ;)o, (52)
Di(s) = D+(s)Dx(s)
where the denominator functions are given by
Do(s) = s Fiw, +iZ2(s). (53)

With the introduction of the effective nuclear number N =
N2 + A%) /2)»?, these functions are formally equal for arbi-
trary anisotropy. Hence, the mathematics are greatly simplified
by the use of these general denominators given in Eq. (61)
below. Using Eqgs. (48) and (49), one can rewrite the transverse

spin component in terms of two generalized functions:

(8)(5) = (S£.1)(8) + (Sx2)(s)
S S (s £iw,
_ i,l)0+< +2)0 - (s 160), (54)
D (s) D+ (s)D+(s)
where the prefactors for different cases are listed in Table II1.
In the same manner, we will reformulate the longitudinal
spin component

& (Sz)o | N:(s)
(S:)(5) = — , (55)
) D.(s)  D:(s)
where the denominator function reads
D.(s) = s +i[Z{)(s) — BT )], (56)
and the numerator of the second part is given by
i
N(s) = =5~ [Z56) + 7)) (57)
Again, we define two more functions
o {Sz1)0 N:(s)
p = (S S, = S:200——.
(82)(s) = (Sz1)(s) + (S:2)(s) D.(s) +( Z’Z)ODZ(S)
(58)

By extending the functional dependencies of all generalized
functions given in Eqgs. (54) and (58) by w, and 1., one can
easily show, that the following relation holds:

(Sp,i) (8,00, =) = (Sp.i)(s,—wn, o), (39)

TABLE III. Prefactors of the different models for graphene in
perpendicular and parallel magnetic field and for a general anisotropy
{A:}. Note that there is no special choice of the initial values (Sg ;)0
of the electron spin.

Symbol 1 I (Axshy,Az)

3 2222
(Seado (Sido (S2o—3Sdo (Sido— A (She
(S, 2)o 0 2S00 e e TEN
(82100 (8:)o (8:30 (8:)o
(8:2)0 1 : o
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where 8 = +,z. As a consequence of this, a negative coupling
A, < Ointhe longitudinal direction can be effectively regarded
as an inversion of the external magnetic field.

Moreover, further simplifications are possible by relating
the longitudinal denominator D, (s) to the denominator D (s)
of the transverse spin parts through a shift of its variable from
stoS =s+iw,:

D.G — iwy) = Dy (5) — 1% +0G).  (60)

§—12w
As we will show below, the relevant part of the complex plane
is given by |[Im(s)| < w,. Thus, the second contribution on
the right-hand side is nearly a constant of order O(A) for all
relevant parts of the complex plane. From Eq. (61) below,
it is clear, that this constant is small only compared to the
denominator Dy (§) for |Im(§)| < w,. Thus, this correction
to D, (5) will lead to only a slight and, hence, irrelevant
shift in the following calculations, which we will neglect for
simplicity. However, reaching § & iw,, this approximation,
becomes worse, and, hence, we will take further efforts to
investigate this regime. In order to be consistent, we have to
shift the numerator N_(s) in the same way as the denominator.
The shifted numerator and the transverse denominator are
explicitly given by

Di(s) = s Fiw, £iN(c_ —cy) + Ns - {cx[In(s — i)

— In(s)] 4+ c+[In(s + 1) — In(s)]}, 61)
. N 1 3 o
N.(§ —iw,) = i [i(c_ + cy) + §{c_[In(F — 1)
— In(3®)] — ¢4 [In(§ + i) — In(3)]}] + O().

(62)

The corrections to N,(§ — iw,) are of order O(8) for |s| <
w, and consequently negligible due to their smallness. In the
vicinity of s ~ iw,, though, we face similar difficulties as for
the denominator demanding a careful treatment.

These peculiarities are especially important for the inverse
Laplace transformation, which is applied to recover the
time dependence of the electron spin. This transformation is
obtained by evaluating integrals of the form

R e~ iRt y-+ioco .
(Spa)(1) = —— / e"(Spa)(s —iQp)ds,  (63)
2w Jyiso

along the Bromwich contour by means of complex analysis,
where the indices are given by 8 = z,4 and A = 1,2. The
frequency shift

0 for B==%

Qp = { (64)

w, for B=z
is relevant only for the z component of the electron spin and
is used to simplify the mathematics as explained above. The
constant ¥ € R is chosen such that all singularities have a
real part smaller than y. These singularities are generated by
the denominators D, (s) each possessing three zeros at s; 1
(j = 1,2,3), which come in complex-conjugated pairs s; ;. =
s;"f. Furthermore, there are three branch cuts from s = 0,+i
to —oo, whose position in the complex plane is illustrated in
Fig. 2.
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FIG. 2. (Color online) Illustration of the contour integral in the
complex plane with the analytic features of the denominator functions
D, (s) and D_(s) consisting of branch cuts (red dashed lines) and
poles (blue and green circles). The integral in Eq. (63) is completed
to a closed contour by an exponentially vanishing integral over the
great circle, integrals along the upper and lower branch cuts, B , (1),
and an integral along the imaginary axis Iz, (¢). Within this closed
contour lie the poles s; 4, j = 1,3, whereas the poles s, . are not
encircled and, thus, do not contribute to the integral. Note that the
poles s; _ are relevant only for the calculation of (S, ;. )(¥).

In order to evaluate the integral in Eq. (63), one can close
the contour as depicted in Fig. 2, where the integral over the
great circle vanishes according to Jordan’s lemma. Note that
the poles with finite real part s, 4+ are outside of this contour
and, hence, do not contribute to the integral. Therefore, the
solution of Eq. (63) generally consists of residues arising from
the remaining poles, s; + and s3 1, the integrals B“ ,(t) along
the upper and lower branch cut as well as an 1ntegral Ig (1)
along the imaginary axis:

(8p.)t)= >  Res[e"

s={s1,4,53+}

1 .
— ﬁe*mﬁt { Xa: Bg,k(t) + I/S,A(f)} . (65)

=Pp;.(1)

(85.)(9)]

where the integrals are explicitly given by
0

B%.(t) = li iot
8. x( ) nli% € /;

dx "' (85,) (x +ie(1 + ) —iQp)

o0

(66)
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with « = £1 and

1
Ig (1) = i/ dy e’ . (S’,g,k)(iy —iQp). 67)
-1

In order to simplify the notation of the results and to make their
interpretation easier, we use the shorthands N, A, A = A -
(A3 +23)/242,8,and § = 8 - (A 4 13) /2 listed in Table II
as well as the relations c_ + ¢, = 1 and c_ — ¢, = p, which
are fulfilled for nuclei with spin / = 1/2 as considered here.

V. RESULTS

A. Inverse Laplace transformation of the first
transverse spin part

We begin the inverse transformation into the time domain
with the first part of the transverse spin component (S 1)(s),
which is exemplary for the calculation of all other expectation
values (Sg ;) (1).

First, we analyze the residues arising from the poles s; 4,
which are summarized in Table IV. The pole s3 . located
on the imaginary axis gives rise to a purely oscillating term,
where the frequency is given by the effective magnetic field
w,. This oscillating part corresponds to a simple precession of
the electron spin around this magnetic field.

The calculation of this residue also nicely illustrates in
which sense the disregard of the fourth order contribution
S ®(s) oc A of the self-energy sets an upper time limit. For
simplicity, we assume that this contribution can be described
by a complex valued constant S®@(s) ~ EA of order O(A),
where we neglect any dependence on s. According to Eq. (53),
this constant shift can be formally treated as a modification
of the effective magnetic field iw, — iw, — §A giving rise
to an additional exponential factor exp(—§ A - t). Hence, our
predictions are valid only for times ¢ < A ™!y, for which this
factor is irrelevant. In order to extend this limit, one would have
to take the fourth order contribution with its full s dependence
into account.

This line of arguing is, however, not directly applicable for
the oscillating portion originating from the pole s; ., since this
pole has a more complicated structure. It is located near the
lower branching point at —i, as is illustrated in Fig. 2.
This residue generates an amplitude which is exponentially
small exp[—(c+A)™'] < 1 in a large magnetic field. As a
consequence of its smallness, we will neglect this contribution
in the following for simplicity. Finally, the pole s,  does not
contribute, because it is outside of the contour.

Since the integral over the great circle vanishes due to
Jordan’s lemma, the only remaining, unknown expressions

TABLE IV. Zeros of the denominator D, (s) and the corresponding residues for the transverse and longitudinal electron spin components
(S4+.1)(t) and (S ,)(t), respectively. The purely imaginary pole s; ;. gives rise to an undamped oscillation around the effective magnetic field

w,. The special case of § = 0, which corresponds to s = 53 4 = iw,, gives rise to a longtime average (S;)

, which we discuss in more detail

in the text.
Dy(s)=0 Res[e™ - (Sy1)(5)],=; Res[e™ - (S.2)(3 — iwn)]s—
o~ __1 ~ o~ 1 (en
St [l 42 e e (S, olNe, 27 [ le 5or " 0§, 25 le B et
83,4 - iw, (S+1)oll + %S]_'eiw"l
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arise from the integrals along the branch cuts and along the
imaginary axis. The calculation of these integrals is, however,
mathematically very challenging due to the fact that three
different scaling behaviors are involved. The inverse Laplace
transformation itself gives rise to an exponential factor exp(st),
while the denominators contain both logarithmic and power
law terms hampering analytical solutions to these integrals.
Nevertheless, analytical considerations give valuable insights
to the structure of the results. First, we checked, that there are
no contributions present in Ppg;(¢) which diverge for longer
times and, thus, would lead to unphysical results. Moreover,
one can testify that the leading order contributions arising
from the branch cut integrals Bi’)‘ (t) and from the imaginary
integrals /g ;(f) cancel each other, leaving terms of order
8§ = A?/N. While it is easy to show that the contributions
of this order stemming from the branch-cut integrals are
oscillating with a frequency rI_YI] determined by the HI, this
is not evident for the imaginary integral. Furthermore, there
is no obvious way to analytically extract more information on
the time dependence of the amplitudes such as the form of a
possible decay. Hence, we use numerical methods to find the
results for all integrals, which are subsequently summed up in
order to give the functions Pg ,(¢) defined in Eq. (65) above.

The function being relevant for (S, ;)(¢) is given by P, (),
whose real and imaginary part is plotted in Figs. 3 and 4,
respectively. For times ¢ = ty;, we find that the sum of the
branch-cut contributions is asymptotically described by an
oscillating term, whose amplitude is decaying with a power
law:

(68)

Py (2) — i} [sin(t) ip
(S1.1)0

The final result for (S, )(¢) is obtained by summing up the
residues and power law contributions according to Eq. (65):

(Se)(®) _ [1 F0212) é}lew
X y 4

cos(t)
t }'

(S+.1)0
22422 [sin(t) . cos(r)
-0 —i . (69
2 [ P } (69)
2
13 _______ izA,t,Ap
/S """ 72.,r.,,4M
o N :
v A
A 4
E - Numerics
Q
o
N 6 8 10

t [Tl

FIG. 3. (Color online) Real part of P, ;(f) (solid, black) as a
function of time obtained by numerical integration. For times ¢ 2 ty,
it is asymptotically described by an oscillating function (dashed,
red), whose amplitude decays with ~¢~! (dotted, blue), where the
amplitude is proportional to the polarization p. The oscillations show
a frequency of f = rﬁll o« |A;|A determined by the HI.
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2
2.7
b T
[T S A S sin@)
o o — :
i 0 AN
7N S a—
= — XxA{ --------------
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+
Q_~ 1 —_— Numerics
E
-2
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t [Tl

FIG. 4. (Color online) Imaginary part of P, (¢) (solid, black)
showing a similar behavior as the real part depicted in Fig. 3. In
contrast to the real part, the amplitude of the imaginary part does not
depend on the polarization.

where we reintroduced the explicit dependence on the
anisotropy of the HI using the relations summarized in Table II.
Note that a negative coupling A, < 0in z direction can be easily
handled using Eq. (59).

For the special case of isotropy within the x-y plane,
Eq. (54) readily gives (S, 2) = 0. Thus, setting A, = A, in the
above equation already allows us to interpret the dynamics
of this type of system, which are physically realized in
GaAs or graphene subjected to a perpendicular magnetic
field. According to Eq. (69) only a small fraction of order
8 = A?/N of the initial transverse spin decays and does so in
a power law, while most of the transverse spin is preserved
and oscillates with a frequency determined by the effective
magnetic field w,. Physically this means that the transverse
spin is only little affected by the virtual spin flip-flops, which
are strongly suppressed because of the enormous energy
difference between the Zeeman splitting and the HI energy.

B. Inverse Laplace transformation of the second
transverse spin part

So far, we have calculated the time dependence of the
first transverse spin part (Si ;)(¢#), which fully describes
the behavior of a system with rotational symmetry in the
transverse x-y plane. For a system having a broken rotational
symmetry with A, # A, one has additionally to calculate the
second transverse spin function (Sy »)(¢), which contains two
denominator functions D, (s) and D_(s) instead of one.

Turning first to the residues, we can take advantage
of the fact, that the zeros of these denominators come in
complex conjugated pairs §; 4 = s;_ because of the relation
D (s) = D_(s*). Therefore, the calculation of the residues
is straightforward, resulting in the contributions listed in
Table V. The poles s; + generate exponentially suppressed
terms, which are equivalent to the s; 4 residue of (5. )().
This means in particular, that these residues are also negligible
for large magnetic fields. In contrast to these paired terms, the
pole s34 creates a purely oscillating component, while the
residue of pole s3 _ vanishes identically.

The calculation of the sum of the branch-cut inte-
grals, P, (), is again obtained by numerical integration
accompanied by analytical considerations. We find that only
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TABLE V. Residues of the second transverse spin part (S, )(¢). The poles s; , are listed in Table IV. Here the s3 4 poles produce inequivalent

residues due to the rewritten form of (S, )(s) in Eq. (54).

Di(s) =0 Res[e* (S4.2)($)]s=s, , Res[e" (S4 2)($)]s=s; =1,

- = ORI - o= R
S1+ (S2,4)0[Ney 2er e e Aer —(S2,4)o[Ncy 25+ J7lel g At
83,4 (Sy2)oll + 38] et 0

the real part of P, »(#) has a relevant contribution of order
O(5), while the imaginary part is much smaller of order
O(8/wy) and, thus, neglected. The time evolution of this real
part is, up to a factor of two, analogous to the real part of
P, (), which can be read off from Fig. 5.

We find, that the branch-cut contribution can be asymptot-
ically described by

Pyt -
Pral) _ —2ni8[—i2p
(S+2)o

for times ¢ 2 ty. In order to obtain the full (S, 2)(¢) term, we
sum up the residues and power law contributions yielding

COj(l‘)] (70)

(S12)(0) s 6}‘ 1
—— =1 A AS)— "
(S+2)0 |: +( 7 y)4 ©
MAA T . cost)
+T’5|:—12p ] (71)

In combination with the result for (S ;)(¢) given in Eq. (69),
we are now able to formulate the time dependence of the trans-
verse electron spin component (S )(¢) for arbitrary anisotropy
and a general initial condition (S+)o = {Sx)o ==1(S))o:

(S1)(@) = (S0 + (S4.2)(1)

4
sin(t)
t
cos(?)

-1
= ((Sx)O + 1<Sy>0)[1 + ()\)26 + Ai)ﬁ:l eia),,t

+ (A2(Sy)o +i22(Sy)o) 8

—i(A2(Sy)o +1A2(Sy)0) 8 p -
2 1
| 4.np
’E l: _______ . t
/C\C:I 1 :: """"" -4- pA%([)
g iV I\~
S \/ ............ N
n_: B - Numerics
[0
o
-2
’ ° N 6 8 10

t [mthl

FIG. 5. (Color online) Real part of P, ,(f) (solid, black) as a
function of time obtained by numerical integration. For times ¢ 2 ty,
it is asymptotically described by an oscillating power law decay
(dashed, red; dotted, blue) ~¢~!, where the amplitude is proportional

to the polarization p and the frequency is given by f = 1:};11.

In the limit A, = A, this result reproduces the previous result
given in Eq. (69). As in the isotropic limit discussed above,
we find that due to the large Zeeman splitting most of the
transverse electron spin is preserved and precesses around
the effective magnetic field w,. The decaying part, however,
differs from the isotropic case and allows us to analyze how
the effect of the HI changes as A, # A,. As expected for
the transverse expectation value (S, )(¢), Eq. (72) is formally
invariant under the exchange x <> y, which allows us to
discuss the result for a specific choice of A, > A, without
loss of generality. Modifying the coupling until A, /A, = 01is
reached, the amplitude of the sinusoidal part is more and more
dominated by the initial electron spin in y direction, while
the amplitude of the cosine term is increasingly governed by
the initial component (S, ). The reason for this is the broken
rotational symmetry in the x-y plane due to the anisotropy of
the HI. This in turn makes the time evolution of the electron
spin dependent on its initial preparation.

Furthermore, the amplitude of the cosine term also depends
on the polarization p of the nuclear bath, which quantifies
the excess of one nuclear spin orientation over the other. For
increasing p one type of the HI-induced scattering processes,
for instance, IL, becomes more likely, while the other one is
suppressed, since its phase space is more and more limited.
Presumably this can explain the polarization dependence of
our result.

However, within the Nakajima-Zwanzig formalism, it is
not possible to single out microscopic processes explaining
the specific form of the dependence on the anisotropy and the
polarization demanding for successive studies using different
techniques.

C. Longitudinal electron spin for arbitrary HI

Next, we turn to the inverse Laplace transformation of
the longitudinal spin components, where we use the shifted
denominator and numerator functions given in Egs. (60) and
(62), respectively, to reexpress Eq. (63) in terms of the new
coordinate §:

—iw,t y+ico
Sem = [ 126 — onds. (73)
Tl Jy—ico
With this reformulation, the integrand (S, ;) (§ — iw,) has the
same analytic structure like (S, ;)(s) for Im(5) < w,, and,
hence, we can take advantage of previous results. Therefore,
the contributions of the poles s; ; as well as the branch-cut
and imaginary integrals are readily obtained by replacing the
prefactor (S1.1)o by (S;.1)o - exp[—iw,?] in Table IV and in
Eq. (68). As we discussed extensively in context with the
derivation of Egs. (60) and (62), the calculation of the residue
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FIG. 6. (Color online) Real part of P,,(#) (solid, black) as a
function of time obtained by numerical integration showing a similar
behavior as Re[ P, ;(f)] depicted in Fig. 3. In contrast to this, however,
its amplitude does not depend on the polarization.

of the pole s3 + = iw, needs a more sophisticated treatment,
which will be done in detail below.

In order to find the full time dependence of the longitu-
dinal spin component, we also need to compute the second
contribution (S; 2)(¢), which follows the same procedure as
(S4.1)(®). This calculation is in principle easy, but lengthy and
is, therefore, not presented in detail. The residue of the pole
s1,+ is listed in Table IV, whereas the outcome of the pole at
53+ = iw, will be also presented in more detail below.

The integrals making up P, »(¢) are again calculated numer-
ically. The time dependence of these integrals is presented in
Figs. 6 and 7, from which their power law decaying behavior

becomes obvious. Asymptotically this can be described by the
following function:

Po) . S[

sin(t)
=2ri—|p
(S:2)0 2
Note that this result is smaller by a factor of two compared to
the outcome of P, ;(¢) given in Eq. (68) and that the real part
depends on the polarization instead of the imaginary part. At
last, we have to evaluate the residues at the pole s3 4 for both

_cos(t):|
—i .

; (74)
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FIG. 7. (Color online) Imaginary part of P, »(¢) (solid, black) as a
function of time obtained by numerical integration showing a similar
behavior as Im[ P, ;(¢)] depicted in Fig. 4. Deviating from this, the
amplitude depends on the polarization of the nuclear bath.
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(S;.1)(#) and (S; 2)(¢). If we shift back to the original coordinate
system § — s = § — iw,, this residue can be rewritten as a

limit for long times according to the properties of the Laplace
transform:

Res;—y,  [eF7 (S, 1 2)( — iwy,)]

= lims (S, 1,2)(s) =

§—>

(S.172)- (75)

This long-time average of the z-spin component (S.) =
(S..1) + (S.2) is actually calculated by performing a series
expansion in (s % iw,)~" of Eq. (58) and subsequently taking
the limit s — 0, which finally leads to

o (Sao+ 2 (S0 + O(L)
(S.) = . —
1+68+ 0(X)
(S.)0 + Aehy

LA (76)
1+ 22 +x‘

With this result, all contributions to the longitudinal electron
spin component are known:

(S)(1) = (S) +8-e7n" . H(Sz,l)o - g(szl)O}

_l’_
{ 5. 0+ } cos(t)]

)\,2+2
Y —iw,
§-eent
el {

sin(z)
t

AxAy
A2+AZ}
Axhy cos(t)

A2 +k§} t

i {p<s>0+ } a7

which consists of a constant contribution (S.) and a small
decaying portion of order O(5).

In contrast to the transverse spin part, the power law
decaying term oscillates with two frequencies w,, determined
by the effective magnetic field, and rﬁll, which is set by the
strength of the HI. The amplitude of this oscillation is decaying
similarly to the corresponding part of (S, )(¢) with a power
law ~t~'. As a consequence of this, the longitudinal spin
component settles to a constant value (S.,) for longer times,
which is up to small corrections of order § given by the initial
value.

Note that all results are valid for arbitrary coupling con-
stants Ay, Ay, and A, which particularly implicates that these
findings are true for a graphene QD with both a perpendicular
and a parallel magnetic field. A possible negative sign of
the longitudinal coupling constant A, < 0, as it is the case
for a parallel field, can be handled by changing the sign of
the magnetic fields, while using |A,|, which is allowed by
symmetries of (S, 1,2)(¢) described in Eq. (59).

D. Discussion of the results

Motivated by the physics of the HI in a graphene QD,
we have analyzed the effect of an anisotropic HI, where we
find two distinct classes, which are characterized by A, = A,
and A, # A,, respectively. Representative for the former is a
graphene QD subjected to a perpendicular oriented magnetic
field, where —2A, = —2A, = A, =1, but also the earlier
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investigated® isotropic model for GaAs is a member of this
class. In contrast to this, a graphene QD with an in-plane
magnetic field is exemplary for the second class of HI, where
Ay =24y =-2), =1

From Egs. (72) and (77), one sees, that the overall dynamics
of the electron spin is the same for both classes of anisotropy.
The transverse components exhibit a dominant oscillating
contribution, which describes a simple precession of the
electron spin around the effective magnetic field consisting
of the external and nuclear fields. Moreover, the transverse
component features another term arising from the HI-induced
flip-flop processes. Due to the large Zeeman splitting of the
electron spin states, these processes are suppressed leading
to a very small absolute value of this contribution compared
to the precession term. Additionally, its amplitude oscillates
with a much smaller frequency set by the HI and decays as
a function of time, which is asymptotically well described
by a power law for times ¢ > 7y, while for even shorter
times only numerical results are within reach. The longitudinal
spin component exhibits a similar power law decay, whose
amplitude is in addition modulated by an oscillation with the
frequency corresponding to the effective magnetic field. The
main part of the longitudinal spin is, however, preserved and is
given up to small corrections by the initial value of the electron
spin.

While these general remarks on the electron spin dynamics
are true for arbitrary anisotropy, there are, however, both
qualitative and quantitative ramifications of different choices
of the couplings A;, which is reflected in the amplitudes of the
decaying contributions. According to Eq. (77) the longitudinal
part shows only a quantitative dependence, whereas the
transverse spin parts are affected quantitatively as well as
qualitatively by different types of anisotropy as can be seen in
Eq. (72). For the first class of anisotropy characterized by 1, =
Ay, we find that all amplitudes are proportional to the initial
value (Si)o = (Sx)o +1(S,)o leading to pure quantitative
distinctions within this class. Since the qualitative concurrence
arises from A, = A, independently of the specific values of the
constants, it seems that rather generally an anisotropy between
the transverse and longitudinal spin subspace does not lead
to different physical behavior. In contrast to this, the second
class with A, # A, exhibits a A, and A, weighted mixing of
the initial values (S, )o and (Sy)¢. This is caused by the broken
rotational symmetry the x-y plane defining a precise reference
frame according to which (Sy)o and (Sy)o can be measured.

Despite this mixing of amplitudes, one can additionally
expect different time scales of the HI as is discussed in Sec. II.
For the parallel and perpendicular case, one finds r}"H /T =2
due to the different coupling A, in the longitudinal direction.
Thus, longer coherence times should be measurable for an
in-plane magnetic field.

VI. CONCLUSION AND OUTLOOK

In this article, we have shown how the analysis of the HI by
means of a generalized master equation can be extended from
the isotropic case’ to a general HI, which can in principle
be completely anisotropic (A, # A, # ;). Investigating a
graphene QD, with an external magnetic field applied either
perpendicular or parallel to the carbon plane, we were able to
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study two specific realizations of an anisotropic HI, which are
representative for two different classes of anisotropy. While
the former system describes a situation, where the anisotropy
exists between the longitudinal and transverse spin subspaces
(Ay = Ay # 1), the latter exhibits the anisotropy within the
transverse subspace (A, # A,), where no other special relation
between A, Ay, and A, is assumed. As we showed above,
the first class of anisotropy gives rise only to quantitative
differences leaving the analytical structure of the electron spin
dynamics unchanged with respect to the isotropic case. In this
model most of the spin amplitude is preserved, while a small
portion decays with a nonexponential behavior. Presumably
the reason for this universality is the fact, that the rotational
symmetry within the transverse subspace is not broken for
Ay = Ay. This symmetry is, however, not preserved for the
second class of anisotropy, in which A, # A,, leading to a
different amplitude of the power law decaying contribution.
While its order of magnitude is unchanged, we find an
anisotropy weighted mixing of the initial amplitude of the
electron spin. As a consequence of this, its preparation with
respect to the precisely defined x and y direction matters in
contrast to a rotational symmetric system.

All these results were obtained for times ¢ < A~ 'ty
which are determined by the ratio of the nuclear and external
magnetic fields, A o« A/hysB,. In this range of time, the
electron nuclear spin system is in a non-Markovian regime.
Considering even longer times # 3> A~ !ry;, which are not
captured by our (second order) treatment, the system can,
however, return to a Markovian regime again, as was found'>?!
for an electron spin in a GaAs QD. Thus, it should be
interesting in the future to study how the time evolution
of a spin system with anisotropic HI behaves for longer
times.

Our findings are qualitatively valid for other systems
fulfilling the requirements of our model, where the most im-
portant demands are a Gaussian-like envelope function, slow
dynamics of the nuclear bath and a sufficiently large Zeeman-
splitting with respect to the HI energy scale. Graphene-specific
quantitative changes of our results arise from the small HI
coupling constant A and the low natural abundance n; ~ 0.01
of 13C leading to a prolonged time scale of the HI and a reduced
nuclear magnetic field, which make the design of qubits less
challenging, since computation cycles can last for longer times
and lower external fields are sufficient. These latter effects
would become even more important in isotopically purified
samples featuring n; < 0.01. However, if one increasingly
reduces the amount of '*C in the graphene QD, one will reach
aregime where it is not appropriate anymore to think of a bath
of nuclear spins. Unfortunately, this regime is not accessible
by our treatment calling for successive studies, which deal
with a finite number of nuclear spins,*® where in particular a
more detailed study of the influence of the initial conditions
should be possible.
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APPENDIX: CALCULATION OF THE SELF-ENERGY
IN SECOND ORDER

In this Appendix we discuss the computation of the self-
energy matrix elements Eff) given in Egs. (34) to (40) in more
detail. We assume that the nuclear magnetic field operators
8+ for a specific form of the anisotropy are already inserted.
Thus, all parts of the self-energy are linear combinations
with A;-dependent prefactors, where the summands contain
one super-operator F; | or Gy |, two bare nuclear magnetic
field operators h, and the nuclear initial state p; = |n)(n|.
Calculating expectation values with respect to the nuclear
state |n), all summands featuring squared operators fzi vanish
identically, which reduces the number of contributions. In the
following, we will present how the remaining expressions can
be evaluated in a general approach. For simplicity, we will
neglect the prefactors in the following presentation.

Due to the linearity and the cyclicity of the trace, all
self-energy parts in second order can be written as a linear
combination of terms of the form

Tr; (- - - pp), (AD)
where the free spots can be filled with one raising operator
h., one lowering operator A_ and one of the four super-
operators F; (£4) and Gy (L£_) given in Egs. (41) and
(42), respectively. Altogether, this leads to 3 x 2 x4 =24
possible combinations. This number can be reduced by using
the relation’? of Liouvillian-like operators:

Tr;(fI£+£]10102) = Tr (O f[£L4]102) (A2)
for arbitrary operators OAlyz and a function f[L£i], which
can be expanded in powers of (anti-)commutators £_ (Ly).
Therefore, the result for F; (L) is independent from the
position, at which these super-operators are placed, while
moving G4 | (£_) to a neighboring position involves a change
of sign of its argument £L_ — —L_. As a consequence of
this, it is sufficient to calculate the following traces
Trl(fMﬁiﬁqE,é,) and Tr,(gT,jzifsz,@I), which give rise to
sums over expectation values with respect to nuclear eigen-
states |g) = @, Im}):

Tr)(Fihehepr) = ) (pIFillg)alhz |r) (rl}hz In) (n|p)

p.q,r

=Yl Fillg) (rIMqlhz |r) hs In)

q.r

=Y [Flerlqlhs Ir) (nlq) (rl hz In)

q.r
= Z[E]nr[ﬁi]nr[ﬁi]rm (A3)

and analogously for the super-operators G;. Using Eqs. (41)
and (42), one can calculate the expectation values of these
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super-operators:

[FT,\L(ﬂ[’-‘r)]nr
—1
Ag b
= {S—iOlT’%B|:bs—b1+52Ak(mz+mk)i|} s
k
(Ad)
—1
)"Z n r
[Gr ((BL)r = {S +ioy | B > ZAk (m} — my) } ,
k
(AS)

where ay | = 1 and 8 = =£1. The factor A; is the anisotropy
coefficient in the z direction. Next, we calculate the magnetic
field expectation values, where we begin with the action of a
local operator I . at an arbitrary site k in order to simplify
later steps:

I @i
1

= I+ 1) = mf (mf £ 1) % 1)
® Q) |mi)
12k

= M) Im 1) ) ).
I#k

(A6)

We introduced the shorthand notation Mi(mZ), which obeys
the relation M. (m] F 1) = Mz(m}). Note that by the action
of I+ only one single local state was changed while all other
local states remain unchanged. Using the above equation, one
can calculate the expectation value of the nuclear magnetic
field operators A with respect to eigenstates | p), |¢) of the /.

component:
(pl Z Al ® |m4)
k p

(plhslq)
= ZAkMi mk) p|{|mk :I:l ®®|mq }

pF#k

=;meﬂ@mﬂh L
° @ )]

Ik

- ZAkMi m{) 8upmist || Smtomt-

1,I'#k

= [ﬁ+]pq =

(A7)

This equation totally sets the relation between the two sets of

product states {ml r/ nN /- Inserting this result in Eq. (A3), we
find

Z[QT,l(ﬂﬁ—)]nr[ﬁi]nr[fl$]rn
7 X ,
= {S + iaTLIBTZ ;Akl (mz] — mzl) }
{ZAIQM:I: mkz 5mjf mk +1 1_[ 6m m }

1,1k,
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y { S A M (1) St <t ] g
k3 IR
= —_—.
S *iay B5 Ar,

The remaining two equations are obtained in the same manner
leading to

Z[fT,i(IB‘CJr)]m [fli]nr [fl$]rn

— Z AlzzMi(mzz)
s — oy Bon £ 5 A,)

ky

(A9)

where we used that

. . A
5 2 Aw (i A mE) [ Tom g mir = Aelhcdn F 5 A
- I#k

(A10)

The functions M3(m}) over nuclear eigenvalues can be
replaced by their average assuming a nuclear state which is
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highly degenerate:®>>
(2 (m}))) = cx.

Finally, for a large nuclear spin system with N > 1, the
remaining sums in Eqgs. (A8) and (A9) can be replaced by
integrals in the continuum limit. Changing to dimensionless
units by measuring energies in units of ey = |A;|n;A/2N,
one finds up to small corrections:’

(Al1)

N .
Tr/[Fy,y (BLy) hehpr] = FC;I:F{.INM,}(S — oy Bawy,)
Z

(A12)

A A 4N
Tr [Gr, (BLOhhpr] = FC;I;WMSXZ}(S)» (A13)
4

where . = A./|A.| and

1,(s) = s[log(s F i) — log(s)] = i. (Al4)

Applying this continuum limit, however, sets an upper bound
t K /N /2ty as discussed in the main text. Knowing the
four basic terms given in Eqs. (A12) and (A13), respectively,
all other remaining possible summands to the self-energy are
readily obtained by using Eq. (A2).
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