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Intrinsic spin lifetime of conduction electrons in germanium
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We investigate the intrinsic spin relaxation of conduction electrons in germanium due to electron-phonon
scattering. We derive intravalley and intervalley spin-flip matrix elements for a general spin orientation and
quantify the resulting anisotropy in spin relaxation. The form of the intravalley spin-flip matrix element is derived
from the eigenstates of a compact spin-dependent k·p Hamiltonian in the vicinity of the L point (where thermal
electrons are populated in Ge). Spin lifetimes from analytical integrations of the intravalley and intervalley matrix
elements show excellent agreement with independent results from elaborate numerical methods.
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I. INTRODUCTION

Group IV semiconductors are natural material choices
for quantum and classical spintronic devices.1–4 Hyperfine
interactions are suppressed due to the natural abundance of
zero-spin nuclear isotopes. As a result, localized electrons have
exceedingly long coherence times at low temperatures.5–7 As
for conduction electrons, space-inversion symmetry precludes
their spin relaxation by the Dyakonov-Perel mechanism.8

The intrinsic spin lifetime is therefore relatively long, reach-
ing ∼10 ns at room temperature in nondegenerate n-type
silicon.9–13 Combined with the fact that silicon is the material
of choice in the semiconductor industry, there is a wide interest
in related spin injection experiments.14–18

The motivation for studying spin injection in Ge is similar
to Si due to their shared properties and the compatibility
with Si-based complementary metal-oxide semiconductor
(CMOS) technology. Electrical spin injection and extraction
in Ge have been recently investigated in lateral spin-transport
devices with various doping profiles using nonlocal19 and
local20–26 Hanle measurements, as well as in heterostructure
and nanostructure devices.27,28 Similar to direct band-gap
semiconductors, optical orientation is an additional viable tool
to investigate spin properties of electrons and holes in Ge.29–35

Unlike silicon, optical orientation in Ge is efficient because
of the energy proximity between the direct and indirect gaps.
Spin-polarized electrons are first photoexcited to the � valley
and then they relax via ultrafast spin conserving scattering to
the conduction band edges in one of the four L valleys (located
∼140 meV below the zone center � valley).35

Theoretical efforts in the early days36,37 were motivated
by low-temperature electron spin resonance experiments that
studied the g factor and spin-lattice relaxation of localized
electrons in donor states.38–40 On the other hand, little attention
was paid to conduction electrons whose spin relaxation is
mediated by the Elliott-Yafet mechanism.41,42 By analyzing
the space-inversion and time-reversal symmetries of the L

point, Yafet deduced a T 7/2 temperature dependence of the
spin relaxation rate due to intravalley electron scattering with
acoustic phonons.42 Kalashnikov extended Yafet’s theory to
various statistical distributions and scattering mechanisms.43

Chazalviel investigated spin flips due to electron-impurity
scattering using effective spin-orbit coupling parameters that
resemble the treatment in III-V semiconductors.44 Most

recently, Tang et al. have used a tight-binding model to
calculate the intrinsic spin relaxation of conduction electrons
in Ge as a function of the energy split between the lowermost
conduction valley and the other three valleys.12 Such an energy
split can be controlled by tuning the amplitude of a [111]
uniaxial compressive strain.

In this paper we present a theory of spin-flip processes
due to electron-phonon scattering in Ge. Two distinctive
contributions are present in this work. First, we find the
spin orientation dependence of spin-flip matrix elements.
This dependence leads to anisotropy in spin relaxation
and it is instrumental in analyzing measurements where
the orientation of injected spins is set by the shape and
magnetocrystalline anisotropy of ferromagnetic contacts or
by the propagation and helicity of a circularly polarized light
beam. An interesting result of the analysis is that most of the
intrinsic spin relaxation of conduction electrons in Ge can
be explained by coupling of the lowest conduction band to
the upper conduction bands (rather than to the upper valence
bands which is the typical case in most semiconductors).
The second contribution of this work is the derivation of a
spin-dependent k·p Hamiltonian in the vicinity of the L point
(conduction band edge). This compact Hamiltonian model
exquisitely captures the signature of spin-orbit interaction on
electronic states and it can be extended to study confined Ge
structures using an expanded basis of envelope functions.45

This paper is organized as follows. Section II provides a
theoretical framework for the electron-phonon interaction.
Section III provides a quantitative discussion of intervalley
spin flips due to scattering with zone-edge phonons. Using
group theory, we derive the spin-flip matrix elements and find
the resulting spin lifetime. Section IV deals with intravalley
spin-flip processes and with the effects of spin-orbit coupling
on low-energy conduction electrons. Using the method of
invariants,46–49 we derive a spin-dependent k·p Hamiltonian
around the L point. Eigenvectors of this Hamiltonian are
then used to study intravalley spin flips due to scattering with
long-wavelength acoustic phonons. Section V is a summary
of findings and Appendices A–D contain technical details for
interested readers.

II. ELECTRON-PHONON INTERACTION

This section provides a theoretical framework for spin re-
laxation due to the interaction of electrons with the lattice ions.
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It lays the foundation for the derived results in the following
sections. We first express the electron-phonon scattering using
the harmonic approximation,50,51 and then write the resulting
expression for the intrinsic spin relaxation rate. This section
is concluded with the dependence of electronic states on spin
orientation in crystals with a space-inversion center.

Consider an electron in a crystal with its quantum numbers
k1 and s1 representing, respectively, the wave vector and spin
state (⇑ or ⇓}). The band-index quantum number is omitted
and unless otherwise noted we refer to states in the lowest
conduction band. Following a scattering of this electron with
a phonon, the transition amplitude into state {k2,s2} is given
by13

〈k2,s2; nν,q ± 1|Hν
ep(q)|k1,s1; nν,q〉

= −
√

h̄2

2��ν,qV

√
nν,q + 1

2
± 1

2
× Mν(k1,s1; k2,s2). (1)

nν,q is the phonon occupation (Bose-Einstein distribution at
thermal equilibrium) where ν is the phonon mode or symmetry
(to become clear later) and q = k2 − k1 is the phonon wave
vector. Phonon emission and absorption are described by the
plus and minus signs, respectively. Other parameters are the
phonon energy (�ν,q), crystal mass density (�), and volume
(V ). Finally, the matrix element reads

Mν(k1,s1; k2,s2) =
∑
j,α

ξα,ν(q)eiqRjα

· 〈k2,s2|∇rVat(r − Rjα)|k1,s1〉, (2)

where j sums over the N primitive cells of the crystal and
α sums over atoms in a primitive cell. An atom position
is then denoted by Rjα , its mode-dependent displacement
vector by ξα,ν , and its potential including the spin-orbit
coupling by

Vat(r) = Vat(r)I + h̄

4m2
0c

2
[∇Vat(r) × p] · σ . (3)

Spin-conserving scattering [s1 = s2 in Eq. (2)] dominates
the momentum relaxation where both spins are either up
or down. Due to the small relativistic effect from spin-
orbit coupling, spin-flip scattering (s1 = −s2) is typically
much weaker and leads to a relatively slow spin relaxation
rate,13

1

τs,ν

= 2πh̄

�Nc

∫
d3k1

∂f (Ek1 )

∂Ek1

∫
d3k2

(2π )3

|Mν(k1,s; k2, − s)|2
�ν(q)

×
∑
±

(
nν,q + 1

2
± 1

2

)
δ
(
Ek2 − Ek1 ± �ν,q

)
, (4)

where f (Ek) is the statistical energy distribution of electronic
states and Nc = ∫

d3k∂f/∂Ek is an effective density of
states constant. The weighted integration over ∂f/∂E is
exact at the limit of infinitesimal spin-dependent chemical
potential splitting. It is valid for Fermi-Dirac statistics when
the difference of chemical potentials between spin-up and
spin-down populations is smaller than kBT .

Evidently the determination of Mν(k1,s; k2, − s) is the
centerpiece in the theory of spin relaxation. For conduction
electron transitions following a scattering by a phonon, the

initial and final states (|k1,s1〉 and |k2,s2〉) are located in
conduction band valleys which are small pockets around some
high symmetry points of the Brillouin zone. In intravalley
and intervalley scattering, the initial and final states are
located, respectively, in the same valley or in different
valleys. The initial and final states can be expanded as linear
combinations of eigenstates at their corresponding valley
centers,

|k,s〉 =
∑

�

[a�(k)|K0,�,↑〉 + b�(k)|K0,�,↓〉] eik′ ·r, (5)

where K0 is the valley center point, k′ = k − K0, and � sums
over spin-independent energy bands. The coefficients, a�(k)
and b�(k) are determined from the k · p perturbation and also
from the spin-orbit coupling perturbation term λso∇V (r) ×
(p + h̄k′) · σ , where V (r) = ∑

j,α Vat(r − Rjα) is the crystal
potential and λso = h̄/4m2

0c
2. Mixed by spin-orbit interaction,

the spin-up and spin-down states (s = {⇑,⇓}) are not the pure
basis states of the spin subspace (↑,↓).

In order to calculate the value of Mν(k1,s; k2, − s), we
first decompose it into parts that belong to the irreducible
representations (IRs) of the group at the wave vector K0,
or at the wave vector connecting two valley centers for
the case of intervalley scattering.52 This decomposition of
the matrix element involves parts that come from k · p and
spin-orbit coupling terms in the expansion of the initial and
final states, as well as from ∇rVat(r − Rjα) in the electron-
phonon interaction. Of course we can only determine by this
procedure whether a particular integral is zero and what is the
relation between two integrals if there is any. Nonetheless, this
procedure allows us to recast the matrix element into a series of
Q-power terms where Q represents the difference or average
between k2 − K0,2 and k1 − K0,1,

Mν(k1,s; k2, − s) = D(0),ν + QiD
(1),ν
i + QiQjD

(2),ν
ij + · · · ,

(6)

where summation over components (subscripts) of Q is
implied. The D(n),ν quantities, often called deformation po-
tentials or scattering constants, are independent real constants
resulting from the aforementioned selection rules (integral
expressions of interactions between basis states). Values
of these quantities are determined from explicit knowl-
edge of the scattering potential and electronic states, and
therefore numerical calculations or experimental input is
needed.

The great advantage of the group theory approach is that it
allows us to find a compact expression for the measurable spin
relaxation rate. By substituting Eq. (6) into Eq. (4) one can
readily identify the temperature dependence from the leading
power of Q (and from phonon population and dispersion).
This procedure also allows one to identify the scattering angle
dependence from the tensorial forms of D(n),ν . Furthermore,
group theory can tell whether intravalley and/or intervalley are
important in spin relaxation of a multivalley conduction band.
It will be shown that intravalley spin flips in Ge are very weak
since D(0),D(1), and D(2) in Eq. (6) vanish due to time reversal
and space inversion symmetries. Intervalley scattering, on the
other hand, will be shown as far more dominant in setting the
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intrinsic spin relaxation rate, where in this case D(0) does not
vanish.

Finally, to account for possible anisotropy in spin re-
laxation, the analysis of both intravalley and intervalley
spin flips should explicitly consider the dependence on spin
orientation. In the case of centrosymmetric crystals (e.g.,
diamond structure of Ge), each band at wave vector k is spin
degenerate and we can define its states with respect to the spin
orientation of the electron (ŝ),42

〈k,⇑|σ · ŝ| k,⇑〉 ≡ −〈k,⇓|σ · ŝ| k,⇓〉 � 0,
(7)

〈k,⇑|σ · ŝ| k,⇓〉 ≡ 0,

where σ is a vector of Pauli matrices. Below we will find
the explicit dependence of spin-flip matrix elements on the
direction of ŝ.

III. INTERVALLEY SPIN RELAXATION

Using group theory, we show in this section that intervalley
spin-flip scattering in Ge is expressed in terms of two scattering
constants. These constants are nonvanishing spin-flip matrix
elements for electron scattering between different energy-
minima points (valley centers): Dν,s = Mν(K0,1,s; K0,2, − s),
where Dν,s bares the same meaning as the zeroth-order term in
Eq. (6). In this case, we let ν denote allowed phonon symme-
tries which, as explained later, include two types in bulk Ge.
For scattering slightly away from the valleys centers, one can
still assume Mν(k1,s; k2, − s) � Mν(K0,1,s; K0,2, − s) since
in Ge and other multivalley semiconductors |K0,1 − K0,2| �
|k1 − K0,1|,|k2 − K0,2|. The spin-lifetime calculation is then
substantially simplified since there is no need to rigorously
calculate Mν(k1,s; k2, − s) for each possible intervalley tran-
sition between states near the center points. Most importantly,
since intervalley scattering is symmetry allowed in the lowest
order (i.e., nonzero between different L points), group theory
alone is sufficient to find the exact form of the spin-flip matrix
elements together with their dependence on spin orientation.

Figure 1(a) shows a scheme of the four conduction-band
valleys in Ge where the vertical arrow marked by q001

represents one possible intervalley scattering between different
valleys. Thermal electrons in unstrained bulk Ge are located

FIG. 1. (Color online) (a) The four conduction-band valleys of
Ge. Centers of their ellipsoidal energy surfaces are located at the zone-
edge L points (energy minima). The vertical q001 arrow represents
one of six equivalent intervalley transitions between valley centers.
(b) Phonon dispersion along the �--X symmetry axis [dashed
lines in (a)] and symmetry notations of zone-edge X phonon modes.
Electrons are transferred between different valleys [e.g., the q001 arrow
in (a)] by emission or absorption of phonons near the X point.

in these four valleys whose centers are the L points in the
edge of the Brillouin zone. The crystal momentum difference
between valley centers can be mediated by X point phonons.
For example, the L111 and L111 centers [k = π/a(1,1,±1)] are
connected by X001 [q001 = 2π/a(0,0,1)]. Figure 1(b) shows
the symmetry notations of these zone-edge phonons along with
their dispersion along the �--X symmetry axis. These results
are calculated from an adiabatic bond-charge model of bulk
Ge.53 The zone-edge phonons belong to three two-dimensional
(2D) irreducible representations: X3 (TA, 10 meV), X1 (LA
and LO, 29 meV), and X4 (TO, 33 meV),54 with their modes
and energies written in parentheses.

Group theory is used to derive selection rules for intervalley
scattering. These selection rules are derived from common
symmetry operations of the little groups at two valley centers
K0,1, −K0,2 and their difference K0,1 − K0,2. Technical details
of applying this approach in Ge are given in Appendix A
and here we summarize the main findings. Excluding the spin
degree of freedom, the selection rule for transition between
valleys that we denote by L and Lt reads L1 ⊗ L1t = X1 ⊕��X3,
where L1 is the irreducible representation (IR) of electron
states in the minima of the conduction band. Intervalley
scattering with phonons of X3 symmetry is forbidden by time-
reversal symmetry and not by the space-group symmetry.55,56

This rule means that a single constant Dν=X1,m is needed to
describe spin-independent intervalley scattering (momentum
relaxation). Including the spin degree of freedom, it is
convenient to use double group theory where L1 is replaced
by L6 and the new selection rule reads12

L6 ⊗ L6t = 2X1 ⊕ X4 ⊕��X3. (8)

This rule means that three independent scattering parameters
are needed to fully describe spin-conserving and spin-flip
intervalley scattering (two are related to the X1 symmetry and
one to X4). This selection rule does not provide information
on the spin orientation dependence which is most important
in analyzing experiments. To overcome this shortcoming, we
can work with IR matrices rather than their traces.13 Technical
details are given in Appendix A and here we provide the final
result. The spin orientation ŝ is described by a polar angle (θ )
from the +z crystallographic axis and an azimuthal angle (φ)
in the xy plane measured from the +x direction. For a spin-flip
transition between L111 and L111 points (via a zone-edge
phonon with wave vector q001), the square amplitude of the
matrix element reads∣∣Mν

(
kL111 ,s; kL111

, − s
)∣∣2

=
{

2D2
X1,s

(1 + cos2 θ + sin 2φ sin2 θ ) if ν = X1

2D2
X4,s

sin2 θ if ν = X4
. (9)

Both phonon symmetries share a prefactor of 2 due to the
twofold degeneracy in the X point of a diamond crystal
structure. For the remaining five transitions between other
combinations of L points, Eq. (9) varies according to a
straightforward coordinate transformation. These results are
summarized in Table I [also see discussion of Eq. (A24)
in Appendix A]. As seen by the right column of the table,
spin flips due to scattering with X4 phonons vanish if the
spin is oriented parallel to the phonon wave vector [z axis
for the case of q001 in Eq. (9); i.e., θ = 0]. If the spin

085202-3



PENGKE LI, YANG SONG, AND HANAN DERY PHYSICAL REVIEW B 86, 085202 (2012)

TABLE I. |MXi
(kL,s; kLt , − s)|2/2D2

Xi
for intervalley spin-flip

transitions of all six valley-to-valley configurations.

L ↔ Lt X1 X4

L111 ↔ L111 1 + cos2 θ + sin2 θ sin 2φ 1 − cos2 θ

L111 ↔ L111 1 + sin2 θ sin2 φ + sin 2θ cos φ 1 − sin2 θ sin2 φ

L111 ↔ L111 1 + sin2 θ cos2 φ + sin 2θ sin φ 1 − sin2 θ cos2 φ

L111 ↔ L111 1 + sin2 θ sin2 φ − sin 2θ cos φ 1 − sin2 θ sin2 φ

L111 ↔ L111 1 + cos2 θ − sin2 θ sin 2φ 1 − cos2 θ

L111 ↔ L111 1 + sin2 θ cos2 φ − sin 2θ sin φ 1 − sin2 θ cos2 φ

orientation and phonon wave vector are perpendicular, the X4

spin flips are described by a single independent nonvanishing
matrix-element constant Dν=X4,s . For the X1 phonons, one of
the two independent nonvanishing matrix elements in Eq. (8) is
attributed to spin-flip scattering (Dν=X1,s) and the other to spin-
conserving scattering (Dν=X1,m). Values of these scattering
constants can be extracted from experiments or from rigorous
numerical calculations as discussed in Appendix B where we
find DX1,s = 35 meV/Å and DX4,s = 46 meV/Å. As will be
shown, these comparable constants set the spin relaxation rate.
It is understood that the much larger spin-conserving scattering
constant Dν=X1,m is irrelevant to the analysis of spin relaxation
(independent of the spin-orbit coupling).

Having the spin-flip matrix elements in Table I, we calculate
the intervalley spin relaxation rate [Eq. (4)] for a Boltzmann
distribution of electrons,

1

τs,inter
= 4

3

(
2md

π

) 3
2 ∑

i=1,4

Ai(θ,φ)D2
Xi,s

h̄2�
√

�i

ϑ(yi)

exp(yi) − 1
. (10)

� = 5.323 g/cm3 is the crystal density and md = 0.22m0 is
the effective electron mass in bulk Ge.57 ϑ(yi = �i/kBT ) =√

yi exp(yi/2)K−1(yi/2) is associated with the modified
Bessel function of the second kind. For both phonon energies
(�1 = 29 meV and �4 = 33 meV), this term slightly depends
on temperature in the range between 10 and 400 K such that
2 < ϑ(�i/kBT ) < 4. On the other hand, most of the tem-
perature dependence of the intervalley relaxation rate comes
from the thermal population of zone-edge phonons [exponent
term in the denominator of Eq. (10)]. This population is
strongly suppressed at low temperatures. Finally, the scattering
constants DX1,s = 35 meV/Å and DX4,s = 46 meV/Å are,
respectively, weighted by A1(θ,φ) and A4(θ,φ) that include
the dependence on spin orientation (Table I). We discuss their
explicit angular dependence for several general cases.

No strain or [100] strain: The four L valleys in the lowest
conduction band are degenerate and transitions between all
six pairs of valleys are equivalent. The anisotropy in spin
relaxation due to intervalley scattering between two valleys
is compensated by opposite anisotropy of other pairs. The
sum of expressions in each of the two columns of Table I is
independent of θ and φ,

A1 = 8, A4 = 4. (11)

As shown next, when the symmetry between different valleys
is broken, the dependence of the intervalley matrix elements
on spin orientation lends itself to a measurable anisotropy in
the spin lifetime.

[111] strain: The case of uniaxial compressive strain results
in a single low-energy valley (along the strain axis) and three
higher energy valleys. At relatively large strain levels (∼1%),
the energy split is large enough to quench the intervalley
spin relaxation mechanism.12 This effect amounts to assigning
1/τs,inter = 0. On the other hand, in biaxial compressive strain
configuration (or uniaxial tensile strain) three of the valleys
shift down in energy and one valley shifts up. Excluding
transitions with the L111 valley (considering the last three lines
in Table I) we get

A1 = 16 − 4 sin2 θ sin 2φ − 4 sin 2θ (cos φ + sin φ)

3
,

A4 = 8

3
. (12)

This strain configuration restores the anisotropy in spin relax-
ation due to electron scattering with X1 zone-edge phonons.
By changing the spin orientation from the [111] strain axis to
its perpendicular plane, τs,inter drops by ∼50% [changing A1

from 8/3 to 20/3 in Eq. (10)].
[110] strain: This strain configuration is optimal for

detection of the anisotropy since intervalley transitions are
effective from a single pair of valleys. Consider, for example,
the case that L111 and L111 valleys shift sufficiently down in
their energy. Then, only the first term in Table I represents the
intervalley scattering and we get

A1 = 2(1 + cos2 θ + sin 2φ sin2 θ ), A4 = 2 sin2 θ. (13)

The anisotropy in spin relaxation is now caused by electron
scattering with both types of zone-edge phonons. By changing
the spin orientation from the strain axis to its perpendicular
plane, τs,inter [Eq. (10)] is doubled.

Other than strain, it should also be possible to observe the
anisotropy by applying electric fields of a few kV/cm along
the mentioned directions. Here, valley repopulation will result
in preferential scattering from hot-to-cold valleys.58 Finally,
by averaging over spin orientations in Eqs. (12) and (13), the
spin lifetime [Eq. (10)] with two (three) low-energy valleys
is about 3 (3/2) times longer than that of the unstrained case.
The reason is that electrons can scatter to one (two) valleys
rather than three.

The solid curve in Fig. 2 shows the temperature dependence
of the intervalley spin lifetime in unstrained bulk Ge [Eq. (10)
with A1 = 8 and A4 = 4]. We have also performed rigorous
numerical integrations of Eq. (4) in which Mν(k1,s; k2,−s)
rather than Mν(kL111,s; kL111

,−s) is evaluated in the integration.
The calculation of the matrix element follows the analysis
in Appendix B. Whereas this numerical approach is not
transparent compared with the group theory analysis, it takes
into account higher-order corrections due to the slight variation
of the matrix element when departing from the center of
the valleys. Nonetheless, the complete numerical results for
scattering with all X point phonons [red pentagram markers
in Fig. 2] show that the zeroth-order analytical calculation
is an excellent approximation [Eq. (10)]. The black diamond
markers denote numerical results due to scattering with X3

phonons. Their zeroth-order contribution vanishes by time-
reversal symmetry [Eq. (8)], while their first-order contribution
is allowed [D(1),ν=X3 is the lowest-order nonvanishing term
in Eq. (6)]. In spite of their vanishing contribution at the
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FIG. 2. (Color online) Calculated temperature dependence of the
intrinsic spin lifetime in unstrained Ge due to intervalley scattering of
electrons. The solid line follows Eq. (10) with A1 = 8 and A4 = 4. At
room temperature, the resulting spin lifetime is ∼1 ns. The markers
are from rigorous numerical results (see text). Black diamonds denote
contributions from X3 phonons and red pentagrams from all X point
phonon symmetries.

lowest order, Fig. 2 shows that X3 phonons have non-
negligible contribution in low temperatures. This property can
be understood by the relatively large population of X3 phonons
compared with that of X1 and X4 phonons [nν,q in Eq. (4)].
At low temperatures, the zone-edge phonon population reads
exp(−�i/kBT ), and therefore it is much larger in the case
of X3 phonons [�3 ∼ 10 meV and �1,4 ∼ 30 meV; see
Fig. 1(b)].

IV. L-POINT HAMILTONIAN AND INTRAVALLEY
SPIN RELAXATION

Intravalley spin-flip matrix elements in Ge are much
smaller than in the intervalley case. This weak effect of
intravalley processes stems from space-inversion and time-
reversal symmetries of the low-energy conduction states in
Ge.42 The intravalley process becomes important, however,
when quenching the intervalley process by applying strain
or strong electric fields such that the electrons are located
in a single conduction valley. Tang et al. have shown that
the spin lifetime is then increased from 1 ns to the range
of 100 ns.12 In this work we quantify the strong anisotropy
of the intravalley spin relaxation in Ge and show that when
orienting the spin along the [111] crystal axis the intravalley
spin lifetime is further suppressed and reaches the scale of 1 μs
in room temperature. In addition, we derive a spin-dependent
k·p Hamiltonian in the vicinity of the L point and correlate its
parameters with spin relaxation processes.

To gain better understanding of the intravalley spin flips
in Ge, we break this section into three parts, where each
part relies on its former. First we discuss general symmetry
properties of conduction electrons in Ge with an emphasis on
the effect of spin-orbit coupling. In the second part we make
use of these findings to derive a compact Hamiltonian matrix
using a relatively small set of L-point basis functions. We
keep technical aspects of this derivation to Appendix C. Using
the spin-dependent eigenvectors of the derived Hamiltonian,
we introduce the concept of overlap integrals. This information
combined with deformation potential theory is then used in the
last part of this section to derive the intravalley spin-flip matrix
elements, the resulting spin lifetime, and the dependence on

Γ LΛ←− −→

Γ8

Γ7

Γ7

Γ6

Γ8

L3}L4 + L5

L6

L6→L1

L4 + L5}L3

Eg,u ≈3.3eV

Eg,v ≈2.2eV

FIG. 3. (Color online) Calculated band structure of Ge along
the �-�-L symmetry axis following the results of an empirical
pseudopotential method.59 Appendix B includes technical numerical
details of this calculation. The conduction-band edge is indicated
by the irreducible representation L1 (L6) in single (double) group
notation.60,61

spin orientation. Appendix D includes technical information
on the difference between intravalley spin flips in Si and Ge.

A. Symmetry effects on electronic states in Ge

Figure 3 shows the energy band structure of unstrained bulk
Ge along the �-�-L symmetry axis. The conduction edge
is indicated by L1, where thermal conduction electrons can
reside in four equivalent conduction valley minima [Fig. 1(a)].
Using the L-point symmetry notations in Fig. 3, we explain
the symmetries of wave functions in the vicinity of this point.

Representations of conduction (valence) states in the L

point have even (odd) parity under space-inversion operation.
In the notation of single group theory, there are six irreducible
representations (IR) of the L-point space group.60,61 The
lowest conduction band is nondegenerate and belongs to L1

(a one-dimensional IR). Figure 3 shows that nearby bands are
pairs of valence and conduction bands. They are represented,
respectively, by the two-dimensional IRs L′

3 and L3. If the
crystal potential is vanishingly small then the L-point energies
of these five bands (L1, L3, and L′

3) are degenerate. However,
the crystal potential in Ge splits these bands into three sets and
the relatively large energy separation from L1 will be shown
to result in a very slow intravalley spin relaxation process. In
comparison, the six conduction band valleys in Si are located
close (in energy and wave vector) to the two-band degeneracy
in the X point. This degeneracy leads to a spin hot spot
along certain directions in the square boundary faces of the
Brillouin zone,9,10,13 and to a unique behavior of intravalley
spin relaxation in Si.13 This distinct difference between Si and
Ge merits independent treatments of the spin relaxation.

The wave functions of conduction electrons |k,⇑(⇓)〉
include small contributions from states of remote bands. In the
k·p theory there are two first-order terms related to signatures
of the spin-orbit interaction,

Hso = h̄

4m2
0c

2
∇V × p · σ̂ , (14)

Hk
so = h̄2

4m2
0c

2
∇V × k · σ̂ , (15)
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where throughout this section the value of k is measured
from its nearby valley center (L point). Hk

so transforms as
a polar vector (∇V ) and can couple between odd and even
states. In our case, the coupling is between states of L1

and L′
3 symmetries that represent, respectively, the lowest

conduction band and upper valence bands. On the other hand,
Hso transforms as an axial vector (∇V × p) and can couple
the even states of L1 and L3 (lowest and upper conduction
bands). The dimensionality of L′

3 or L3 (2D IRs) is such that
each is coupled to L1 by two components of a vector that lie
perpendicular to the valley axis [i.e., parallel to the hexagonal
boundary faces at the zone edge; see Fig. 1(a)].

B. L-point Hamiltonian

In this part we expand the wave functions of electrons
using the L-point basis states. The expansion allows us
to identify important signatures of spin-orbit coupling on
the wave functions and then to correlate them with spin
relaxation processes. Near the valley center, the wave function
is approximated by

|k,s〉 =
⎡
⎣ ∑

γ=1,3,3′
Cγ (k,s)|Lγ 〉

⎤
⎦ ei(kL+k)·r. (16)

Using the relation between spin-up and spin-down states
[Eq. (7)], and following the previous discussion on L1, L3,
and L′

3 states, we write

Cγ (k,⇑)|Lγ 〉 =
Nγ∑

m=1

am,γ (k)
∣∣Lm

γ ,↑〉 + bm,γ (k)
∣∣Lm

γ ,↓〉
,

(17)

Cγ (k,⇓)|Lγ 〉 =
Nγ∑

m=1

a∗
m,γ (k)

∣∣Lm
γ ,↓〉 − b∗

m,γ (k)
∣∣Lm

γ ,↑〉
.

Totally we consider ten spin-dependent basis states: Two from
the nondegenerate lowest conduction band (N1 = 1), and four
from either the upper conduction or valence bands (each being
two-band degenerate in the absence of spin-orbit coupling,
N3 = N3′ = 2). The coefficients are eigenvectors of the 10 ×
10 Hamiltonian matrix,⎛
⎝H33 + Eg,u H

†
13 H33′

H13 H11 H13′

H
†
33′ H

†
13′ H3′3′ − Eg,v

⎞
⎠

⎛
⎝C3

C1

C′
3

⎞
⎠ = E

⎛
⎝C3

C1

C′
3

⎞
⎠ ,

(18)

where Hij is a matrix block denoting the spin and wave vector
dependent coupling between basis states with Li and Lj

symmetries. Eg,u and Eg,v denote, respectively, the L-point
energy separations of the lowest conduction band from the
upper conduction and upper valence bands (see Fig. 3) . Below
we present the Hamiltonian matrix using the basis functions
of the L111 point [kL = π (1,1,1)/a]. Matrix forms in the
〈1̄11〉, 〈11̄1〉, and 〈111̄〉 valleys are derived by trivial coordinate
transformation. In addition, to derive a compact matrix form
we use a rotated set of Cartesian coordinates,

ŵ = x̂ − ŷ√
2

, û = x̂ + ŷ − 2ẑ√
6

, �̂ = x̂ + ŷ + ẑ√
3

. (19)

û and ŵ lie parallel to the hexagonal boundary face [Fig. 1(a)].
�̂ is along the valley axis connecting the � and L111 points.

We construct the Hamiltonian matrix [Eq. (18)] using
the method of invariants.46–49 Application of this method
with relevance to the L point is given in Appendix C. Here
we summarize the findings. The lowest conduction band is
associated with the identity IR and contributes a trivial 2×2
matrix form (L1 ⊗ L1 = L1),

H11 =
[
h̄2

(
k2
u + k2

w

)
2m∗

t

+ h̄2k2
�

2m∗
l

]
⊗ I2×2. (20)

m∗
t and m∗

l are effective mass parameters representing the
effect of remote bands (outside the chosen basis states). Matrix
blocks of the upper valence bands or upper conduction bands
share a similar form (L3 ⊗ L3 = L′

3 ⊗ L′
3 = L1 + L2 + L3),

Hii =
[
h̄2

(
k2
u + k2

w

)
2m∗

t,i

+ h̄2k2
�

2m∗
l,i

]
⊗ I4×4 + iρy ⊗ σ�, (21)

where i = 3 or i = 3′. The mass parameters have similar
meaning as in H11. i denotes the internal spin-orbit coupling
between the two Li basis functions. ρy = σy originates from
the two-band degeneracy in the absence of spin-orbit coupling.

The off-diagonal matrix block H13′ denotes the coupling
between the lowest conduction band and upper valence bands.
Its form follows from L1 ⊗ L′

3 = L′
3,

H13′ = P (kw[0,1] − ku[1,0]) ⊗ I2×2 + iα[(k × σ )w ⊗ [0,1]

−(k × σ )u ⊗ [1,0]], (22)

where [1,0] and [0,1] are ordinary 1 × 2 matrices. Their
Kronecker products with 2 × 2 matrices indicate that H13′ is
a 2 × 4 matrix. P and α are two independent matrix element
constants that originate from the k · p and H k

so perturbation
terms, respectively. The coupling matrix of the lowest and
upper conduction bands is wave vector independent and it
follows from L1 ⊗ L3 = L3:

H13 = iL(σu ⊗ [1,0] + σw ⊗ [0,1]) ⊗ I2×2, (23)

where L denotes the direct spin-orbit coupling between these
bands. Finally, the 4 × 4 coupling matrix between the upper
valence and conduction bands follows from L′

3 ⊗ L3 = L′
1 +

L′
2 + L′

3:

H33′ = [P1(ikuρy − kwI2×2) + P2k�ρx] ⊗ I2×2, (24)

where we have neglected the H k
so coupling between these

bands since it plays a negligible role in the spin relaxation
of conduction-valley electrons. Table V in Appendix C lists
the values of all parameters in Eqs. (20)–(24). This Appendix
also includes a discussion of the empirical pseudopotential
method used to derive these parameter values.

Given the relatively large L-point energy gaps, the en-
ergy dispersion of electrons in L valleys is well approx-
imated by eigenvalues of the reduced 2×2 matrix: H11 +
H13′H

†
13′/Eg,v − H13H

†
13/Eg,u,

Ec = 22
L

Eg,u

+ h̄2
(
k2
u + k2

w

)
2mt

+ h̄2k2
�

2ml

. (25)

The constant energy shift is due to the direct spin-orbit
coupling with the upper conduction bands. The effective mass
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parameters are

1

mt

= 1

m∗
t

+ 2P 2 + 2α2

h̄2Eg,v

,
1

ml

= 1

m∗
l

+ 4α2

h̄2Eg,v

.

About half of the anisotropy between the transverse and
longitudinal effective masses in Ge (mt ≈ 0.08m0 and ml ≈
1.6m0) is set by the spin independent coupling with the
upper valence bands (P = 9 eV Å).57 The spin-orbit coupling
signatures on the energy dispersion are negligible and can
be ignored (α = 40 meV Å and L = 27 meV). On the
other hand, the minute effect of spin-orbit coupling on the
eigenvectors of Eq. (18) sets the time scale for spin relaxation.
Choosing the spin quantization along the valley axis, the
spin-up eigenvector along this direction [ŝ = �̂ in Eq. (7)]
reads

C1(k,⇑
�
) = [1, g(k)] + O(k2),

C3(k,⇑
�
) = L

Eg,u

[0,−1, 0, i] + O(k2),

C′
3(k,⇑

�
) = P

Eg,v

[−ku − iγ3kw, f+(k),

kw − iγ3ku,f−(k)] + O(k3). (26)

The components of the spin-down eigenvector [Ci(k,⇓
�
)]

are readily obtained from space-inversion and time-reversal
relations [Eq. (17)]. The g(k) and f±(k) functions in C1 and
C′

3 read

g(k) = P 2

E2
g,v

[kuf+(k) − kwf−(k)],

(27)
f±(k) = r±[γ1(kw − iku) ± iγ2k�],

where r+ = 1 and r− = −i. The γj � 1 parameters scale with
three of the spin-orbit coupling constants (α, 3′ , and L)
whose values are given in Table V,

γ1 = L

Eg,u

P1

P
≈ 0.006, (28a)

γ2 = α

P
+ L

Eg,u

P2

P
≈ 0.005, (28b)

γ3 = α

P
+ 3′

Eg,v

≈ 0.05. (28c)

The internal spin-orbit coupling in the valence band (3′)
sets most of the value of γ3. Only when the spin is oriented
along the valley axis (ŝ = �̂), is this parameter excluded from
the opposite-spin components of C′

3(k,⇑s) [i.e, from the f±(k)
terms in Eq. (26)]. It will be shown that this behavior has
important consequences on the anisotropy of intravalley spin
relaxation.

Connection between the L-point Hamiltonian parameters
and spin relaxation. To facilitate a connection between the
Hamiltonian eigenvectors and spin relaxation we make use of
spin-flip overlap integrals. We show that the direct spin-orbit
coupling between the conduction bands (L) plays a key role
in setting the intervalley spin relaxation rate (independently
treated in Sec. III). On the other hand, we will see that
intravalley spin-flip transitions are weaker. To make these

connections clear, we write the overlap integral

I(k,s; k′, − s) =
∑
μ,γ

〈
Lμ,kL′

∣∣C†
μ(k′,−s)Cγ (k,s)

∣∣Lγ,kL

〉
,

(29)

where k and k′ are measured from the nearby valley center (kL

and kL′). The bra and ket states of this overlap integral include
only the periodic Bloch parts in Eq. (16). While the combined
phase factor exp {i(kL − kL′ + k − k′) · r} is excluded from
the overlap integral, it will be taken into account in the phonon
phase when calculating the matrix elements. Using Eq. (26),
the overlap integrals of electrons in different valleys read
(kL �= kL′)

I(k,s; k′,s) = c1,s,
(30)

I(k,s; k′, − s) = c3,s
L

Eg,u

+ O(k2),

where cj,s are constants of order unity that denote contributions
from the spin-orientation dependence (ŝ) and from the overlap
of conduction basis states in different valleys: 〈L1,kL

|Lj,kL′ 〉.
Equation (30) implies that the ratio between spin and mo-
mentum relaxation rates due to intervalley scattering is about
2

L/E2
g,u (independent of the values of the wave vectors with

respect to the valley centers). For intravalley scattering (kL =
kL′ ), on the other hand, the basis functions are orthogonal:
〈Ln

μ,kL
|Lm

γ,kL
〉 = δμγ δmn. As a result, the spin-flip overlap

integral for electrons of the same valley reads

Ia(k,⇓� ; k′,⇑�) = 2P 2

E2
g,v

(γ2q+K� + iγ1q−K−), (31)

where q = k − k′, 2K = k + k′, and X± = Xw ± iXu. The
terms have quadratic wave vector dependence and they are
proportional to the spin-orbit constants in Eq. (28).62 The
overlap integral of other spin orientations (ŝ �= �̂) will be
discussed below.

C. Intravelley spin relaxation

The power-law dependence of intravalley spin-flip matrix
elements can be identified by their transformation properties
under time-reversal and space-inversion operations. Yafet
showed that spin-flip matrix elements due to scattering with
long-wavelength acoustic phonons have a cubic (quadratic)
wave vector dependence in Ge (Si).42 In Appendix D these
important findings are generalized and it is shown that in
Ge Mλ(k,s ; k′,−s) scales with K�qmqn for scattering with
acoustic phonon modes (λ = LA or TA) and with K�qm

for optical phonon modes (λ = LO or TO). K and q are,
respectively, the average and difference of k and k′. For
intravalley scattering in Si the K dependence drops. We first
explain this interesting difference.

From inspection of the wave vector dependence of intraval-
ley spin flips in Ge (K�qm for optical modes and K�qmqn for
acoustic modes), one sees that they are forbidden between
opposite points with respect to the valley center (K = 0).
This restriction on spin-flip transitions is a manifestation of
time-reversal symmetry. In silicon, K-dependent scattering
belongs to the intervalley g process which involves transitions
between two valleys on opposite sides of the same crystal
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axis.10,13 Since in Ge the valley center is at the zone edge
(L point), this type of scattering occurs within a single valley.
Its dependence on the wave vector components (Kqi) amounts
to the combined effects of intervalley g process and intravalley
scattering in Si (K and qi).

Beyond the power-law dependence, an analytical approach
to derive accurate intravalley matrix elements requires a com-
bination of k · p, rigid-ion and group theories.13 Because of the
wave vector dependence of these matrix elements, one cannot
invoke group theory alone to find their exact forms (as we did
for zeroth-order intervalley spin flips). We employ a simpler
approach than in Ref. 13 and describe the interaction with
long-wavelength acoustic phonons by H TA/LA

intra = �q, where
� is an effective deformation potential constant.10,60 This
scalar form averages out the scattering angle dependence of the
second-rank deformation potential tensor.46 We do not model
the electron scattering with long-wavelength optical phonons
since it is a weak effect in nonpolar semiconductors.60,63

We use selection rules of the L-point space group to
construct the spin-flip matrix element from the overlap inte-
gral. The transformation property of the deformation potential
tensor L′

3 ⊗ L′
3 = L1 + L2 + L3 implies that direct coupling

of conduction and valence states is excluded because of their
opposite parities (L1 ⊗ L′

3 = L′
3 ). This tensor can, however,

couple any of the basis states to themselves (Li ⊗ Li). This
behavior justifies the use of the spin-flip overlap integral. The
resulting intravalley spin-flip matrix element in the L111 valley
is approximated by

Mλ(k,s ; k′,−s) ≈ �qIa(k,s ; k′,−s), (32)

where λ denotes any of the long-wavelength acoustic modes
(TA or LA). Following a straightforward procedure we find

Ia(k,s ; k′, − s) = i sin ϑAt + Al cos2 ϑ

2
+ A∗

l sin2 ϑ

2
,

(33)

where cos ϑ = s · �̂ and

At = i

2
(Ia(k,⇑� ; k′,⇑�) − Ia(k,⇓� ; k′,⇓�))

= 2P 2

E2
g,v

γ3 (K × q)� ,

Al = e−iϕIa(k,⇓� ; k′,⇑�)

= 2P 2

E2
g,v

(
γ2q+K� + iγ1q−K−

)
e−iϕ. (34)

ϕ is the azimuthal angle of s measured with respect to the w

axis in the wu plane. Most importantly, γ3, which incorporates
the effect of the internal spin-orbit coupling in the valence band
[Eq. (28c)], does not affect the spin-flip amplitude [Eq. (32)]
when the spin orientation is along the valley axis (ϑ = 0). This
effect leads to a pronounced anisotropy in the intravalley spin
lifetime.

It is not surprising that the overlap integral approach
yields correct wave vector power-law dependence [substituting
Eqs. (33) and (34) into Eq. (32)]. The space-inversion and
time-reversal symmetries are respected by the Hamiltonian
whose eigenvectors were used to calculate the intravalley
spin-flip overlap integral. These symmetries also lead to the

so-called Elliott-Yafet cancellation of all terms up to quadratic
order in q.13,42 In fact, since the Hamiltonian respects all
other symmetries of the L-point space group, the intravalley
matrix element shows other selection rules.64 From Eq. (34)
we see, for example, that a spin flip is forbidden when the
electron is scattered along the valley axis (i.e., qw = qu = 0,
q� �= 0). This constraint is understood by the symmetry of
the vector-type coupling with the valence states (L1 ⊗ L′

3 =
L′

3 ). As mentioned, this coupling involves the two transverse
components (ŵ and û) with respect to the valley axis (�̂).

We calculate the spin lifetime in the L111 valley due
to electron scattering with long-wavelength acoustic phonon
modes. This intravalley process dominates the intrinsic spin
relaxation under conditions of [111] strain.12 For sufficient
uniaxial compressive strain along this direction (∼1%), one of
the valleys is significantly lowered in energy and the intervalley
scattering is quenched. Then, phonon-induced intravalley spin
flips can dictate the spin relaxation of conduction electrons
if scattering from impurities is negligible (nondegenerate
doping). To get an analytical expression of the intravalley
spin lifetime, the phonon energy is approximated by �AC(q) =
h̄vACq, where vAC � 3.5 × 105 cm/s is the speed of acoustic
phonons in Ge. We also make use of the long-wavelength
limit and approximate the acoustic phonon population by
kBT /�AC(q) � 1. Then by considering a Boltzmann distri-
bution of electrons and substituting Eqs. (32)–(34) into Eq. (4)
one gets

1

τs,intra
= γ 2

3

τ0

(
kBT

U0

) 7
2

[sin2 ϑ + (1 + cos2 ϑ)β], (35)

where U0 = 25.85 meV is the room-temperature thermal
energy. β ≈ 0.12 and τ0 ≈ 0.3 ns are expressed by

β = 2mlγ
2
2 + 3mtγ

2
1

5mtγ
2
3

, (36)

1

τ0

= 1024

3

(
1 − mt

m∗
t

)2
�2

E2
g,v

(
md

2π

) 3
2 U

7
2

0

h̄4�v2
AC

. (37)

In accord with momentum scattering, we have used a value
of � = 7.5 eV for the deformation potential constant.60 The
anisotropy in the intravalley spin relaxation is evident [square
bracket term in Eq. (35)]. Our analysis shows that the lifetime
is the longest for spin orientation along the valley (and strain)
axis where ϑ = 0. It drops by nearly a factor of 5 when the
spin is oriented in the perpendicular plane (ϑ = π/2). At room
temperature this change amounts to reducing the intravalley
spin lifetime from ∼700 to ∼150 ns. These extremely long
time scales are a consequence of the space-inversion symmetry
and the position of the valley center in the edge of the Brillouin
zone.

The dashed line in Fig. 4 shows the calculated temperature
dependence of the intrinsic spin lifetime due to intravalley
scattering with long-wavelength acoustic phonons. The spin
orientation is chosen along the z axis [assigning cos2 ϑ = 1/3
in Eq. (35)], and is therefore equivalent in all four valleys.
Figure 4 also shows that in unstrained bulk Ge, the spin
lifetime of conduction electrons due to intravalley scattering
with acoustic phonons is two orders of magnitude longer than
the intervalley spin lifetime at room temperature. In addition,
at very low temperatures the intrinsic spin lifetime reaches time
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FIG. 4. (Color online) Calculated temperature dependence of
the intrinsic spin lifetime in unstrained Ge due to electron-phonon
interaction. The dashed line denotes the effect of intravalley scattering
with long-wavelength acoustic phonons [Eq. (35)] for spin orientation
along the z axis. The solid line denotes the much stronger effect of
intervalley scattering in the unstrained case (Fig. 2). The markers
are from rigorous numerical results (see Appendix B). To the best
of our knowledge, the only available measured spin lifetime in
nondegenerate bulk Ge above liquid He temperatures was recently
reported by Guite and Venkataraman, where it was found that
τs = 4.6 ± 1 ns.32 This result is in excellent agreement with the
calculated spin lifetime, which in this temperature range is attributed
to intervalley scattering. The rarity of experimental results, however,
calls for additional measurements to fully test our theory.

scales of 1 s. Therefore, the phonon-induced spin relaxation
is likely to be readily masked at very low temperatures by
hyperfine interactions and Raman processes that are caused
by extrinsic effects (e.g., electron localization on residual
impurities).13 Finally, the square markers in Fig. 4 show results
of rigorous numerical calculations following the procedure
in Ref. 9. Details of this numerical technique are provided
in Appendix B. Evidently, the analytical approach of using
overlap integrals provides rather accurate results and yet it
clearly explains the underlying physics.

Before concluding this part, we compare three aspects of
the intravalley spin relaxation in Si and Ge. First, the overlap
integral approach is valid in Ge due to the relatively large
separation of the nondegenerate conduction band from other
valence and conduction bands. In Si, on the other hand, the
intravalley spin relaxation is affected by the proximity of
the conduction bands where the off-diagonal terms of the
deformation potential play a key role.10,13 Second, along
the -symmetry axis which is relevant in Si, the spin-orbit
coupling does not lift the energy degeneracy between the
upper pair of valence bands. As a result, the intravalley spin
relaxation is not affected by the internal spin-orbit coupling in
the valence band and the anisotropy is weaker in Si reaching
a factor of 2.13 Finally, the intrinsic spin relaxation rate of
the intravalley process exceeds that of the intervalley process
below 50 K in Si,65 and below 20 K in Ge. Reasons for the
difference are the larger energy of zone-edge phonons in Si
and the T 5/2 rather than T 7/2 temperature dependence of its
intravalley process.

V. SUMMARY

We have presented various origins that limit the intrinsic
spin lifetime of conduction electrons in Ge. In unstrained bulk
Ge and at T > 20 K, the intrinsic spin lifetime is limited
by intervalley electron scattering with zone-edge phonon
modes of X1 and X4 symmetries (reaching ∼1 ns at 300 K).
This spin lifetime is governed by the coupling with the
upper conduction bands and its temperature dependence is
set by the thermal population of the zone-edge phonons (with
energies of about 30 meV). By analyzing time-reversal and
crystal symmetries in the multivalley conduction band, we
have found the spin orientation dependence of the dominant
intervalley spin-flip processes. This dependence allowed us
to quantify the change in the intervalley spin lifetime when
varying the spin orientation under various stress configurations
[Eqs. (10)–(13)].

We have derived a spin-dependent k·p Hamiltonian model
in the vicinity of the zone-edge L point [Eqs. (18)–(24)].
This compact model provides a lucid picture of the spin-orbit
coupling effects in Ge. Similar to using the Kane model in
zinc-blend semiconductors,66 the compact L-point Hamilto-
nian has implications beyond derivation of spin-flip matrix
elements. For example, by employing a plane-wave expansion
along confined directions in nanostructures, this Hamiltonian
model can be used to study spin-dependent properties in Ge
nanostructures. Together with Si related theories,10,13 one can
also investigate spin properties in SiGe alloys.

Using the eigenvectors of the Hamiltonian matrix, we
have derived forms of the spin-flip matrix elements due to
intravalley scattering with long-wavelength acoustic phonons
[Eqs. (32)–(34)]. The intrinsic spin relaxation rate of the
intravalley process is found two orders of magnitude slower
than that of the intervalley process. As such, intravalley spin
flips affect the overall spin relaxation only when quenching the
intervalley spin relaxation (e.g., by application of a uniaxial
compressive stress along the [111] crystallographic axis).12

Beyond the T 7/2 temperature dependence of the intravalley
spin relaxation, we have also quantified its dependence
on the spin orientation [Eq. (35)]. The anisotropy of the
intravalley spin relaxation results in a remarkably long spin
lifetime (nearly 1 μs at room temperature) when the spin is
oriented along the valley (and strain) axis. The relatively large
anisotropy of the intravalley spin relaxation was explained
by the coupling with the internal spin-orbit interaction in the
valence band.

We have elucidated the differences in the spin relaxation
of bulk Si and Ge crystals. While both materials have a
diamond-crystal structure, in Ge the valley center is located
on the edge of the Brillouin zone (L point) and the lowest
conduction band is well separated from other bands. These
properties lead to a very long intravalley spin lifetime in
Ge with a cubic power-law dependence of intravalley spin
flips on wave vector components. This cubic dependence is
also expected to be larger than in graphene where unlike Ge
but similar to Si, the time-reversal operation couples states
in inequivalent valleys. Therefore, in spite of being heavier
than Si and carbon, nondegenerate and strained bulk Ge is a
very promising material choice for implementing spintronic
devices.67–70
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APPENDIX A: DERIVATION OF THE SELECTION RULES
FOR INTERVALLEY SPIN-FLIP TRANSITION

We first focus on scattering between the L111 and L111
valley centers [kL = (1,1,1)/2 and kLt = (1,1,−1)/2]. Gen-
eralization to other valley centers is made at the end of this
Appendix.

The selection rules connecting L and Lt points involve
common symmetry operations of the little groups at kL, −kLt ,
and qX = kLt − kL,

gc ∈ {(ε|0),(ε̄|0),(δ2xȳ |τ ),(δ̄2xȳ |τ ),

(i|τ ),(ī|τ ),(ρxȳ |0),(ρ̄xȳ |0)}. (A1)

They also involve operations that switch between kL and −kLt ,

ge ∈ {(δ2z|0),(δ̄2z|0),(ρz|τ ),(ρ̄z|τ ),

(ρxy |0),(ρ̄xy |0)},(δ2xy |τ ),(δ̄2xy |τ )}. (A2)

The bar over operations denotes an additional 2π rotation
(in double group notation). Table II lists the characters of
the nontrivial operations. By considering these operations
and time-reversal symmetry, the number of independent
nonvanishing matrix elements for each of the zone-edge
phonon symmetries in diamond-crystal structures (X1, X3,
X4) is given by

NXi
= 1

2h0

[∑
gc

χ
−kLt

L+
6t

(gc)χkL

L+
6
(gc)χqX

Xi
(gc)

−
∑
ge

χ
kL

L+
6

(
g2

e

)
χ

qX

Xi
(ge)

]
, (A3)

TABLE II. Nontrivial relevant IR characters and matrices in an
intervalley scattering between kL and kLt valleys. For 1D IR L1(t) and
2D IR X3 only characters are used and shown. I and σx used in 2D
IR X1 and X4 are the 2 × 2 identity matrix and Pauli matrix. These
matrices are based on our choice of basis states. The final results
do not depend on this specific choice since the two phonon modes
belonging to each IR are degenerate. χ−kLt

Lt
= χ

kLt

Lt
. Also shown is the

effect of exchange operations on L star. Basis states in D1/2 is along
±z in spin space.

X1 X3 X4 L1 L1t D1/2

(δ2xȳ |τ ) σx −I I 1 −1 e− 3πi
4

(
0 i

1 0

)
(i|τ ) σx 0 σx 1 −1

(
1 0
0 1

)
(ρxȳ |0) I 0 σx 1 1 e− 3πi

4

(
0 i

1 0

)
(δ2z|0) I −2 −I kL ↔ −kLt

( −i 0
0 i

)
(ρz|τ ) σx 0 −σx kL ↔ −kLt

( −i 0
0 i

)
(ρxy |0) I 0 −σx kL ↔ −kLt e− 3πi

4

(
0 1
i 0

)
(δ2xy |τ ) σx −2 I kL ↔ −kLt e− 3πi

4

(
0 1
i 0

)

where h0 = 8 is the number of gc or ge operations and
χL+

6(t)
= χL1(t) × χ1/2. The second sum in Eq. (A3) denotes the

effect of time-reversal symmetry and the minus sign takes into
account the parity from the spinor basis and electron-phonon
interaction (see Ref. 46 for more details). By straightforwardly
plugging the characters of Table II into Eq. (A3) one finds the
general selection rule of Eq. (8).

Our aim is to express matrix elements of intervalley electron
scattering with X point zone-edge phonons,

MXi
(kL,s1; kLt ,s2) ≡ 〈kLt ,s2|HXi

|kL,s1〉, (A4)

in terms of NXi
independent constants. This identification is

made by connecting different matrix elements via appropriate
symmetry operations.

First, by time-reversal and space-inversion symmetries of
diamond-crystal structures we can write

〈kLt ,⇑|HXi
|kL,⇑〉 = 〈kLt ,⇓|HXi

|kL,⇓〉∗, (A5)

〈kLt ,⇓|HXi
|kL,⇑〉 = −〈kLt ,⇑|HXi

|kL,⇓〉∗. (A6)

These identities hold for all phonons and possible spin
orientations. The minus sign in Eq. (A6) roots from the Pauli
matrix σy in the time-reversal operator T̂ = K̂σy , where K̂ is
the complex conjugate operator.

We first study the case s‖z, where s is the spin orienta-
tion. For X1, the (ρxȳ |0) operation equates spin-conserving
transition to itself (seen from the IR matrices of X1 and
DL+

6(t)
= DL1(t) × D1/2 in Table II),

〈kLt ,⇑|H
X

a(b)
1

|kL,⇑〉 (ρxȳ |0)= 〈kLt ,⇓|H
X

a(b)
1

|kL,⇓〉, (A7)

where two X1 basis states are denoted as Xa
1 and Xb

1 . This
choice is arbitrary and will not affect the final results due to
the twofold degeneracy of the phonon modes. Equations (A5)
and (A7) require the matrix elements of each of the X1 phonon
branches to be a real number. From Table II one can also find
(i|τ ) relates the matrix elements of the two degenerate modes
by a minus sign,

〈kLt ,⇑|H
X

a(b)
1

|kL,⇑〉 (i|τ )= −〈kLt ,⇑|H
X

b(a)
1

|kL,⇑〉. (A8)

With this additional information, a real number DX1,m could
be assigned such that

〈kLt ,⇑|HXa
1
|kL,⇑〉 = −〈kLt ,⇑|HXb

1
|kL,⇑〉 = DX1,m.

(A9)

Other operations do not give further information on these
matrix elements.

With the same operations, the result for spin-flip transition
is

〈kLt ,⇓|H
X

a(b)
1

|kL,⇑〉 (ρxȳ |0)= −i〈kLt ,⇑|H
X

a(b)
1

|kL,⇓〉,
(A10)

〈kLt ,⇓|H
X

a(b)
1

|kL,⇑〉 (i|τ )= −〈kLt ,⇓|H
X

a(b)
1

|kL,⇑〉.
(A11)
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Together with Eq. (A6), we can assign a real number DX1,s

such that

〈kLt ,⇓|HXa
1
|kL,⇑〉 = −〈kLt ,⇓|HXb

1
|kL,⇑〉

= (1 + i)DX1,s . (A12)

Next we analyze matrix elements due to X4 modes, where
there is only one independent scattering constant. From
Table II the operations (δ2xȳ |τ ) and (i|τ ) give relations for
spin-conserving transitions

〈kLt ,⇑|H
X

a(b)
4

|kL,⇑〉 (δ2xȳ |τ )= −〈kLt ,⇓|H
X

a(b)
4

|kL,⇓〉,
(A13)

〈kLt ,⇑|H
X

a(b)
4

|kL,⇑〉 (i|τ )= −〈kLt ,⇑|H
X

b(a)
4

|kL,⇑〉.
(A14)

Together with Eq. (A5), a real number DX4,s could be assigned

〈kLt ,⇑|HXa
4
|kL,⇑〉 = −〈kLt ,⇑|HXb

4
|kL,⇑〉 = iDX4,s .

(A15)

For spin-flip transitions, the exchange operation (δ2z|0)
together with the general time-reversal operation connect the
matrix elements to their negatives,

〈kLt ,⇓|H
X

a(b)
4

|kL,⇑〉 (δ2z|0)= 〈−kL,⇓|H
X

a(b)
4

|−kLt ,⇑〉
TR= −〈kLt ,⇓|H

X
a(b)
4

|kL,⇑〉, (A16)

where the time-reversal operation sends electron states to their
Kramers conjugate, and keeps the electron-phonon interaction.
Thus spin-flip matrix elements due to X4 phonon modes
vanish.

Therefore, with spin direction along z, the scattering
matrices from kL to kLt for relevant phonon modes are

HXa
1

= −HXb
1
=

(
DX1,m (−1 + i)DX1,s

(1 + i)DX1,s DX1,m

)
, (A17)

HXa
4

= −HXb
4
=

(
iDX4,s 0
0 −iDX4,s

)
, (A18)

where Eqs. (A5) and (A6) are used to get two other elements
in each matrix. Equations (A17) and (A18) indicate that in this
specific case X1 is allowed for both spin-conserving and spin-
flip transitions, while X4 is only allowed for spin-conserving
transition.

Next we extend the analysis to arbitrary spin orientation,
which leads to the anisotropy of spin relaxation processes and
enables a direct comparison to a wide range of spin injection
experiments. The spin orientation (s) is defined in terms of
polar (θ ) and azimuthal angles (φ) with respect to the +z and
+x directions. The new spin states relate to the original ones
by an “active” rotation matrix in spin subspace,

exp

(
iσ · ω̂ θ

2

)
=

(
cos θ

2 − sin θ
2 e−iφ

sin θ
2 eiφ cos θ

2

)
, (A19)

where ω̂ = ŝ × ẑ/|ŝ × ẑ| is the unit vector along the rotation
axis. The new spin states follow:

|kL,⇑〉 = cos
θ

2
|kL,⇑z〉 + sin

θ

2
eiφ|kL,⇓z〉, (A20)

TABLE III. |MXi
(kL,s; kLt , − s)|2/2D2

Xi
for intervalley spin flips

between L111 and L111̄ valleys. For each of the nonvanishing modes
Xi , the relative amplitude is provided for spin orientation (s) along any
of the inequivalent high-symmetry crystal directions. Results between
other valleys can all be obtained by trivial rotation transformation.

s [0 0 1] [1 0 0] [1 1 0] [1 1̄ 0] [1 0 1] [1 1 1] [1 1̄ 1]

X1 4 2 4 0 3 4 4/3
X4 0 2 2 2 1 4/3 4/3

|kL,⇓〉 = − sin
θ

2
e−iφ |kL,⇑z〉 + cos

θ

2
|kL,⇓z〉, (A21)

while the new scattering matrices from kL to kLt are readily
obtained by applying the rotation operator of Eq. (A19) on
the matrices Eqs. (A17) and (A18). The new spin-flip matrix
elements are

〈kLt ,⇓|HXa
1
|kL,⇑〉

= −〈kLt ,⇓|HXb
1
|kL,⇑〉

=
[

(1 + i) cos2 θ

2
+ (1 − i) sin2 θ

2
e2iφ

]
DX1,s , (A22)

〈kLt ,⇓|HXa
4
|kL,⇑〉 = −〈kLt ,⇓|HXb

4
|kL,⇑〉

= i sin θeiφDX4,s . (A23)

Summing the square amplitudes of the two branches leads
to Eq. (9) in the paper. Table III lists the relative magnitudes
of the squared spin-flip matrix elements for s along several
inequivalent high-symmetry directions of the crystal.

The matrix elements are determined by the relevant
directions of the spin orientation and the valley-to-valley
configurations. For configurations other than L111 ↔ L111, the
matrix elements could be obtained from Eq. (9) by coordinate
transformations. If we rewrite Eq. (9) in the form of the
projections of s on x,y,z axes as∑

i=1,2

|〈kLt ,⇓|HXi
j
|kL,⇑〉|2

=
{

2D2
X1,s

(1 + ẑ2 + 2x̂ŷ) if j = 1

2D2
X4,s

(1 − ẑ2) if j = 4
, (A24)

then in other valley-to-valley configurations, for example,
L111 ↔ L111, the matrix elements are just interchange {x̂,ŷ,ẑ}
of Eq. (A24) into {x̂, − ẑ,ŷ}. Results of all possible configu-
rations are listed in Table I of the paper.

APPENDIX B: CALCULATING VALUES OF MATRIX
ELEMENTS AND OF INTERVALLEY SPIN-FLIP

SCATTERING CONSTANTS

We present the procedure to numerically calculate the
values of spin-flip matrix elements [Mν(k1,⇑; k2,⇓)] and of
the intervalley spin-flip scattering [DX1,s and DX4,s in Eq. (9)].
These results are then used to calculate the spin lifetime using
a numerical technique that is briefly discussed at the end of this
Appendix. The bra and ket states in matrix elements are taken
from the results of a local empirical pseudopotential method
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(EPM) where spin-dependent states have the form59

|k,⇑,�〉 = exp(ik · r)
Ng∑
gj

Cgj
(k,⇑,�) exp(igj · r),

|k,⇓,�〉 = exp(ik · r)
Ng∑
gj

Cgj
(k,⇓,�) exp(igj · r). (B1)

The three quantum numbers of a state are the wave vector (k),
band number (�), and spin state (⇑ or ⇓). gj runs over Ng

reciprocal lattice vectors for each of the two spin species,

Cgj
(k,⇑,�) = agj

(k,�)|↑〉 + bgj
(k,�)|↓〉,

Cgj
(k,⇓,�) = a∗

gj
(k,�)|↓〉 − b∗

gj
(k,�)|↑〉. (B2)

To find the agj
(k,�) and bgj

(k,�) coefficients and to facilitate
the calculation of matrix elements, we define a bare potential
and spin-orbit coupling functions,

V+(k) = [Vk cos (k · τ )] I, (B3)

Vso(k1,k2) = −iμ0A(k1,k2) cos(k · τ ) {k3 · σ } . (B4)

±τ = ±(a,a,a)/8 denotes positions of the two atoms in
the unit cell where a is the lattice constant and the origin
is the midpoint between the two atoms. The wave vector
parameters are k = k1 − k2 and k3 = k1 × k2. Vk is the
form factor relating to the Fourier transform of the local atomic
pseudopotential. A(k1,k2) and μ0 denote spin-orbit coupling
parameters which are set by the potential close to the atom
cores. These three variables are discussed in greater detail
below.

To account for scattering between arbitrary states, one needs
to obtain the continuous curve of the form factor (Vk). We
have employed a piecewise Hermite cubic interpolation from
empirical values of the form factor at the first few reciprocal
lattice vectors and from its wave vector derivative at these
points,

V0 = −0.558, V√
3 = −0.288, V√

8 = 0.029,

V√
11 = 0.052, V ′

0 = 0, V ′√
3

= 0.386,

V ′√
8

= 0.221, V ′√
11

= −0.066,

where k is in units of 2π/a and Vk in Ry. We also assume
that Vk>3.8 = 0 in agreement with its negligible values in
this wave vector range. All these values were chosen after
careful calibration in which not only the band structure of Ge
is recovered but also its deformation potential quantities (shifts
of energy bands and changes of energy gaps with respect to
stress). Given that a lattice vibration is essentially a dynamic
stress, these quantities are imperative for scattering problems.

For the spin-orbit coupling parameters [Eq. (B4)] we have
followed the analysis of section F in Ref. 59. A(K1,K2)
is calculated from atomic radial functions using Herman-
Skillman tables,71 while μ0 = 11.3 meV Å2 is the only free
parameter whose value is chosen to fit experimentally known
parameters such as the split-off energy. An approximate but
more compact approach to treat the atomic spin-orbit coupling
follows Eq. (8) of Ref. 72 whose parameters for Ge are
μ = 12.25 meV and ζ = 10 Å−1.

Using Eqs. (B3) and (B4), the wave function coefficients in
Eq. (B2) are eigenvectors of a 2Ng × 2Ng Hamiltonian matrix
constructed from the following 2 × 2 blocks:59

Hg1,g2 (k) =
(

h̄2|g1 + k|2
2m∗ δg1,g2

)
I + V+(g)

+Vso(K1,K2). (B5)

g = g1 − g2 and K1(2) = g1(2) + k. In order to fit the band
structure, we have used a plane-wave basis with Ng = 235
reciprocal lattice vectors for each spin species and used
m∗ = 1.235m0 in the kinetic term of Eq. (B5). The resulting
energy band structure is shown in Fig. 3.

Following Eq. (2) of the main text, the spin-flip matrix
element reads

Mν(k1,⇑; k2,⇓)

=
∑
j,α

ξα,ν(q)eiqRjα · 〈k2,⇓|∇rVat(r − Rjα)|k1,⇑〉,

(B6)

where the band index is omitted from the bra and ket states
knowing that the scattering is between states of the lowest
conduction band. The atom displacement vector [ξα,ν(q)] is
calculated from a standard adiabatic bond-charge model in
Ge, where we use without changing the force constants from
Refs. 53 and 73, except that we set the convergence parameter
to P = 0.25 to achieve fast Ewald transformation. The number
of reciprocal lattice vectors used is 59 and of real lattice vectors
is 55.

The electron-phonon interaction matrix element in Eq. (B6)
is easy to write down in terms of plane-wave basis states.
Substituting Eqs. (B1)–(B4) into Eq. (B6) and changing the
integration coordinates r → r + Rjα , we get that

Mν(k1,⇑; k2,⇓) =
∑
g1,g2

K
∑

α

ξα,ν(q)C†
g2

(k2,⇓)

× [V+(|K|) + Vso(K1,K2)] Cg1 (k1,⇑),

(B7)

where K1(2) = g1(2) + k1(2), K = K2 − K1, and q = k2 − k1

is a result of the crystal translation symmetry. It is critical to
use identical parameters in the electron-phonon interaction
[Eq. (B7)] and in the Hamiltonian [Eq. (B5)]. This natural
choice ensures the so called Elliott-Yafet cancellation,42 in
which intravalley spin-flip matrix elements in Ge vanish
at the zeroth, first, and second powers of the wave vector
components (see discussion in Appendix D). Using Eq. (B7),
the bare potential part V+ corresponds to Elliott processes in
which spin flips are governed by coupling of opposite spin
components in the state coefficients. The spin-orbit coupling
part Vso corresponds to the Yafet process in which spin flips are
governed by σx and σy components of the spin-orbit coupling.

The intervalley spin-flip scattering constants DX1,s and
DX4,s are calculated from Eq. (B7) by considering the ν =
X1 and ν = X4 phonon symmetries with L-point states:
k1 = kL, k2 = kLt , and q = kLt − kL. Using these phonon
symmetries and wave vectors we get that DX1,s = 35 meV/Å
and DX4,s = 46 meV/Å. When performing rigorous numerical
integration of the spin lifetime [Eq. (4)], we have used a grid
spacing of 0.005 × 2π/a in k space while using Eq. (B7) to
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TABLE IV. Relevant invariant components and matrices of the
L111 point. The {�,w,u} are valley coordinates [Eq. (19)].

IRs Invariant components (111) Invariant matrices

L1 k2, − 1
2 (k2

w + k2
u) + k2

� 1, I

L2 σ� ρy

L3 {σw,σu} {[0,1],[1,0]},{ρx,ρz}
L′

3 {−kw,ku}, {(k × σ )w,(k × σ )u} {[0,1],[1,0]}

calculate the spin-flip matrix elements for all possible k1 and
k2 combinations up to state energies ∼200 meV above the
conduction edge. These numerical results are shown by the
marker symbols in Figs. 2 and 4.

APPENDIX C: DERIVATION OF THE SPIN-DEPENDENT
L-POINT HAMILTONIAN AND CALCULATION

OF ITS PARAMETERS

We use the method of invariants to derive the Hamiltonian.
The general procedure is (1) figuring out the two IRs of
the coupling matrix; (2) decomposing the direct product of
these two IRs into a sum of IR(s); and (3) according to this
decomposition, associating invariant components and matrices
to construct the Hamiltonian. These invariant components and
matrices are obtained by applying the symmetry operators
on the components of the perturbation and the chosen basis
states, respectively. Associating the invariants to IRs is then
carried by examining the resulting transformation. Table IV
lists these invariant components and matrices of the L111 point.
From this table the constructions of Hij in Eqs. (20)–(24) are
straightforward.

Table V lists all of the calculated parameter constants
that appear in the L-point Hamiltonian, where some values
are also known empirically.57,74 The energy gaps (Eg,u and
Eg,v), spin-orbit induced splitting (3 and 3′), and masses
are readily extracted from the spin-dependent band structure
whose calculation details were discussed in Appendix B
(the resulting energy bands are shown in Fig. 3). Interband
parameters were calculated using a different technique which
involves spin-independent states of different bands in the L

point,

|kL,�〉 = exp(ikL · r)
Ng∑
gj

cgj
(k,�) exp(igj · r), (C1)

where cgj
(k,�) are elements of the eigenvectors of the

spin-independent EPM Hamiltonian. Then, the evaluation of
momentum matrix elements (P , P1, and P2 in Table V) follows

TABLE V. Parameters of the L-point Hamiltonian [Eqs. (20)–
(24)] for bulk germanium. m0 denotes the free electron mass. See text
for calculation details.

Eg,u 2.2 eV P 9 eV Å m∗
t 0.17m0

Eg,v 3.3 eV P1 7 eV Å m∗
l 1.60m0

L 0.027 eV P2 1.8 eV Å m∗
t,3 1.2m0

3 0.022 eV α 0.04 eV Å m∗
l,3 1.7m0

3′ 0.1 eV m∗
t,3′ −0.16m0

m∗
l,3′ 1.9m0

directly from

P = h̄2

m0

∑
g

gc∗
g(kL,�i)cg(kL,�j ).

When calculating P , �i is the lowest conduction band, �j is
one of the doubly degenerate upper valence bands, and the
nonvanishing components of g are {gw,gu} (w and u are the
transverse components lying perpendicular to the valley axis
connecting the � and L points). When calculating P1 and P2,
�i and �j are from the upper conduction and valence bands.
P1 is evaluated with gw and gu while P2 with g� (longitudinal
component; along the valley axis).

The interband spin-orbit coupling parameters (L and α)
follow from the interaction of L states via λ[∇V × (p + h̄k)],
where λ = h̄/(4m2

0c
2). These constants are evaluated from∑

g1,g2

[
c∗

g2
(kL,�i)Fsocg1 (kL,�j )

]
. (C2)

In calculating L, the spin-orbit coupling vector reads

Fso = −i[μ0A(K1,K2) cos(g · τ )]K1 × K2, (C3)

where Ki = gi + kL, g = g1 − g2, and other parameter are
the same as in Eq. (B4). In addition, the involved bands [�i

and �j in Eq. (C2)] are the lowest and upper conduction
bands. In calculating α, the involved bands are from the lowest
conduction band and upper valence bands, while the spin-orbit
coupling vector reads

Fso = −i
μ0

k
[A(K′

1,K
′
2) cos(g · τ )K′

1 × K′
2

−A(K1,K2) cos(g · τ )K1 × K2], (C4)

where K′
i = gi + kL + k and k is measured from the L point

along transverse axes (k = kŵ or k = kû).

APPENDIX D: WAVE VECTOR ORDER ANALYSIS OF
INTRAVALLEY SPIN-FLIP TRANSITIONS

The theory for intravalley spin flips in Ge and Si share
similar features. In Ref. 13 we have analyzed the case of Si.
Here we summarize the important findings and discuss the
difference for the case of Ge. By invoking space-inversion
and time-reversal symmetries the leading order terms of
intravalley scattering between |k1 = K + q/2,⇑〉 and |k2 =
K − q/2,⇓〉 are found to be

q⊗2

8
〈K,⇓|(L†)⊗2A+,λ

q + A+,λ
q L⊗2 − 2L†A+,λ

q L|K,⇑〉

+q
2
〈K,⇓|L†A−,λ

q + A−,λ
q L|K⇑〉, (D1)

where lower order terms (in q) vanish due to the celebrated
Elliott-Yafet cancellation.13,42 We explain the symbol nota-
tions of these matrix elements. q⊗2 · L⊗2 denotes the scalar
product of two second-rank tensors (each formed by a dyadic
product of the vector with itself). L is the derivative in k space
with its components defined by

Li |k,s〉 ≡ lim
δk→0

|k + δki,s〉 − |k,s〉
δki

. (D2)

In connection with the L-point Hamiltonian, L operates on
the eigenvectors [Cγ (k,s)] and the envelope phase of the
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wave function [exp (ik · r)]. The electron-phonon interaction
in Eq. (D1) is given by

A±,λ
q = ξ±,λ

q · ∇V±, (D3)

where the + and − signs denote, respectively, the in-phase and
out-of-phase motion of atoms in the unit cell. For scattering
with long-wavelength acoustic phonon modes (λ is TA or LA),
the out-of-phase polarization vector (ξ−,λ

q ) is linear in q, while
the in-phase vector (ξ+,λ

q ) has a zeroth-order dependence (e.g.,
qi/q terms). It is the opposite case for scattering with long-
wavelength optical phonon modes (λ is TO or LO). These
wave vector dependencies are taken into account in finding
the power-law order of the intravalley spin-flip matrix element.
Denoting the atoms’ positions in the unit cell by τA and τB

with respect to the cell’s origin, the potential in Eq. (D3) reads

V±(r) = Vat(r − τA) ± Vat(r − τB), (D4)

where the spin-orbit interaction is included in the atomic
potential [Eq. (3)].

In the next step of the analysis we expand the states around
the valley center. The bra and ket states in Eq. (D1) are taken at
the average of k1 = K + q/2 and k2 = K − q/2. We expand

this averaged state around the valley center position (K0),

|K,s〉 = |K0,s〉 + K · L|K0,s〉 + O(K2), (D5)

where K is measured with respect to K0. Substituting
this expansion in Eq. (D1), one can identify which terms
vanish. This identification is carried straightforwardly using
the transformation properties of L, ∇V±, and |K0,s〉 under
space-inversion and time-reversal symmetries.

The difference between the analysis of Si and Ge stems
from the position of the valley center. The valley center in Ge
is at the zone-edge L point, and in Si it is inside the Brillouin
zone (0.15 × 2π/a away from the X point along the  axis).
Since K0 and −K0 are the same point in Ge, space-inversion
operation keeps |K0,s〉 invariant in Ge but not in Si. Together
with the transformations of L, ∇V±, and |K0,s〉 one can readily
identify the dominant contributions to intravalley spin-flip
matrix elements. Scattering with long-wavelength acoustic
phonons is led by q�qm products in Si and by K�qmqn products
in Ge. For scattering with long-wavelength optical phonons,
the leading terms in Si are linear in q, and in Ge they include
K�qm products. Finding the exact products, their coefficients
and deformation potential constants require a combination of
k·p, rigid ion, and group theories.13
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