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Analysis of phonon-induced spin relaxation processes in silicon
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We study all of the leading-order contributions to spin relaxation of conduction electrons in silicon due to
the electron-phonon interaction. Using group theory, the k · p perturbation method, and the rigid-ion model,
we derive an extensive set of matrix element expressions for all of the important spin-flip transitions in the
multivalley conduction band. The scattering angle has an explicit dependence on the electron wave vectors, phonon
polarization, valley position, and spin orientation of the electron. Comparison of the derived analytical expressions
with results of empirical pseudopotential and adiabatic band charge models shows excellent agreement.
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I. INTRODUCTION

Silicon is an ideal material choice for semiconductor spin-
based devices.1–3 It has a relatively weak spin-orbit coupling,
which leads to a negligible probability of flipping the electron’s
spin during a scattering event. Furthermore, the Dyakonov-
Perel spin relaxation mechanism is absent in bulk silicon due
to its inversion symmetry (i.e., no intrinsic magnetic field
around which the electron spin precesses).4 Finally, the zero
nuclear spin of its naturally abundant isotope suppresses spin
relaxation by hyperfine interactions.5–8 These characteristics
have motivated a wide interest in silicon spintronics.9–17

In cases where spin dephasing by precession is weak, the
spin relaxation rate is set by spin-flip scattering. For conduction
electrons in crystals, this scattering is described by a matrix
element of the form 〈k2, ⇓s |Hsf|k1, ⇑s〉, where the states
are identified with wave vector k due to the translational
symmetry. For a given spin-flip mechanism (Hsf), this matrix
element depends on the initial and final state wave vectors
k1 and k2, as well as on the spin orientation s. In silicon,
conduction electrons reside in six valleys near the edges of the
Brillouin zone, as shown in Fig. 1(a). The valley centers are
positioned on the � axis connecting the � and X points. In
multivalley semiconductors, the electron remains in the same
valley after an intravalley scattering and it switches valleys
after an intervalley scattering. Figure 1(a) shows examples of
intervalley scattering in silicon, where g and f processes refer
to electron scattering between opposite valleys and between
valleys that reside on perpendicular crystal axes, respectively.
When dealing with spin-flip scattering, the spin orientation
(s) further breaks the scattering symmetry. The resulting
anisotropy in spin relaxation depends on the projections of
s on crystallographic axes [Fig. 1(b)].

Spin-flip mechanisms can be classified into Yafet and Elliott
processes. The former involves spin-dependent interaction,
whereas the states are viewed as pure spin states.18 Examples
of spin-dependent interactions include the spin-orbit coupling
of the host crystal via electron-phonon interaction (Hsf ∼ δR ·
∇Vso), spin-orbit coupling of defects via electron-impurity
scattering (Hsf ∼ ∇Vimp × p · σ ), and electron-nuclear hy-
perfine interaction (Hsf ∼ λS · I). The Elliott processes are
governed by spin mixing in the electron states due to the
crystal spin-orbit coupling, whereas the interaction is spin
independent (e.g., δR · ∇V ).19 In this paper the focus is on

spin relaxation due to the electron-phonon interaction where
the interplay between Elliott and Yafet processes plays a key
role in setting the intrinsic spin lifetime. In Sec. II we provide a
general overview of the spin relaxation mechanisms in n-type
silicon and we show that the electron-phonon interaction
dominates the spin relaxation of conduction electrons over
a wide range of temperature and doping conditions.

The spin relaxation due to electron-phonon interaction in
silicon was studied using different theoretical approaches. The
seminal works of Overhauser, Elliott, and Yafet enabled an
approximate quantitative connection between the spin and mo-
mentum relaxation times via the shift of the g factor.18–20 Yafet
also derived a general form of the intravalley scattering by
acoustic phonon modes.18 Intervalley scattering was included
in three recent works.21–23 Numerical analysis of the measured
spin relaxation times above 50 K in intrinsic silicon was
carried out by Cheng, Wu, and Fabian.22 The analysis included
calculation of electron energies and states using an empirical
pseudopotential model (EPM),24 of phonon dispersion and
polarization vectors using an adiabatic bond charge model
(ABCM),25 and of a rigid-ion model approximation to describe
the electron-phonon interaction.26 An analytical approach was
then developed by Li and Dery using a compact spin-dependent
k · p Hamiltonian model around the zone edge X point.21 This
model was then used to derive the dominant spin-flip matrix
elements where the spin-orbit coupling signature appeared
only in the expansion of electronic states. The electron-
phonon interaction, on the other hand, was mimicked by a
phenomenological connection with deformation potential and
scattering parameters. In another recent theory, Tang, Collins,
and Flatté have used a tight-binding model to calculate the
spin relaxation in strained silicon and germanium.23

In this paper we present a comprehensive theory of
phonon-induced spin-flip mechanisms of conduction electrons
in bulk silicon. Matrix elements are derived using two different
approaches based on whether they are wave-vector dependent
or not. Table I presents the power-law dependence for spin-flip
and spin-conserving matrix elements as well as the theoretical
approaches to derive their forms. When transitions between
valley-center states do not vanish [i.e., M(k0,s ; k′

0, ± s) �= 0,
k0, k′

0 at respective valley centers], group theory can be
used alone to derive explicit forms of their matrix elements
including the spin orientation dependence. As shown in the
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FIG. 1. (Color online) (a) Valley positions and high symmetry
points in the Brillouin zone. Valley centers are about 0.15 × 2π/a

from the X points where a is the lattice constant. Also marked are
representative intervalley transitions by g and f processes. (b) The
spin orientation (s) with respect to the crystallographic axes.

right column of the table, spin-conserving scattering is wave-
vector independent other than with long-wavelength acoustic
phonons. On the other hand, spin-flip scattering is wave-vector
independent only for the f process, whereas other processes
have higher power-law dependence than in spin-conserving
scattering. As a result, the f process is dominant in spin relax-
ation, whereas its weight is comparable to other processes in
momentum relaxation. In the next three paragraphs we discuss
key aspects of the present work, including an explanation of the
approach to derive wave-vector-dependent matrix elements.

For every type of electron-phonon scattering, we express
the leading-order spin-flip matrix elements as functions of
the electron wave vector (k), phonon polarization (ξ ), valley
position of the electron, and its spin orientation (s). For the
important f process we derive a complete set of selection
rules by rendering double group representation matrices in
conjunction with time-reversal symmetry. This approach is
more informative than the common practice of using the
character table since it distinguishes between momentum
and spin scattering processes, it unambiguously identifies
parameters for both processes, and it is generalized for any spin
orientation. The latter is important in analyzing experimental
measurements where the orientation of injected spins is

TABLE I. Power-law dependence of leading-order matrix ele-
ments for all types of electron-phonon scattering. k1,2 are the initial
and final electron wave vectors. q and K denote their difference and
average, respectively. Intravalley scattering is divided to interaction
with long-wavelength optical (OP) and acoustic (AC) phonons. Also
mentioned are theoretical approaches to derive explicit forms of the
matrix elements (beyond the power-law dependence). See text for
further details.

M(k1,s ; k2, − s) M(k1,s ; k2,s)

f -process k-independent; k-independent;
double group single group

g-process linear-in-K; k-independent;
“k · p” + single group single group

Intravalley AC, quadratic-in-q; AC, linear-in-q;
OP, linear-in-q; OP, k-independent;

“k · p” + single group “k · p” + single group”

dictated by the shape and magnetocrystalline anisotropy of
ferromagnetic contacts or by the propagation and helicity of a
circularly polarized light beam.

In the analysis of intravalley and g-process spin flips we
employ a different approach. Derivation of selection rules
in these cases cannot be carried out solely by group theory
because the spin-flip matrix elements are wave-vector depen-
dent. Instead, we utilize a combined approach that involves
spin-dependent k · p, rigid-ion, and group theories. Ad hoc
selection rules are derived for electron-phonon interaction
between basis functions that appear in the k · p expansion of
states around the valley center. The selection rules are derived
from single group theory whenever multiple bands have to
be included in the k · p expansion. Double group bares no
advantage in this case. This theoretical procedure allows us to
include the crystal symmetry not only in the electronic states
but also in the electron-phonon interactions. One outcome
is that new scattering-angle symmetries are revealed. We
derive appealing matrix element forms by employing an elastic
continuum approximation for diamond crystal structures. A
second outcome is that the out-of-phase motion of atoms in
the primitive cell is quantified and shown to play a role in
all types of intravalley spin-flip processes including scattering
with acoustic phonons.

In this paper we thoroughly study the proximity effect
between the lowest pair of conduction bands in silicon. In
his seminal work, Yafet showed that the intravalley spin-flip
matrix element due to scattering with acoustic phonon modes
is proportional to the general form C�soq

2/E2
g , where C

is a deformation potential constant, Eg is the energy gap
from bands where the spin-orbit coupling is considered (upper
valence bands), and �so is the strength of the coupling.18 The
quadratic dependence on the phonon wave vector (q2) is a
consequence of time-reversal and space-inversion symmetries.
This quadratic dependence allowed Yafet to predict the
T −5/2 temperature dependence of the spin lifetime due to
intravalley electron scattering with acoustic phonon modes.
Yafet’s general matrix element, however, misses two important
features. First, the scalar form of this matrix element does not
provide details of the dominant phonon modes and cannot
capture the dependence on directions of q and s. Second,
the interband deformation potential between the lowest pair
of conduction bands plays a crucial role in intravalley spin
relaxation of silicon. As a result, �so/E

2
g should be replaced

by �so/(Eg�C), where �C denotes the band gap between the
two conduction bands at the valley center.21 This interband
coupling is a unique feature of the conduction band in silicon.
It results from the proximity of the valley center to the
two-band degeneracy at the X point. This coupling also
explains the discrepancy between theoretical predictions of the
spin lifetimes in strained silicon.16,23 This discrepancy can be
resolved by inclusion of d orbitals in the tight-binding model
to correctly capture the electronic behavior near the X point.27

A. Paper organization and outline of central results

This paper is organized as follows. Section II surveys
various spin relaxation processes in n-type silicon. Section III
provides a theoretical framework for the electron-phonon
interaction. The dominant f process is studied in Sec. IV.
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Using four scattering constants, Eq. (17) lists explicit forms
of the f -process matrix elements as functions of the phonon
symmetry and of the spin orientation. In Sec. V we present
detailed derivations and extensive results of intravalley and
g-process spin flips. This section begins with an introduction
of the special features and tabulation of representative results
(Table V). Selection rules and Hamiltonian forms are intro-
duced in Sec. V A, as well as accurate state vectors up to
quadratic-in-k terms. Sections V B–V D include derivations
of the core spin-flip matrix element expressions with spin
orientation dependence [Eqs. (57)–(59) with their deformation
potential constants defined in Eqs. (46), (48), and (55)]. Some
insights about the relation between analytical derivation and
EPM are discussed in Sec. VI. Spin lifetimes from integrating
analytical matrix elements [Eqs. (61)–(63)], as well as different
levels of numerical calculations, are presented and compared
in Sec. VII. Section VIII includes a summary of results and
an outlook on future work. Appendixes A–F include technical
details from different derivation phases.

II. SPIN RELAXATION PROCESSES

Spin lifetime of electrons in n-type bulk silicon varies by
more than 12 orders of magnitude with changing temperature
and doping conditions.28–49 We summarize the important
mechanisms using the map in Fig. 2.

In the low-temperature and nondegenerate regime (region
1), electrons freeze on isolated donor sites. The ground state
is split into six states (without spin) due to valley-orbit

Orbach 
  

Raman & 
hyperfine 

(1) 

(3) 

exchange & hyperfine 
in clusters 

(5) 

(4) 

1011 

Do
no

r c
on

ce
nt

ra
�o

n 
(c

m
-3

)  

1017 

1019 

1018 

Temperature (K) 
20 100 5 300 

(2) 

FIG. 2. (Color online) Diagram of dominant spin relaxation
mechanisms in n-type silicon as a function of temperature and donor
concentration. It is applicable at or near equilibrium conditions. In
region 1 electrons are localized on isolated impurity sites. In regions
4 (3) they populate the conduction (impurity) band. Region 2 is a
precursor of the impurity band (donor clusters). Region 5 includes
more than a single phase. Transitions between regions are generally
gradual and colors as well as dashed borderlines are added for ease of
illustration. The findings in this paper are relevant for nondegenerate
conditions (<1017 cm−3) in region 4.

coupling.50 For typical shallow donors such as phosphorus the
singlet (nondegenerate) state is located ∼45 meV below the
conduction band edge, while the doublet (twofold degenerate)
and triplet (threefold degenerate) states are only slightly split
and located ∼35 meV below the conduction band edge. The
extremely long spin lifetime of localized electrons in region 1 is
governed by electron-phonon Raman processes and by hyper-
fine interactions with the nonzero nuclear spin of the impurity
or Si29 isotopes.34,51–54 As an example, we mention the Orbach
process which was shown by Castner to dominate between 5
K and 20 K.54 Spin flips at the low-energy singlet state are
caused by phonon-induced virtual transitions to intermediate
triplet states at which the spin-orbit coupling admixes spin-up
and spin-down components. This process requires an initial
absorption of a ∼10 meV phonon to mediate a singlet-to-triplet
transition followed by phonon emission to transfer the electron
back to the singlet state but with opposite spin.

The spin relaxation in region 3 of Fig. 2 is due to the
formation of an impurity band. At these low temperatures
and intermediate donor concentrations, the impurity band is
populated and separated from the nearly empty conduction
band. Compared with region 1, the spin relaxation is enhanced
by orders of magnitude due to the overlap of wave functions in
different impurity centers.31 On the insulator side (region 2),
the spin relaxation is governed by exchange interactions be-
tween localized electrons and by rich hyperfine configurations
of donor clusters.30,36,55 In barely metallic samples (region 3)
the spin admixture is increased by broadening of the triplet
and singlet bands.48,56 Spin relaxation is then governed by
exchange and motional narrowing when electrons travel across
the (random) potential.40,44–48,56

Spin relaxation in region 4 of Fig. 2 is of conduction elec-
trons. Transition into region 4 is made either by increasing the
temperature (electrons are thermally excited to the conduction
band) or when the impurity band is merged into the conduction
band (heavily degenerate doping). Region 4 is pertinent to
spintronic devices in which electrons are swept away from the
magnetic junction.49,57–65 Then, the relaxation is governed by
impurity scattering (degenerate doping) or by electron-phonon
interactions (nondegenerate doping). In lateral spintronic
devices, on the other hand, electrons are kept at the vicinity of
the contact,66–73 and the transport is affected by the geometry
and properties of the contact.74–81 Spin lifetimes that exceed
the 1-ns scale were recently reported in lateral devices that
incorporate a highly degenerate n-type silicon channel.82–87

These reports suggest that impurity scattering in the bulk
silicon channel plays an important role in heavily degenerate
lateral devices that rely on spin accumulation.

Electron-phonon interaction plays a key role in the nonde-
generate doping regime of region 4. In nearly intrinsic condi-
tions, it dominates the spin relaxation already above ∼30 K,49

while at ∼1017 cm−3 it dominates above ∼100 K. The increase
in temperature is brought by the extended range at which
freeze-out conditions persist, by exchange between free and lo-
calized electrons, and by scattering from ionized impurities.39

For transport at large applied electrical fields (where Fig. 2 is
no longer valid), the electron-phonon scattering dominates the
spin relaxation of conduction electrons at all lattice temper-
atures since the effective temperature of drifting electrons is
significantly higher than the lattice temperature.88,89
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Electron-impurity scattering dominates the spin relax-
ation of conduction electrons in highly degenerate doping
concentrations (top part of region 4). An important aspect
is that at intermediate and degenerate concentrations the
impurity type influences the spin lifetime (irrespective of the
temperature).43,44,56 The original Elliott-Yafet theory, on
the other hand, suggests that the spin-orbit coupling of the host
crystal (rather than of the impurity) determines the spin relax-
ation of conduction electrons.18,19 Finally, in region 5 several
processes coexist and provide measurable spin relaxation. At
donor concentrations of 1015–1017 cm−3, Lépine showed that
the spin relaxation is governed by exchange between free and
localized electrons, by the larger spin-orbit coupling of triplet
states, and by the modulation of the hyperfine field (when
electrons make thermal transitions between localized states).39

At lower donor concentrations, the role of electron-phonon
scattering increases since the relative fraction of electrons in
the conduction band increases.39,90

III. ELECTRON-PHONON INTERACTION

Within the harmonic approximation framework the
electron-phonon interaction is generally described by91,92

Hep =
∑
j,α

δRjα · ∇Rjα
Vat(r − Rjα) , (1)

where j sums over N primitive cells and α = {A,B} labels
the two atoms of a primitive cell with the origin chosen
at their midpoint position, τ = τA = −τB = −(a/8)(1,1,1).
An atom position is then denoted by Rjα = Rj + τα and its
potential by

Vat(r) = Vat(r)I + h̄

4m2
0c

2
[∇Vat(r)×p] · σ . (2)

I is the 2 × 2 identity matrix and σ is the vector of Pauli
matrices. The first (second) term is the bare potential (spin-
orbit coupling), and it corresponds to the Elliott (Yafet) part of
Hep. The atom vibration in Eq. (1) is expressed as

δRjα =
∑

q

√
2h̄/[ρω(q)Na3][aqξα(q)eiqRjα + H.c.], (3)

where ρ is the material density and ω(q) is phonon frequency.
aq is the annihilation operator, ξ is the normalized phonon
polarization vector,93 and “H.c.” stands for Hermitian conju-
gate. The square-root prefactor is written in accordance with∑

α |ξα|2 = 2 (the number of atoms in the primitive cell).
Using crystal momentum conservation together with identi-
ties of phonon creation, 〈n2|a†|n1〉 = √

n1 + 1δn2,n1+1, and
annihilation, 〈n2|a|n1〉 = √

n1δn2,n1−1, we write the transition
amplitude of an electron from wave vector k1 to k2 by

〈k2, ± s; n(q) ± 1|Hep|k1,s; n(q)〉

= −
√

2h̄

ρω(q)Na3

√
n(q) + 1

2
± 1

2
× 〈k2, ± s|Hep|k1,s〉,

(4)

where

Hep =
∑
j,α

ξα(q)eiqRjα · ∇rVat(r − Rjα), (5)

q = k2 − k1, n(q) is phonon occupation (Bose-Einstein dis-
tribution at thermal equilibrium), and {s, − s} ≡ {⇑s , ⇓s}
denote the spin-up and spin-down states. Due to time-reversal
and space-inversion symmetries each band at wave vector k is
spin degenerate and we can define its states with respect to the
spin orientation s, such that

〈k,μ, ⇑s |σ · ŝ| k,μ, ⇑s〉 ≡ −〈k,μ, ⇓s |σ · ŝ| k,μ, ⇓s〉 � 0,

(6)〈k,μ, ⇑s |σ · ŝ| k,μ, ⇓s〉 ≡ 0,

where μ is the band index. Mixed by spin-orbit interaction,
the defined spin-up and spin-down states (⇑ , ⇓) are not pure
spin states (↑ , ↓).

Based on the symmetry of electron and phonon states we de-
rive selection rules for M(k1,s; k2, ± s) = 〈k2, ± s|Hep|k1,s〉.
It is often convenient to work with interaction that has a
fixed parity under space-inversion operation of the crystal.
We convert Eq. (1) into in-phase and out-of-phase parts,

Hep = −
∑
j,±

δR±
j · ∇rV±(r − Rj ),

δR±
j = 1

2
(δRjA ± δRjB), (7)

V±(r) = Vat(r − τA) ± Vat(r − τB).

The (anti)symmetrized cell potential V+(−) is associated with
the in(out-of)-phase motion. Using the crystal translational
symmetry,94∑

j eiqRj ∇V±(r − Rj ) coupled between states at
k1 and k2 is further reduced to N∇V±(r)δq+k1−k2,g, g being
a reciprocal lattice vector. With Eq. (5), the matrix element
becomes

M(k1,s; k2, ± s) = 〈k2, ± s|Hep|k1,s〉
= N

∑
±

ξ±(q) · 〈k2, ± s|∇rV±(r)|k1,s〉,

(8)

where in-phase and out-of-phase polarization vectors

ξ±(q) = [ξA(q)eiqτA ± ξB(q)eiqτB ]/2 (9)

satisfy |ξ+|2 + |ξ−|2 = 1. In what follows we abbreviate the
notation and absorb the scaling factor into the matrix element
definition (i.e., N〈· · · 〉 → 〈· · · 〉).

In the analysis of intravalley scattering, explicit forms of
polarization vectors are utilized. To gain further insight of
their symmetries we invoke the elastic continuum approxi-
mation for diamond crystal structures (incorporating internal
displacement).95–97 Table II lists forms of ξ±

λ (q) in the long-
wavelength limit where λ is the phonon mode. The in-phase
polarization vectors of acoustic modes (first three rows) are
of the order of unity while their out-of-phase vectors (fourth
row) are of the order of qa/2π � 1. They flip roles for optical
modes (i.e., order of unity for out-of-phase and the order of
qa/2π for in-phase vectors). Components of out-of-phase
vectors relate to the in-phase components and embody the
structure of the two-atom primitive cell,

ξ−
λ,�(q) = 1

2
ξ+
λ,�(q)(eiq·τA − eiq·τB ) + i

∑
m,n

�mn�qmξ−
λ,n(q).

Here, λ denotes any of the acoustic modes and �,m,n

are cyclic permutation of the coordinates. In writing the
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TABLE II. In-phase and out-of-phase phonon polarization vec-
tors in the long-wavelength limit (q � 2π/a). We have used the
elastic continuum approximation for diamond crystal structures.
λ = {TA1,TA2,LA} and �xyz ≈ a/16. Two TA or TO polarizations
can be linearly combined into any other orthonormal ones. See text
for further explanation.

Phonon mode Polarization expression

ξ+
TA1

,ξ−
TO1

(q) (qy, − qx,0)/
√

q2
x + q2

y

ξ+
TA2

,ξ−
TO2

(q) (qxqz,qyqz, − q2
x − q2

y )/(
√

q2
x + q2

y |q|)
ξ+

LA,ξ−
LO(q) q/|q|

ξ−
λ,�(q) iq · τξ+

λ,�(q) + i�xyz[qmξ+
λ,n(q) + qnξ

+
λ,m(q)]

expression in the fourth row of the table we have used the
following approximations. The exponential term, brought by
the macroscopic strain, is replaced by iq · τξ+(q) due to the
long-wavelength nature (q → 0). For the other term, brought
by internal displacement, the only nonvanishing components
of the third-rank tensor �ijk are �xyz = �yzx = �zxy in a
diamond-crystal structure.98 Their value is 0.5a/8.25,99

It is emphasized that in this work we use the rigid-ion
model to derive general results of intravalley spin-flip matrix
elements [Eqs. (57) and (58)]. These results do not depend
on the approximate forms of ξ± in Table II. However, since
these approximations are fairly accurate and become exact
along high symmetry directions, we can make use of them to
derive appealing spin-flip matrix elements of long-wavelength
phonon modes (Table V).

IV. INTERVALLEY f -PROCESS SPIN FLIPS

At elevated temperatures, spin relaxation in unstrained sili-
con is largely dominated by the intervalley f process.16,21,23,88

Therefore, it is crucial to have a complete set of selection rules
for f -process spin scattering. Selection rules of the intervalley
momentum relaxation (neglecting spin-orbit coupling) were
worked out by Lax and Hopfield and by Streitwolf with
single group theory.100,101 In this section we present a direct
and detailed application of double group theory to derive
spin-conserving and spin-flip matrix elements along arbitrary
spin orientation directions.

Rendering double group theory to explain the f -process
spin flips is particularly simple since electron states involve
only the two-dimensional (2D) irreducible representation (IR)
�6,102 and no perturbation between other symmetry states
is needed. For convenience, the f process is studied by
changing the spin orientation (s) while fixing the scattering
to be between the +x and +y valleys. While the total number
of independent (scattering) constants is not changed, the matrix
elements depend on the chosen spin orientation. As such, the
character table is not sufficient in mapping the dependence
on the spin orientation. We bypass this limitation and use
the explicit IR matrices. In this approach spin-conserving (in
momentum scattering) and spin-flip transitions are treated on
equal footing. In the rest of this section we first study the case of
spin orientation along a valley axis. Then we will remove this
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FIG. 3. (Color online) (a) Phonon dispersion curves in silicon.
Phonon modes at the vicinity of the red circles (black squares)
take part in spin (momentum) intervalley scattering. The f process
involves the zone-edge phonons near the �-symmetry axis (con-
necting the � and K points). The g process involves phonons near
the �-symmetry axis (between � and X points). It will be shown
that leading contributions are associated with phonon modes with
the solid symbols. Intravalley scattering relates to all branches of
long-wavelength phonons around the � point. (b) Relating phonons
with �j and �i symmetries to representative intervalley electron
transitions.

restriction and provide general expressions for the f -process
spin-flip matrix elements [Eqs. (17a)–(17f) and Table IV].

A. Spin orientation parallel to a valley axis

The f -process between opposite spin states in the +x and
+y valleys depends on whether s is perpendicular to both
valleys (s‖z) or parallel to one of them (s‖x or s‖y). For either
case, we should consider four phonon symmetries represented
by 1D IRs, �1−4. These symmetries dictate how each of
the phonon-induced interactions, H�i

[Hep in Eq. (5) with
�i phonon], transforms under symmetry operations of the �

group. In the left part of Fig. 3(a) we designate the phonon
symmetries with the six phonon branches and in row 4 of
Table III we associate these symmetries with phonon modes.
Row 5 of the table lists the energies of these modes at the
phonon wave vector that connects the valley centers.

The nonvanishing matrix elements 〈k2|H�i
|k1〉 are

obtained from selection rules that involve very few

TABLE III. Nontrivial relevant IR matrices in a f process
between +x and +y valleys [� evaluated at (−k0,k0,0), � at (k0,0,0)
or (0,k0,0), k0 = 0.85 × 2π/a]. χ

−k2
�1

= (χk2
�1

)∗. Also shown is the
effect of exchange operations on � star. Basis states in D1/2 is along
±z in spin space. The ‖ and ⊥ directions in the mode subscript are
relative to z. Ef

q is in units of meV and D�is of meV · 2π/a.

�1 �2 �3 �4 �1 D1/2

(ρz|τ ) 1 −1 −1 1 e
−ik0a

4
(−i 0

0 i

)
(ρxy |0) 1 −1 1 −1 k1↔ − k2 e− 3πi

4
( 0 1
i 0

)
(δ2x̄y |τ ) 1 1 −1 −1 k1↔ − k2 e− 3πi

4
( 0 i

1 0
)

Mode {LA, TO‖} TO⊥ {TA‖, LO} TA⊥
Ef

q 46.6, 58 57 23, 46.8 19
D�is 6.5, 2.9 3.7 1.7, 1.1
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transformations.100,102 These transformations include common
symmetry operations, gc ∈ {(ε|0),(ε̄|0),(ρz|τ ),(ρ̄z|τ )}, of the
little groups at k1, −k2, and q. They also include operations
ge ∈ {(ρxy |0),(ρ̄xy |0),(δ2x̄y |τ ),(δ̄2x̄y |τ )} that exchange k1 and
−k2. The bar over operations denotes an additional 2π

rotation. The character table of the nontrivial operations is
shown at the upper three rows of Table III. The number of
independent real constants involved in the matrix elements for
each phonon symmetry is provided by consideration of these
operations and time-reversal symmetry,

N�i
= 1

2h0

[∑
gc

χ
−k2
�6

(gc)χk1
�6

(gc)χq
�i

(gc)

−
∑
ge

χ
k1
�6

(
g2

e

)
χ

q
�i

(ge)

]
, (10)

where h0 = 4 is the number of gc or ge operations and
χ�6 = χ�1 × χ1/2. The second sum in Eq. (10) represents the
effect of time-reversal symmetry and the minus sign takes
into account the parity from the spinor basis and interaction
Hep (see, for example, Refs. 98 and 103 for more details).
By straightforwardly plugging the characters of Table III into
Eq. (10) we get

N�1 = 2, N�2 = 1, N�3 = 1, N�4 = 0. (11)

Next, the interaction matrix elements 〈k2, ± s|H�i
|k1,s〉

between specific spin species are expressed in terms of N�i

independent scattering constants. To reach this goal, we first
write down the IR matrix D�6 for a given spin orientation.
We choose the spin orientation conveniently along the z

direction, and then D�6 = D�1 × D1/2 using Table III.104 Via
appropriate group operations (see details in Appendix A), we
obtain

〈k2, ⇑z |H�1 |k1, ⇑z〉 = D�1m + iD�1s , (12a)

〈k2, ⇓z |H�2 |k1, ⇑z〉 = D�2s − iD�2s , (12b)

〈k2, ⇓z |H�3 |k1, ⇑z〉 = D�3s + iD�3s , (12c)

and

〈k2, ⇑s |H�i
|k1, ⇑s〉 = 〈k2, ⇓s |H�i

|k1 ⇓s〉∗, (13a)

〈k2, ⇓s |H�i
|k1, ⇑s〉 = −〈k2, ⇑s |H�i

|k1, ⇓s〉∗, (13b)

up to a phase freedom for each matrix element. The scattering
constants are all real numbers with D�1m much larger (about
three orders of magnitude) than the rest. m denotes momentum
and s denotes spin, with the reason more obvious in the general
spin orientation case. Equation (13) holds for all phonon modes
and spin orientations, and it expresses the effects of time
reversal and space inversion (diamond structure).

When the spin orientation is parallel to the axis of one of
the valleys that participate in the f process, then instead of
changing the �6 basis states and the matrix form, we write the
new spin states in terms of the previous �6 basis (we call it
the “original basis”). As an example, for spin orientation along
the x valley we use the rotation matrix [1,−1; 1,1]/

√
2 as a

unitary transformation matrix and get105

|k, ⇑x〉 � (|k, ⇑z〉 + |k, ⇓z ,〉) /
√

2,
(14)

|k, ⇓x〉 � (−|k, ⇑z〉 + |k, ⇓z〉) /
√

2.

Using Eqs. (12) and (13) we can obtain the results for spin
orientation along one of the involved valleys (s ‖ x; the case of
s ‖ y is equivalent). For �1,

〈k2, ⇑x |H�1 |k1, ⇑x〉

=
(

1√
2

1√
2

)(
D�1m + iD�1s 0

0 D�1m − iD�1s

)(
1√
2

1√
2

)

= D�1m. (15a)

Repeating the same procedure for the spin-flip case and for
other phonon modes, we get

〈k2, ⇓x |H�1 |k1, ⇑x〉 = −iD�1s , (15b)

〈k2, ⇑x |H�2 |k1, ⇑x〉 = −iD�2s , (15c)

〈k2, ⇓x |H�2 |k1, ⇑x〉 = D�2s , (15d)

〈k2, ⇑x |H�3 |k1, ⇑x〉 = iD�3s , (15e)

〈k2, ⇓x |H�3 |k1, ⇑x〉 = D�3s . (15f)

Together with Eq. (13), the set of expressions in Eqs. (12)
and (15) complete the results of inequivalent types of f -
process scattering when the spin orientation is set along
a valley axis. Values of the scattering constants, D�is , are
obtained by numerical calculations and they are listed in the
last row of Table III. Preferably, their values are extracted
from experiments which cover some parameter range (e.g.,
temperature, stress, and external fields).

B. General dependence on spin orientation

So far we have restricted the spin orientation during
an f -process spin flip to be along a valley axis (main
crystallographic axis). Removing this restriction adds to the
anisotropy of spin relaxation processes and it allows one to
make a direct comparison to a wide range of spin injection
experiments.

We generalized the previous derivation to an arbitrary
spin orientation direction. We define s in terms of polar and
azimuthal angles θ and φ with respect to the +z and +x

directions. The new spin states relate to the original ones by
an “active” rotation matrix in spin space,106

|k, ⇑s〉 � cos
θ

2
|k, ⇑z〉 + sin

θ

2
eiφ|k, ⇓z〉,

(16)
|k, ⇓s〉 � − sin

θ

2
e−iφ |k, ⇑z〉 + cos

θ

2
|k, ⇓z〉.

Using the explicit matrix for interaction H�i
between |k,

⇑ (⇓)z〉 basis states, as the example in Eq. (15a), the spin-flip
matrix elements under the new spin orientation are

〈k2, ⇑s |H�1 |k1, ⇑s〉 = D�1m + i cos θD�1s , (17a)

〈k2, ⇓s |H�1 |k1, ⇑s〉 = −i sin θeiφD�1s , (17b)

〈k2, ⇑s |H�2 |k1, ⇑s〉 = −i
√

2 sin θ sin
(
φ + π

4

)
D�2s ,

(17c)
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TABLE IV. |M�i
(k1, ⇑s; k2, ⇓s)/D�is |2 for f -process spin flips

between +x and +y valleys. The values of the scattering constants
D�is are given in Table III. For each of the nonvanishing modes, �i ,
the relative amplitude is provided for spin orientation (s) along any of
the inequivalent high-symmetry crystal directions. Results between
other valleys can all be obtained by trivial symmetry arguments.

s [0 0 1] [1 0 0] [1 1 0] [1 1̄ 0] [1 0 1] [1 1 1] [1 1̄ 1]

�1 0 1 1 1 1
2

2
3

2
3

�2 2 1 0 2 3
2

2
3 2

�3 2 1 2 0 3
2 2 2

3

〈k2, ⇓s |H�2 |k1, ⇑s〉 =
[

(1 + i) sin2 θ

2
e2iφ

+ (1 − i) cos2 θ

2

]
D�2s , (17d)

〈k2, ⇑s |H�3 |k1, ⇑s〉 = i
√

2 sin θ sin

(
φ + 3π

4

)
D�3s ,

(17e)

〈k2, ⇓s |H�3 |k1, ⇑s〉 =
[

(1 − i) sin2 θ

2
e2iφ

+ (1 + i) cos2 θ

2

]
D�3s , (17f)

with Eq. (13) for other matrix elements. Table IV lists the
relative magnitudes of the squared spin-flip matrix elements
for s along all inequivalent high-symmetry directions of
the crystal (they are often the spin orientations of injected
electrons). Analysis of the spin relaxation time due to f -
process spin flips is given in Sec. VII.

V. INTRAVALLEY AND INTERVALLEY
g-PROCESS SPIN FLIPS

In this section we present a rigorous procedure to reach at
compact intravalley and g-process spin-flip matrix elements.
Before embarking on the theory, we discuss key considerations
that underly the analysis and exemplify their outcomes via
representative results (Table V). This choice allows one to
understand the most important physical parameters without
delving into details of the analysis (which are provided in
Secs. V A through V D).

Spin-flip matrix elements vanish for intravalley (g process)
scattering if wave vectors of the initial and final states are
the same (opposite). The wave-vector power-law dependence
was mentioned in Table I along with the fact that suppression
of zeroth-order terms in these processes leads to relative
slow spin relaxation compared with the f process. However,
intravalley and g process become more important when [001]
strain is applied since different valley minima are split,
thus suppressing the scattering by the f process.16,23 The
intravalley spin flips are also important at low temperature due
to the larger population of long-wavelength acoustic phonons
[smaller energies; see Fig. 3(a)].

It is instrumental to compare spin flips with momentum
scattering of which the study is more established. Following
the ingenious connection with deformation potential parame-

TABLE V. Squared spin-flip matrix element |Msf |2, induced by
all types of phonon modes in intravalley scattering, and by the LA
phonon mode in g-process scattering. q = k2 − k1 and K = (k2 +
k1)/2. Valley centers are set along the z axis. Spin orientations s are
taken along all inequivalent crystal symmetry directions. Results in
other valleys can be obtained by trivial symmetry arguments. See text
for related parameters and further explanations.

|M(k1 ⇑s; k2 ⇓s)|2 =
{

( |η|
�C

)2D2
λSs(q)Iλ(q) , intra

D2
gsSs(K) , g

s Ss(q) λ Iλ(q)

[0 0 1] q2
x + q2

y TA
(q2

x −q2
y )2

q2
x +q2

y
+ 4q2

x q2
y q2

z

(q2
x +q2

y )|q|2

[1 0 0] q2
y LA

4q2
x q2

y

|q|2

[1 1 0]
q2
x +q2

y

2 TO
q2
x+q2

y

|q|2

[1 0 1] q2
x

2 + q2
y LO q2

z

|q|2

[1 1 1] 2
3 (q2

x + q2
y + qxqy)

ters by Bardeen and Shockley,107 Herring and Vogt derived a
detailed angle dependence of intravalley momentum scattering
due to interaction with acoustic phonons.108 In spin flips,
the connection with deformation potential is more subtle and
complicated by the dependence on high-order wave-vector
components. Later, we derive explicit forms while making no
a priori assumptions about the form of possible deformation
potential parameters. This approach allows us to identify
the crucial role of the coupling between the lowest pair of
conduction bands in setting the intravalley spin relaxation.
The dependence of spin-flip matrix elements on high-order
wave-vector components makes this coupling effective in spin
relaxation (while being marginal in momentum relaxation).
The relaxation rate becomes inversely proportional to the
square of the energy gap between the conduction bands at
the valley center, �C ≈ 0.5 eV.

Implications of the above considerations are manifested
in the spin-flip expressions of intravalley and g-process
scattering. The matrix element of intravalley spin flips will
be shown to consist of four factors that represent different
aspects of the above considerations

∣∣M intra
λ (k1 ⇑s ,k2 ⇓s)

∣∣2 =
( |η|

�C

)2

D2
λSs(q)Iλ(q).

The factor |η|/�C ≈ 0.03 Å is calculated from band structure
parameters that originate from spin-dependent k · p perturba-
tion terms in the Hamiltonian. The second factor, Dλ, depends
on the phonon mode. Scattering with long-wavelength acoustic
modes is governed by a deformation potential constant,
DT A/LA = D′

xy , that couples the two lowest conduction bands.
Its explicit integral expression is given in Eq. (46) and its
numerical solution (via EPM calculation) yields a value of
6 eV. This value agrees well with the measured energy splitting,
4D′

xyεxy , of the lowest conduction bands at the X point when
applying a shear strain.109,110 Scattering with long-wavelength
optical modes is governed by the constant DT O/LO = Dop ≈
5 eV · 2π/a which originates from the out-of-phase motion of
atoms in the primitive cell. This parameter is also calculated
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from the coupling between the lowest pair of conduction bands
[Eq. (48)]. The remaining two factors in the above expression
depend on the valley position. Their forms for electrons that
reside in the z valley are listed in Table V. Iλ and Ss reflect
the dependence on phonon properties and on the electron spin
orientation, respectively. The right column of the table lists
the values of Iλ for all long-wavelength phonon modes and
the left column lists the values of Ss for five inequivalent
high-symmetry directions in the z valley.

The g-process spin flip will be shown to share several
properties with the intravalley case. For electron transition
between the ±z valleys, the dominant g-process spin-flip
mechanism will be shown to originate from scattering with
LA phonon modes,∣∣Mg

LA(k1 ⇑s ,k2 ⇓s)
∣∣2 = D2

gsSs(K),

where its prefactor Dgs ≈ 0.1 eV is dominated by the sum of
two scattering constants. The first is related to the deformation
potential of the lowest conduction band [Eqs. (E12)–(E14)]
and the second couples the lowest conduction band with
upper valence band by spin-orbit modulated electron-phonon
interaction [Eq. (F12)].

The rest of this section is organized in the following logical
order. In Sec. V A we derive selection rules that pertain to
both the band structure Hamiltonian and the electron-phonon
interaction. The obtained electron state vectors are used in
Secs. V B and V C where we present the core derivation for
intravalley and g-process spin-flip matrix elements. In these
parts we derive exact forms of the various scattering constants.
Finally, the dependence on spin orientation (s) is given in
Sec. V D. Readers who are not interested in the full derivation
may directly skip to the most general expressions in Eqs. (45)–
(48) and Fig. 5 for intravalley spin flips in the z valley with
s ‖ z; in Eqs. (54) and (55) and Fig. 6 for g-process spin flips
between the ±z valleys with s ‖ z; and in Eqs. (57)–(59) for
general spin orientations (ŝ = [cos φ sin θ, sin φ sin θ, cos θ ]).

A. X-point selection rules and spin-dependent eigenstates
of the k · p Hamiltonian

In this part we present group-theory results and analytically
quantify the signature of spin-orbit coupling on electronic
states. Since the bottom of the conduction band is at the
vicinity of the X point [see Fig. 4(a)], we employ a compact
k · p model with a small set of basis states that pertain to the
symmetry of this point. Findings of this model will be used to
derive spin-flip matrix elements. These findings will also be
benchmarked against numerical calculations of an EPM that
includes spin-orbit coupling.24

For intravalley scattering, working with the X-point space
group is as effective as working with the group of the
� axis (position of the valley center) and bears favorable
features over the latter choice.111 The initial and final states
of a g-process scattering can be expanded to the same X

point, making it possible to relate the matrix element with
a deformation potential parameter, though with modifications
(to be discussed).

We first mention spin-independent features.109 Due to the
symmetry of the crystal, only one of the six conduction
band valleys is studied and we arbitrary identify it as the
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FIG. 4. (Color online) (a) Energy band structure along the � axis
between the X = (0,0,1)2π/a and � = (0,0,0) points and along the
� axis between X and U = (1/4,1/4,1)2π/a points [see Fig. 1(a)].
Solid lines are the results of EPM and dashed lines are taken from
Eq. (C4) of Appendix C. EX1 − EX4 = Eg,X and we set EX1 = 0.
�C is the energy gap between the two conduction bands at the valley
center k0 � (0,0,0.85)2π/a. (b) Conduction band dispersion along
the Z-symmetry axis between X and W = (0,1/2,1)2π/a points.
Along this direction the two-band conduction degeneracy can only
be lifted by spin-orbit coupling (spin hot spot). (c) The induced energy
splitting by zooming-in closer to the X point.

valley along the +z crystallographic axis. We choose a basis
of four eigenstates of the Hamiltonian H0 = p2/2m0 + V (r)
and denote them by {|X2′

1 〉,|X1
1〉,|Xx

4 〉,|Xy

4 〉}, where ψX(r) =
〈r|X〉. These X-point states are associated with the lowest
pair of conduction bands and upper pair of valence bands
at k = (0,0,kX), where kX = 2π/a [see Fig. 4(a)]. Inclusion
of the X4 valence states is imperative since they bring
the mass anisotropy of conduction electrons. The X1 and
X4 nomenclature denotes 2D IRs of the space group G2

32
which describes the symmetry of the X point.109,112–116 The
dimensionality complies with the two-band degeneracies at
the X point of diamond crystal structures (due to time-reversal
and glide-reflection symmetries). The indexing of the basis
states implies of their compatibility relations when going from
the X point into the � axis ({|�2′ 〉,|�1〉,|�x

5〉,|�y

5〉}).109 For
example, ψ�2′ ,kz

(r) � ei(kz−kX)zψX2′
1

(r). Finally, we mention
that for the following derivations, the symmetry properties,
rather than explicit functional forms of the basis states, are
important.

When adding the spin degree of freedom the new basis set
reads { |X2′

1 , ↑〉, |X2′
1 , ↓〉, |X1

1, ↑〉, |X1
1, ↓〉, |Xx

4 , ↑〉, |Xx
4 , ↓〉,

|Xy

4 , ↑〉, |Xy

4 , ↓〉 }. Two remarks on this basis are in place.
First, inclusion of the X4 states in the basis set enables us
to capture the salient spin-dependent properties of conduction
electrons (originate from spin-orbit coupling with the upper
pair of valence bands).21 Second, the spin-orbit coupling is
treated as a perturbation and, accordingly, the new basis states
are not eigenstates of the spin-dependent Hamiltonian at the
X point. In Eqs. (26) and (27) of this section we find specific
forms of these states for electrons around the bottom of the
+z conduction valley for spin orientation s‖z [see Eq. (6)].
In Sec. V C we discuss the needed changes when considering
electron states from opposite valleys. In Sec. V D we show the
anisotropy of spin-flip processes by varying s.
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Group theory is invoked to construct the band structure
Hamiltonian matrix and matrix elements of electron-phonon
interactions.98,115,117,118 Both depend on couplings of X1 basis
states, of X4 basis states, and of X1 with X4 basis states. Using
the character table of G2

32 (Appendix B), these couplings are
clarified by the following decompositions,119

Hcc : X1 ⊗ X1 = M1 ⊕ M4 ⊕ M ′
2 ⊕ M ′

3, (18a)

Hυυ : X4 ⊗ X4 = M1 ⊕ M4 ⊕ M ′
1 ⊕ M ′

4, (18b)

Hυc : X4 ⊗ X1 = M5 ⊕ M ′
5. (18c)

M5 and M ′
5 are 2D IRs and the remaining Mi are 1D

IRs. Next we relate these decomposition with specific linear
combination of state products.98 For example, one of the X1

states coupling [Eq. (18a)], ψ∗
X2′

1
(r)ψX1

1
(r) + ψX2′

1
(r)ψ∗

X1
1
(r) is

found to transform as M4 (apply the operations of G2
32 on it).

We associate this linear combination with [0,1; 1,0], or ρx , in
Hcc block. (In this paper, ρi and σi identify, respectively, Pauli
matrices in the 2D IRs product and spin space.) We find the
following associations for product combinations in intraband
coupling,

Hcc : M1 ↔ I, M4 ↔ ρx, M ′
2 ↔ ρy, M ′

3 ↔ ρz, (19a)

Hυυ : M1 ↔ I, M4 ↔ ρx, M ′
1 ↔ ρy, M ′

4 ↔ ρz. (19b)

In case of interband coupling where the decomposed IRs (M5

and M ′
5) are 2D, we classify pairs of product combinations. For

example, {ψ∗
Xx

4
ψX2′

1
+ ψ∗

X
y

4
ψX1

1
,ψ∗

Xx
4
ψX1

1
+ ψ∗

X
y

4
ψX2′

1
} belongs

to M ′
5. We find

Hυc : M5 ↔ {ρy,ρz}, M ′
5 ↔ {I,ρx}. (19c)

Nonvanishing matrix elements of any interaction (i.e.,
selection rules) are readily identified once we specify how
terms in that interaction transform under symmetry operations.
These terms usually can be made into parts that transform
as components of vectors (r) or axial vectors (R). The
longitudinal component of the vector (axial vector) transforms
as M ′

3 (M3), and transverse components as M5 (M ′
5):

z ∼ M ′
3, {x,y} ∼ M5, Rz ∼ M3, {Rx,Ry} ∼ M ′

5.

(20a)

where the longitudinal component is along the valley axis
(z in our choice). Besides, the symmetric and antisymmetric
potentials [Eq. (7)] are even and odd under space inversion and
transform as

V+ ∼ M1, V− ∼ M ′
2. (20b)

By the fundamental theorem of group theory, a nonvanishing
matrix element results when the interaction operator and the
states product decomposition belong to the same IR(s).119 The
integrand of the nonvanishing matrix element as a whole then
belongs to the identity IR (in this case, M1). From Eqs. (18c)
and (20a), the transverse components of a vector (M5) or axial
vector (M ′

5) can couple conduction band with valence band.
However, since M1 only appears once in either M5 ⊗ M5

or M ′
5 ⊗ M ′

5, only one of the linear combinations of the
operator and state product can survive and the unique linear
combination reads

ixρy − yρz ∼ M1 and RxI − Ryρx ∼ M1, (21)

for M5 ⊗ M5 and M ′
5 ⊗ M ′

5, respectively. The IR product
decompositions and the IR assignments with (axial) vector
are derived from G2

32 character table (see Appendix B).
Transformation under time-reversal operation (T ) is

equally essential in obtaining selection rules (in addition to
spatial operations). Time-reversal symmetry connects matrix
elements by98

〈Xj |O|Xi〉 = 〈T Xi |T O†T −1|T Xj 〉. (22a)

Physical operators O have different parities under time-
reversal operation,

r → r, ∇V → ∇V, p → −p, ∇V × p → −∇V × p,

(22b)

and this feature distinguishes between vectors such as ∇V and
p. T acting on |Xi〉, by our convention, exchanges the basis
states,109 ∣∣X2′

1

〉↔ ∣∣X1
1

〉
,
∣∣Xx

4

〉↔ ∣∣Xy

4

〉
. (22c)

Therefore, for the diagonal blocks (Hcc and Hvv)

I → I, ρx → ρx, ρy → ρy, ρz → −ρz (22d)

under time-reversal operation in light of Eq. (22a). A matrix
element vanishes if under time-reversal operation the changes
of sign are opposite for the state product [Eq. (22d)] and the
interaction [Eq. (22b)].

The spin-dependent k · p Hamiltonian matrix can be pre-
scribed using the above group-theory analysis, with perturba-
tion Hamiltonian (H = H0 + H1)

H1 =
(

h̄2k′2

2m0
+ h̄k′ · p

m0

)
I + h̄[∇V (r) × (p + h̄k′)] · σ

4m2
0c

2
,

(23)

where k′ = (kx,ky,kz − kX) is measured from the X point
and V (r) is the crystal potential [

∑
j V+(r − Rj )]. The

Hamiltonian matrix blocks are thus, respectively,

H1cc = h̄2

2m0
(k′2I ⊗ I + 2k′

0k
′
zρz ⊗ I), (24a)

H1vv = h̄2

2m0
k′2I ⊗ I, (24b)

H1vc = −iP (kxρy + ikyρz) ⊗ I + i�X(ρx ⊗ σy

− I ⊗ σx) + α[k′
z(iρz ⊗ σx − ρy ⊗ σy)

+ (kyρy − ikxρz) ⊗ σz]. (24c)

We stress that ∂V (r)/∂z in H1cc block vanishes considering
time-reversal symmetry. The spin-independent constants in
Eq. (24) are empirically known from experiments.109 They
relate to the position of the conduction band minima k0 =
(0,0,k′

0 + kX) and to the momentum matrix element that sets
the mass anisotropy (P ). The spin-dependent parameters (�X

and α) are calculated by the EPM. Table VI lists these and other
parameters that we use in this paper. In Appendix C, we provide
their integral expressions and we also apply a partitioning
technique to analytically diagonalize the total Hamiltonian
matrix, (

H1cc H
†
1vc

H1vc H1vv − Eg,X

)
, (25)
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TABLE VI. Parameters of bulk silicon. The lattice constant is
a = 5.43 Å, the X-point energy gap is Eg,X ≈ 4.3 eV, and the free
electron mass is m0.

Symbol Value Unit Expression

k′
0 −0.15 2π/a Eq. (C1a)

P 10 eV·a/2π Eq. (C1b)

�X 3.6 meV Eq. (C1c)

α −3.1 meV·a/2π Eq. (C1d)

�C 0.5 eV 2h̄2k′2
0 /m0

|η| 16.7 meV·a/2π η = 2iP�X/Eg,X

�′
X 4.1 meV �X + αk′

0

|η′| 18.9 meV·a/2π η′ = 2iP�′
X/Eg,X

where Eg,X is the energy gap between the conduction and
valence band at the X point [see Fig. 4(a)].

Appendix A provides a general procedure to align the
resulting degenerate states to spin states that satisfy Eq. (6).
For spin orientation along the valley axis (s‖z), degenerate
states in a conduction band valley read

|k, ⇑〉 = exp (ik′ · r) [A(k)| ↑〉 + B(k)| ↓〉] |X〉,
(26)

|k, ⇓〉 = exp (ik′ · r)
[
A∗(k)| ↓〉 − B∗(k)| ↑〉] |X〉,

where

|X〉 = [∣∣X2′
1

〉
,
∣∣X1

1

〉
,
∣∣Xx

4

〉
,
∣∣Xy

4

〉]T
,

A(k) =
[

2P 2kxky

Eg,X�C

, 1 − P 2kxky

2E2
g,X

, − Pkx

Eg,X

, − Pky

Eg,X

]
,

(27)

B(k) =
[
η(kx − iky)

�C

(
1 − kz − k0

k′
0

)
,

iη′(kx + iky)

2Eg,X

,

− �′
X

Eg,X

− iηky

�C

Pky

Eg,X

, − i�′
X

Eg,X

+ ηkx

�C

Pkx

Eg,X

]
.

As shown in Appendix E, momentum scattering is governed
only by the zeroth- and first-order wave-vector components of
A(k). For spin relaxation, on the other hand, the “negligible”
spin-orbit coupling coefficients become crucial [B(k) vector].
In writing the coefficients of A(k) and B(k), we have kept only
those terms that are relevant to the spin relaxation analysis of
the following sections. Terms that scale with �C/(2Eg,X) ≈
1/17 are omitted due to their negligible effect. The energy
gap between the two conduction bands at the valley center
�C ≈ 0.5 eV [see Fig. 4(a)] will be extensively used when
dealing with intravalley spin relaxation. The main difference
of the above solution from Ref. 20 is that we have identified
all quadratic-wave-vector terms that play important roles in
intravalley spin-flip processes. We have checked the accuracy
of these expressions with numerical EPM solutions.120 The
main difference between them comes from the omission of
the lower valence band states [lower X1 point in Fig. 4(a)].
These states are responsible for making the longitudinal mass
slightly less than m0. In spite of missing some kz-dependent
components, the error amounts to a few percent and is
irrelevant in intravalley spin relaxation (to be shown later).

B. Intravalley spin flips

In this section we present the theoretical procedure for
deriving intravalley spin-flip matrix elements for all types of
phonon modes. Scattering with long-wavelength TA phonon
modes will be shown to dominate the intravalley spin re-
laxation at low temperature. This property is largely set by
the phonon dispersion around the � point. Figure 3(a) shows
that the energy of long-wavelength acoustic phonons is linear
in q with a smaller slope for TA, and approaches zero at �

point. For long-wavelength optical modes, the phonon energy
is almost wave-vector independent (≈63 meV). However,
when the temperature increases, optical modes become more
important and together with the LA mode they provide about
half of the intravalley spin relaxation at room temperature. The
reason is twofold. Spin-flip matrix elements due to scattering
with optical modes are linear in q while being quadratic with
acoustic modes (to be proven below). Second, the rise of
phonon population with temperature is much faster for optical
modes.

In Appendix E, by invoking selection rules we have
rederived the leading-order matrix elements of intravalley
momentum scattering, which is typically described in terms
of deformation potential constants.107,108 When extended to
analyze the intravalley spin-flip matrix elements, this group
theory approach will be appreciated by its ability to reach
essential terms efficiently. It also provides flexibility in the
sense that no a priori knowledge of the connection between
deformation potential quantities and spin-flip processes is
needed.

1. Long-wavelength acoustic phonon modes

Spin-flip matrix elements due to electron interaction with
long-wavelength acoustic phonon modes have a quadratic-
wave-vector dependence. We show it by starting with the most
general form,

Mλ

(
k1 = K − q

2
, ⇑; k2 = K + q

2
, ⇓
)

=
〈
K + q

2
, ⇓
∣∣∣∣ξ+

λ (q) · ∇V+(r)

+ ξ−
λ (q) · ∇V−(r)

∣∣∣∣K − q
2
, ⇑
〉

≡ ��M
(0)
sf,λ +��M

(1)
sf,λ + M

(2)
sf,λ + O(q3). (28)

M
(j )
sf,λ denotes terms of j th order in q due to λ phonon mode.

In the next step we expand the states in Eq. (28) in increasing
orders of q. We show how the zeroth- and first-order terms
vanish (M (0)

sf,λ = M
(1)
sf,λ = 0), and then we find the form of the

dominant quadratic terms (M (2)
sf ). In this wave-vector-order

analysis, the q dependence of the in-phase and out-of-phase
polarization vectors has to be taken into account. In Table II
we showed these dependencies in the long-wavelength regime,
which is relevant for intravalley scattering (q � 2π/a). The
out-of-phase vector, ξ−

λ (q), is linear in q while ξ+
λ (q) has

a zeroth-order dependence (e.g., qi/q terms). Hereafter, we
abbreviate the notation ξ±

λ (q) and M
(j )
sf,λ as ξ± and M

(j )
sf .
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Zeroth order. The lowest-order spin-flip matrix element has
the form

M
(0)
sf = 〈K, ⇓ |ξ+ · ∇V+|K, ⇑〉. (29)

We exclude the out-of-phase part since the acoustic interaction
at the infinite wavelength limit is governed solely by the
in-phase motion of atoms in the primitive cell [ξ−

ac(q = 0) =
0 and |ξ+

ac(q = 0)| = 1]. In this limit, the phonon-induced
interaction reduces to displacement of the entire crystal,∑

j ∇rV+(r − Rj ) = ∇Vcrystal. Based on the relation

∇Vcrystal = i[p,H ]/h̄, (30)

the coupling of the in-phase part between spin-degenerate
eigenstates of H vanishes. When breaking this vanishing
matrix element into parts that come from interaction with the
bare symmetrical potential and with its spin-orbit coupling
part,

〈K, ⇓|∇V+|K, ⇑〉 + 〈K, ⇓|∇V so
+ |K, ⇑〉 = 0, (31)

the sum is zero but each of these two contributions is finite.
This result was first pointed out by Elliott.19 Later we make
use of this property.

First order. To write the spin-flip matrix elements of this
order we begin by linearizing the state,∣∣∣∣K ± q

2
,s

〉
= |K,s〉 ± 1

2
q · L|K,s〉 + O(q2), (32)

where L denotes the derivative of the state in k space,

Li |k,s〉 ≡ lim
δk→0

|k + δki,s〉 − |k,s〉
δki

. (33)

Substituting Eq. (32) into Eq. (28) and considering the
wave-vector dependence of ξ±, the first-order spin-flip matrix
elements are

M
(1)
sf = 〈K, ⇓|ξ− · ∇V−|K, ⇑〉

+ 1
2 〈K, ⇓|(q · L†)(ξ+ · ∇V+)|K, ⇑〉

− 1
2 〈K, ⇓|(ξ+ · ∇V+) (q · L) |K, ⇑〉. (34)

Combining space-inversion and time-reversal symmetries, the
out-of-phase term can be shown to vanish (first line on the
right-hand side), and the in-phase terms to cancel each other
(second and third lines). These facts follow the relations

〈ψ1,Oψ2〉 = 〈Sψ1,SOS−1Sψ2〉 = 〈T ψ2,T O†T −1T ψ1〉,
where for the case in hand space inversion provides

S|k, ⇑〉 = |−k, ⇑〉, S|k, ⇓〉 = |−k, ⇓〉,
(35)

S∇V±S−1 = ∓∇V±, SLS−1 = −L,

and time reversal provides

T |k, ⇑〉 = |−k, ⇓〉, T |k, ⇓〉 = −|−k, ⇑〉,
(36)

T ∇V†
±T −1 = ∇V±, T (L†)†T −1 = −L.

Yafet separated the in-phase terms into two parts to prove
them vanishing.18 Together with Eq. (31), it is the celebrated
Elliott-Yafet cancellation. We emphasize that the first-order
(linear-in-q) Elliott and Yafet terms vanish separately, rather
than interfere destructively. All in all, the zero- and first-order
spin-flip matrix element identically vanish, M

(0)
sf = M

(1)
sf = 0.

Second order. It is the lowest order at which spin-flip
matrix elements due to electron interaction with acoustic
phonon modes do not vanish. At this order, states are expanded
by∣∣∣∣K ± q

2
,s

〉
� |K,s〉 ± 1

2
q · L|K,s〉 + 1

8
q⊗2 · L⊗2|K,s〉,

(37)

where the vector components of L were formally defined in
Eq. (33), and q⊗2 · L⊗2 denotes the scalar product of two
second-rank tensors. An explicit form of this state was derived
by a spin-dependent k · p expansion of the X-point basis states
[Eqs. (26) and (27)]. Using this basis, the general spin-flip
matrix element is converted to

M

(
k1 = K − q

2
, ⇑; k2 = K + q

2
, ⇓
)

= M
(2)
sf + O(q3)

≈
∑
μ,ν

〈Xμ|e− iq·r
2 [�+

μ,ν(k1,k2) + �−
μ,ν(k1,k2)]e− iq·r

2 |Xν〉.

(38)

�±
μ,ν(k1,k2) are scalars formed by products of column and row

spinors with the potential matrix,

�±
μ,ν(k1,k2)

= [−BXμ
(k1),AXμ

(k1)](ξ± · ∇V±,K(r))

[
AXν

(k2)

BXν
(k2)

]
,

(39)

where the coefficients of A(k) and B(k) are taken from
Eq. (27), and the K-dependent potential has the form

V±,K = V±I + V so
±,K

= V±I + h̄

4m2
0c

2
[∇V± × (p + h̄K′)] · σ . (40)

The bare potential, V±, is diagonal and generates Elliott
products of the type AμBν . The spin-orbit coupling potential,
V so

±,k, generates Yafet products of all types but the dominant
signature comes from AmAn terms due to the smallness of the
coefficients in B(k).

We identify the general forms of second-order matrix
elements between the X-point basis states. After expanding
the exponential and � terms in Eqs. (38) and (39) into power
series, quadratic terms in q are classified by six integrals that
read

M
(2)
sf =

∑
μ,ν

6∑
n=1

Iμ,ν;n, (41)

Iμ,ν;1 = − i

2
〈Xμ|C̃μ(k){q · r,ξ− · ∇V−,k(r)}Cν(k)|Xν〉k=k0 ,

(42a)

Iμ,ν;2 = 〈Xμ|(q · ∇kC̃μ(k))(ξ− · ∇V−,k(r))Cν(k)|Xν〉k=k0 ,

(42b)

Iμ,ν;3 = −1

4
〈Xμ|(q · ∇kC̃μ(k))(ξ+ · ∇V+,k(r))

× (q · ∇kCν(k))|Xν〉k=k0 , (42c)
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Iμ,ν;4 = − i

2
〈Xμ|(q · ∇kC̃μ(k)){q · r,ξ+ · ∇V+,k(r)}

× Cν(k)|Xν〉k=k0 , (42d)

Iμ,ν;5 = 1

4
〈Xμ|(q⊗2 · ∇⊗2

k C̃μ(k))(ξ+ · ∇V+,k(r))

× Cν(k)|Xν〉k=k0 , (42e)

Iμ,ν;6 = −1

2
〈Xμ|C̃μ(k)q · r(ξ+ · ∇V+,k(r))q

· rCν(k)|Xν〉k=k0 , (42f)

where {U,W } = UW + WU and

Cν(k) = [AXν
(k),BXν

(k)]T ,
(43)

C̃μ(k) = [−BXμ
(k),AXμ

(k)].

In writing these matrix elements we have used time reversal
and space inversion to unify terms. The mean wave vector K
is replaced with k0, which brings approximation of O(q3).

At this point, the integrals of Eq. (42) can be numerically
calculated in a straightforward manner. Given the four basis
states and the above integral forms, this numerical procedure
involves a few hundreds of different types of space integra-
tions. Performing selection rules for all of them also demands a
large amount of work. However, we can avoid these labors and
come to an accurate and compact matrix element [Eq. (45)].
This possibility is enabled by three observations that greatly
simplify the analysis of Eq. (42). These observations will
also allow us to connect the derived matrix element with an
experimentally known deformation potential quantity.

Observation 1. Integration of bare potential re-
lated terms such as 〈Xμ|∇V±|Xν〉, 〈Xμ|ri∇V±|Xν〉, and
〈Xμ|rirj∇V±|Xν〉 yield numbers of the same order of mag-
nitude given that ri is measured in units of a/2π . More-
over, these numbers are comparable for both the in-phase
(+) and out-of-phase (−) parts. The same applies to the
integrals of the spin-orbit coupling potential, 〈Xμ|∇V so

±,k|Xν〉,
〈Xμ|{ri,∇V so

±,k}|Xν〉, and 〈Xμ|ri∇V so
±,krj |Xν〉. These conjec-

tures are backed by explicit numerical calculations. The
physical rationale is that these potentials are significant within
the size of a primitive cell where ri is of the order of 1. In
what follows we keep consistency and measure length in units
of a/2π . Accordingly, band-structure parameters such as P , η
or α are approached as energy scales, and compared directly
with Eg,X or �C (see Table VI).

Observation 2. The number of matrix elements is greatly
reduced by estimating the amplitude of their coefficients. The
largest Elliott and Yafet products scale, respectively, with
|η|/�C (or |η|P/�CEg,X) and 2P 2/(Eg,X�C). For both cases,
other products are significantly smaller. These products relate,
respectively, to the bare and spin-orbit coupling potentials.
These amplitudes are evaluated by inspection after substituting
the explicit coefficients of A(k) and B(k) [Eq. (27)] into
Eq. (42). Notice that the terms {C(k),∇kC(k),∇2

kC(k)}|k=k0

are all constants without k dependence (and similar for C̃).
Observation 3. Prior to the application of selection rules,

contributions of Elliott and Yafet processes to intravalley
spin relaxation are conceivably comparable. To understand
this physics we first recall the zeroth-order Elliott-Yafet
cancellation [Eq. (31)]. For states at the valley center (k = k0)

this cancellation means∣∣∣∣ 〈X1|∇V so
+,k0

|X1〉
〈X1|∇V+|X4〉

∣∣∣∣ = �X

Eg,X

. (44)

Taking into account Observation 1, we can generalize this
order of magnitude to ratios between all Yafet-related integrals
and all Elliott-related ones. Dominant Elliott processes relate
to matrix elements of the type that appears in the denominator
of Eq. (44) multiplied by η/�C (see Observation 2). Similarly,
dominant Yafet processes relate to matrix elements of the type
that appear in the numerator multiplied by 2P 2/(Eg,X�C).
The overall ratio between Elliott and Yafet processes is thus
of the order of unity (∼P/Eg,X).

Application of Observations 1–3 in Eq. (42) results in a
handful of matrix elements that are worth examination. For
example, the integral classes Iμ,ν;1 and Iμ,ν;6 are eliminated on
the grounds of their small coefficients [�′

X/Eg,X and 1 rather
than η/�C and 2P 2/(Eg,X�C) in Observation 2]. Therefore,

Iμ,ν;1 ∼ 0 and Iμ,ν; 6 ∼ 0,

for any possible basis state combination (Xμ and Xν).
We invoke group theory and evaluate the remaining inte-

grals in Eq. (42). Group-theory results [Eqs. (18)–(22) and
their discussion] are extensively utilized, coupling integrals
are expressed analytically by reasonable approximations, and
the internal displacement of silicon structure are carefully
accounted. The detailed procedure is shown in Appendix F.
We reach at the intravalley spin-flip matrix elements due to
interaction with acoustic phonon modes,

M intra
λ (k1, ⇑; k2, ⇓)

= 2η

�C

D′
xyεxy,λ(q)(qx − iqy)

= iηD′
xy

�C

(qx − iqy)[qxξ
+
λ,y(q) + qyξ

+
λ,x(q)], (45)

where λ = {TA1,TA2,LA}, with a physical deformation po-
tential constant D′

xy whose complete integral expression reads

D′
xy = −P 2m0

h̄2 + �xyz

〈
X2′

1

∣∣∂V−
∂z

∣∣X1
1

〉

− 〈X2′
1

∣∣ A,B∑
α

(y − τα,y)
∂Vat(r − τ α)

∂x

∣∣X1
1

〉 ≈ 6 eV.

(46)

2. Long-wavelength optical phonon modes

Using the gained knowledge of spin-flip processes with
acoustic phonon modes, we can readily derive the optical
case. The optical phonon modes have a dominant out-of-phase
polarization vector, ξ−

op, with magnitude of about unity at
the long-wavelength regime (Table II). From the detailed
analysis of the out-of-phase acoustic phonon modes we could
have recognized the fact that the antisymmetric interaction,
∇V−, has a leading-order matrix element that is linear in q.
Separating the interaction with optical modes into in-phase and
out-of-phase parts, we find in this case that the out-of-phase
part dominates the in phase by two orders of magnitude. This
result is a consequence of the q dependence of the polarization

085201-12



ANALYSIS OF PHONON-INDUCED SPIN RELAXATION . . . PHYSICAL REVIEW B 86, 085201 (2012)

vectors as well as of the interaction integrals. The leading
integral term is simply

M intra
χ (k1, ⇑ ; k2, ⇓) = −η

�C

Dop
(
qx − iqy

)
ξ−
χ,z(q), (47)

where χ = {TO1,TO2,LO}, with the associated scattering
integral

Dop = 〈X2′
1

∣∣∂V−
/
∂z
∣∣X1

1

〉 ≈ 5 eV · 2π/a. (48)

The ability to investigate for each individual mode is desired
under conditions of anisotropic fields or stress. Then, the
relative importance of different modes may vary depending
on the symmetry breaking mechanism.

We render the elastic continuum approximation in order to
achieve complete and analytical q-dependent matrix elements
and to facilitate analytical integrations. The polarization
vectors, ξ±(q), in Eqs. (45) and (47) are then replaced by
the expressions of Table II. We obtain |Msf|2 for each of the
modes (TA, LA, TO, and LO).121 The final expressions are
given in Table V (the case of s‖[001]). To examine the accuracy
of the q dependence, Fig. 5 shows the analytical intravalley
results |Msf| from Table V next to numerically calculated
matrix elements along inequivalent high-symmetry scattering
angle directions. The numerical procedure will be discussed
in Sec. VII together with application of the derived matrix
elements to (analytically) find the spin lifetime expression.
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FIG. 5. (Color online) Analytical (solid lines) and numerical
results (-×- lines) of spin-flip matrix element as a function of
q = k1 − k2 along five different scattering directions, and with
s ‖ [001]. Each direction is represented by a different line color. The
electron resides in the z valley and its spin is orientated along the
valley axis. The analytical results for TA, LA, TO, and LO modes are
taken from Table V. Numerical results rely on EPM and ABCM (to
be discussed in Sec. VII A). Analytical and numerical curves agree
very well for all cases where the quadratic dependence of the acoustic
cases holds best for small q values. Note that analytical results for
different q directions may overlap each other.

C. Intervalley g-process spin flips

g-process scattering angles are strongly directional (q =
k2 − k1 ≈ −2k0). The leading spin-flip matrix element of a
g-process depends on the mean wave vector K = (k1 + k2)/2
(and not on q as in the intravalley case; see Table I). When
k2 = −k1 the opposite spin states are Kramers conjugates
and their coupling via scattering with any type of phonon
vanishes.18 As will be shown below, the LA mode leads the
g-process spin relaxation where its matrix element is linear in
K. The scattering constant, however, is not as concise as in the
intravalley case. This is conceivable because the translational
factors, e±ik′

0·r, of the initial and final states are to be expanded
around a common X point (k′ = 0). Other than the dominant
LA phonon mode, we also discuss the general shape of the
matrix element due to scattering with TA phonon modes. Their
contribution to g-process spin relaxation at room temperature
will be shown to be non-negligible in comparison with the LA
mode. This property is analogous to g-process momentum
scattering, where TA phonon modes with a higher-order
matrix element but lower energy (compared to the leading LO
phonon) are important in describing the charge transport.122

In what follows we continue to work with the X-point basis
states which can be readily related to the �-axis basis states
via ψ�i,kz

� eik′
zzψXi

.
For k1 and k2 at the vicinity of the ±z valley center, we

expand the matrix elements around K = 0,

Mg(k1, ⇑; k2, ⇓)

=
∑
±

〈
q
2

+ K, ⇓
∣∣∣∣ξ±(q) · ∇V±

∣∣∣∣− q
2

+ K, ⇑
〉

= ��M
(0)
sf +��M

(1)
sf,1 + M

(1)
sf,2

+���O(K2) + O(K)O(|q/2 + k0|) + O(K3), (49)

and explain each term separately. In a g process ξ−(q) is
not treated as a small quantity compared to 1. The in-phase
and out-of-phase interactions are treated on an equal footing.
However, we find that the out-of-phase contribution drops.

Applying time-reversal symmetry on a spinor state and k-
derivative operator L [Eq. (36)], it is readily seen that the
zeroth-order term (K = 0) vanishes,

M
(0)
sf =

∑
±

〈
q
2
, ⇓
∣∣∣∣ξ±(q) · ∇V±

∣∣∣∣−q
2
, ⇑
〉

= 0, (50)

and that the two linear-in-K terms are equal to each other,

M
(1)
sf =

∑
±

〈
q
2
, ⇓
∣∣∣∣(ξ± · ∇V±)(K · L)

∣∣∣∣− q
2
, ⇑
〉

+
∑
±

〈
q
2
, ⇓
∣∣∣∣(L† · K)(ξ± · ∇V±)

∣∣∣∣− q
2
, ⇑
〉
. (51)

When L acts on the translational part, eik′ ·r, the resulting
matrix element becomes

M
(1)
sf,1 =

∑
±

〈
q
2
, ⇓
∣∣∣∣[ξ± · ∇V±, iK · r]

∣∣∣∣− q
2
, ⇑
〉

≈ 0, (52)

where [U,W ] = UW − WU . The Elliott part of this term
naturally drops since ∇V and r commute. The Yafet part
results in a small “αK” factor and a weak coupling between
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basis states (i.e., nondominant coefficient products). Thus,
M

(1)
sf,1 can be safely discarded.

The second part of the first-order term, M
(1)
sf,2, results from

operating L on the k-dependent coefficients C(k) and C̃(k)
[Eq. (43)] of the bra and ket states in Eq. (51). Time-reversal
symmetry is utilized again where following Eq. (36) we get
that 〈 q

2 , ⇓| = (T |− q
2 , ⇑〉)†, and the action of T on individual

X-point basis states follows Eq. (22c). All in all, the second
part of the first-order term reads

M
(1)
sf,2 = 2

∑
μ,ν

∑
±

〈Xμ|K · ∇kC̃μ′(k0)eik′
0z

×(ξ± · ∇V±)Cν(k0)eik′
0z|Xν〉 + O(|q/2 + k0|2)

= IE + IY + O(|q/2 + k0|2), (53)

where both C̃μ′ and Cν [Eq. (43)] are evaluated at k0 ≈
−q/2 and for μ = {1,2,3,4}, μ′ = {2,1,4,3}. The Yafet part
contribution IY is not negligible for the g process. The detailed
derivation of IE and IY (Appendix F) bears some similarity
with that of intravalley spin flip and invokes the selection rules
governing the opposite points of the � star.

We obtain the leading g-process matrix element,

Mg,LA(k1, ⇑; k2, ⇓) ≈ IE + IY

= Dgs(Kx − iKy), (54)

where

Dgs = 2P/Eg,X[Dso + 4�Xk′
0Dzz/�C] + O

(
k′3

0

)
≈ 0.1 eV. (55)

Dzz = �d + �u denotes the sum of dilation and uniaxial defor-
mation potential parameters [see Eq. (E14) and discussion after
Eq. (E16)] and Dso ≈ 6.7 meV is a spin-dependent scattering
constant [see Eq. (F12)].

Squared matrix elements of the g process are summarized
in Table V, and Fig. 6 compares |Msf| with numerical results
along typical K directions. The scattering-angle dependence

0 0.01 0.02 0.03
0

1

2

3
x 10

−3

|M
(k

1
⇑;

k
2
⇓)

|(
eV

·2
π
/
a)

 

 

|K| (2π/a)

K//[001]
K//[100]
K//[110]
K//[101]
K//[111]

FIG. 6. (Color online) Analytical (solid lines) and numerical
results (-×- lines) of g-process spin-flip matrix elements as a function
of K = 1

2 (k1 + k2) due to scattering with LA phonon modes, and
with s ‖ [001]. Results are shown for five typical scattering directions
where each is represented by a different line color. Analytical
expressions are given in Table V and their results for K‖[110] and
[100] overlap each other. Numerical results rely on EPM and ABCM
(discussed in Sec. VII A).

is predicted correctly where the linear relation holds best
when both states are at the vicinity of the valleys centers.
From numerical results we note that O(k′

0)3 terms from Elliott
interaction yield a negative 10% correction.

Before concluding this part we briefly discuss spin-flip
matrix elements of higher order. We mention only the general
nature of these matrix elements without deriving explicit
forms. The reason is that the g-process has the weakest contri-
bution to spin relaxation in unstrained bulk silicon. Among the
higher-order matrix elements [last line of Eq. (49)], the O(K2)
terms vanish by time-reversal symmetry. This property can be
proven by using Eq. (36) and the matrix elements expansion
to quadratic-K terms. On the other hand, the nonvanishing
second-order term has a wave-vector dependence of the type
O(K)O(|q/2 + k0|). Such a symmetry-allowed term is more
important than O(K3) terms and governs matrix elements of
TA phonon modes. Its contribution to spin relaxation time
from numerical calculations is discussed in Sec. VII. Here it
is noted that, compared with intravalley processes, the relative
contribution to spin relaxation from high-order terms is larger.
In addition, the signature of further bands (outside the X1 and
X4 basis states) is larger in g-process spin flips.

D. Spin orientation dependence

We relax the restriction of a fixed spin orientation (s‖z)
and explore this degree of freedom. The spin orientation
dependence originates from the anisotropy of the conduction
band. This anisotropy suggests that only the relative direction
of spin orientation to a valley axis is important. Accordingly,
we choose the +z valley and express s in terms of polar
and azimuthal angles (θ,φ) with respect to the +z and +x

directions. This choice is convenient since selection rules
between X-point basis states of the +z valley have been
already derived in Secs. V A and V B.

Derivation of spin-flip matrix elements when s ∦ z relies
on the specific form of |k, ⇑ (⇓)s〉. These states satisfy the
conditions of Eq. (6) and their forms can be found by solving
the Hamiltonian matrix when written in terms of the new basis
{|X〉 ⊗ | ↑ (↓)s〉}. However, we can avoid this labor and find
these states using a two-step procedure. First, the previously
derived forms of |k, ⇑ (⇓)z〉 [Eq. (26)] are reexpressed in
terms of the new basis {|X〉 ⊗ | ↑ (↓)s〉}. This change of basis
amounts to a rotation of the spin coordinate by −θ about the
axis ω = ŝ × ẑ. Specifically, the operator

U = exp

(−iσ · ω̂ θ

2

)
(56)

is applied on each of the four spinors [AXi
(k),BXi

(k)]T of
which Eq. (27) is composed.123 In the second step, we find
|k, ⇑ (⇓)s〉 by forming linear combinations of the reexpressed
states (still oriented along z) such that Eq. (6) is satisfied.
Technical details of finding this superposition are summarized
in Appendix D. The states can be expressed in the original
{|X〉 ⊗ | ↑ (↓)z〉} basis using U †.

Having the forms of |k, ⇑ (⇓)s〉, we repeat the procedure of
Sec. V B and derive the dominant intravalley spin-flip matrix
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elements. Scattering with acoustic phonon modes reads

M intra
λ (k1, ⇑s ; k2, ⇓s)

= iη/�CD′
xy(qxξ

+
y,λ(q) + qyξ

+
x,λ(q))

×
[

cos2 θ

2
(qx − iqy) − sin2 θ

2
e2iφ(qx + iqy)

]
, (57)

where λ = {TA1,TA2,LA}. Scattering with optical phonon
modes reads

M intra
χ (k1, ⇑s ; k2, ⇓s)

= −η/�C Dop ξ−
z,χ (q)

×
[

cos2 θ

2
(qx − iqy) − sin2 θ

2
e2iφ(qx + iqy)

]
, (58)

where χ = {TO1,TO2,LO}. Table V lists the squared matrix
element expressions of all phonon modes using elastic con-
tinuum approximation for diamond crystal structures. These
spin-flip expressions are specified for spin orientations along
all inequivalent high-symmetry crystal directions. This chosen
set of directions is important for two reasons. First, the
invoked elastic continuum approximation is accurate along
these directions. Second, the oriented spins in typical spin
injection experiments point along these directions. Using the
results in Table V, we have shown in Fig. 5 that the analytical
expression for n‖z (θ = 0) agrees with independent numerical
calculations. This agreement is also true (not shown) for
n ∦ z cases in Table V. As is explained in the next section,
the numerical models automatically incorporate time-reversal
and space-group symmetries of the crystal. The agreement
between these independent calculation approaches manifest
the robustness of the major terms we have kept in intravalley
spin flips.

Deriving the g-process spin-flip matrix elements is similar.
We study scattering from z to −z valley for an arbitrary
direction of s. Repeating the procedure of Sec. V C, the
dominant spin-flip matrix element reads

Mg,LA(k1, ⇑s k2, ⇓s)

= Dgs

[
cos2 θ

2
(Kx − iKy) − sin2 θ

2
e2iφ(Kx + iKy)

]
, (59)

and it originates from scattering with LA phonon modes.
Using this expression, Table V lists squared matrix elements
along high-symmetry crystal directions. As can be seen from
the square-brackets terms of Eqs. (57)–(59), the g process
shares the same angular dependence as in the intravalley case
but with replacing q = k1 − k2 with K = 1

2 (k1 + k2). The
similar angular dependence is not surprising for two related
reasons. First, the spin orientation only affects the electron
states while the phonon properties play no role in setting the
angular dependence. Second, the electron states that we use
in deriving intravalley or g-process matrix elements are all
expanded around the same X point. The replacement of q with
K can be understood by time-reversal symmetry.

Analysis of the spin relaxation time due to scattering within
the +z valley and between ±z valleys is provided in Sec. VII C
for various directions of s.

VI. INTERPLAY BETWEEN ANALYTICAL
DERIVATION AND EPM

In this work we compare our results with an empirical
method in which the electronic states and phonon polarization
vectors are calculated, respectively, via the empirical pseu-
dopotential and adiabatic bond charge models.24,25 The states
and polarization vectors are used in calculating the electron-
phonon interaction following a rigid-ion approximation.26 The
EPM and ABCM provide very accurate symmetry-related
results and trends of contributions from high-order wave-
vector components. Given that a sufficiently large plane-wave
basis is employed, then in addition to time-reversal symmetry
these models capture the symmetries of the Bravais lattice
and of the primitive cell. This ability is independent of the
specific chosen values of empirical parameters (e.g., form
factors of the pseudopotential). On the other hand, intensive
numerical calculations do not automatically guarantee an
accurate spin-flip matrix element result. Our theory provides a
clear insight to the identity of critical empirical parameters that
are relevant for spin relaxation. In this section we elaborate on
fundamental aspects in understanding the application of EPM
in spin-flip processes.

The usual way of finding the energy band structure by
adjusting the pseudopotential form factors is not sufficient
for scattering problems. Specific derivative values of the
pseudopotential at the first few reciprocal lattice vectors
[dmV (k)/dkm at k = gn] are additional necessary conditions.
In momentum scattering, a correctly interpolated pseudopo-
tential is capable of reproducing the energy shifts of the
conduction band in response to applied stress. Spin scattering
is more than momentum scattering in the sense that the
leading-order matrix element is of higher order in the wave
vector (e.g., intravalley and g-process scattering in silicon).
One consequence is that other deformation potential constants
may come into play (e.g., D′

xy as was shown in the previous
section). In fact, our spin-dependent EPM is matched not only
with energy band structure but also with different deformation
potential quantities (E1 + a,b,d,E2 and E∗

2 in Ref. [109]).
The analytical derivation shows that the two-band degen-

eracy at the X point plays an important role in silicon due
to its proximity to the valley center. This proximity results in
�C/Eg,X � 1, which allowed us to discard interaction terms
of the type rirj ∂V+/∂rk [Eq. (42f)]. Considering the Fourier
transform of the pseudopotential, this simplification means
that intravalley spin flips are only sensitive to values of V (gn)
and dV (gn)/dk while high-order derivatives can be discarded.
However, silicon is a specific case. In germanium, for example,
intravalley spin flips have a cubic dependence on the wave
vector,124 and they may require additional information on
d2V (gn)/dk2 and d3V (gn)/dk3. In the framework of deforma-
tion potential theory, this amounts to expanding the strained
crystal potential with quadratic or higher-order strain-tensor
components. Notably, a comprehensive experimental analysis
of the intravalley spin relaxation time in germanium may
provide new information on its crystal potential.

The f -process spin-flip matrix elements in silicon depend
on various parts of the pseudopotential curve. An a priori and
independent determination of V (|k|) is difficult. To empirically
interpolate the pseudopotential curve from momentum and
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spin relaxation experiments, one has to know the relaxation
times dependencies on temperature, electric field, stress, and
related “knobs.” This information can resolve the values of in-
dividual scattering constants rather than their combined effect.
In addition, knowledge of the intravalley scattering parameters
allows one to reduce the uncertainties in interpolating the
pseudopotential.

All in all, the k · p method and group theory provide
an unambiguous guidance in relating EPM parameters with
different experimental measurements and in determining
the relevant parts for spin relaxation. These considerations
rationalize the investigation of spin-flip problems by joining
analytical and numerical approaches.

VII. SPIN LIFETIME

The spin relaxation time is an experimentally accessible
quantity. With a specific electron distribution F , detailed
expressions for spin-flip matrix elements can, in principle,
provide a transparent physical picture of the spin relaxation
under a variety of conditions. The spin relaxation rate has the
form18

1

τsf
= 4π

h̄

〈∫
d3k2

(2π )3

∣∣〈k2|Hsf
ep|k1〉

∣∣2δ(Ek2 − Ek1 ± h̄ωq)

〉
k1

,

(60)

where 〈k2|Hsf
ep|k1〉 denotes the expression of Eq. (4) with

opposite spin states. The material volume Na3/4 is chosen as
the unit volume. +(−) corresponds to phonon emission (ab-
sorption). The average over k1 represents ∂F/∂Ek1 weighted
integration over k1, which is exact at the limit of infinitesimal
spin-dependent chemical potential splitting. The prefactor of
4π/h̄ instead of 2π/h̄ denotes the fact that the net number of
spin-polarized electrons (N⇑-N⇓) changes by two with each
spin flip.

A few applications are shown in this section. After briefly
describing our numerical integration effort, we present the
commonly used τsf under a normal condition both analytically
and numerically. Here “normal” stands for a nondegenerate
bulk silicon without strong fields (i.e., Boltzmann distribution
FMB for electrons), and with spin orientation along the valley
axis. The average over k1 in Eq. (60) then becomes FMB

weighted integration over k1. This weighted integration is valid
thanks to the relation dFMB/dE ∝ FMB. In the last part of this
section, some essential relations between the spin orientation
s and τsf are derived.

A. Numerical integrations and approximations

We have performed numerical integrations of Eq. (60)
at different levels of approximation. These calculations are
presented in decreasing order of their computation time.
“EPM + ABCM” denotes the full numerical results from
EPM and ABCM program codes.125 The calculated electron
states and phonon polarization vectors are then incorporated
into a rigid-ion model following the procedure in Ref. [21].
“kp + ABCM” replaces the EPM results with k · p energy
band [Eq. (C4)]. It employs the general analytical form of |Msf |
from Eqs. (45), (47), and (54). “ellip + ω(q)” further employs
a spheroidal energy dispersion and replaces the phonon

frequency from ABCM with ω = qvTA/LA for intravalley and
g-process scattering with acoustic phonon modes (vTA/LA

are the phonon velocities). For intravalley scattering with
long-wavelength optical phonon modes, it replaces the phonon
energy with a constant h̄ωop = 63.5 meV. Finally, it employs
the elastic continuum approximation for phonon polarizations
(Table V with s‖[001]).

Numerical integrations of Eq. (60) were performed using
a grid spacing of 0.01 × 2π/a in k space. This grid leads to
converged results for intermediate and high temperatures (T >

50 K). We take advantage of the eightfold symmetry of the �

axis valleys and reduce the intensity of computation whenever
possible. The edges of the irreducible wedge are weighted to
prevent overlap with their neighbors. Also helpful is the strict
equality FMB(k1)n(q) = FMB(k2)[n(q) + 1] when E(k2) −
E(k1) = h̄ω(q). Typical execution times are as follows: tens
of seconds for ellip + ω(q), tens of minutes for kp + ABCM
and a few days (with 64 CPU cores) for EPM + ABCM.
The bottleneck of the EPM + ABCM computation speed
lies in the calculation of individual matrix elements. This
calculation involves the product of states and interactions
written, respectively, in vector and matrix forms with a basis
of hundreds of plane waves.126

B. Fixed spin orientation along the valley axis

We separately study the spin relaxation time due to
intravalley, g-process, and f -process spin flips. Figure 7
shows results of the intravalley spin relaxation time by
integration of Eq. (60) using the aforementioned numerical
procedures. The figure also includes analytical curves for scat-
tering with acoustic phonon modes (left and middle panels).
These analytical integrations are carried out by employing
an elastic scattering approximation and a high-temperature
limit for phonon population n(q) ≈ kBT/h̄ω(q). Together
with the mentioned simplifications in numerical integrations,
these common practices allow us to accurately calculate the
relaxation time by employing the relevant spin-flip matrix
elements in Table V (|M intra

TA/LA|2 with s‖[001] and s‖[100]).
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FIG. 7. (Color online) Intravalley τsf (T ) induced by scattering
with TA, LA, and optical (OP) phonon modes. The relaxation time is
contributed from all valleys and the spin orientation is set along one
of the valley axes (� axis). Analytical curves of the acoustic modes
follow Eq. (61). Other curves refer to numerical approaches with
calculation intensities that depend on details of the band structure,
phonon energy, and polarization vectors (see text). Due to the
crossing of TO and LO dispersion curves, we do not separate their
contributions in the ABCM calculation.
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TABLE VII. Parameter values in Eqs. (61)–(63).

Symbol Value Unit Expression

ρ 2.33 g/cm3

mt 0.19 m0 (m−1
0 + 2P 2/h̄2Eg,X)−1

ml 0.92 m0

md 0.32 m0 (mlm
2
t )1/3

r 0.2 mt/ml

vTA 5 × 105 cm/s
vLA 8.7 × 105 cm/s
�C 0.5 eV Table VI
|η| 16.7 meV·a/2π Table VI
D′

xy 6 eV Eq. (46)
Eg

q 21 meV
Dgs 0.1 eV Eq. (55)

The integrated spin relaxation rate reads

1

τ
TA(LA)
sf,i

= ζTA(LA)
16

√
2m

5/2
d

3π3/2h̄6ρ

( |η|
�C

D′
xy

)2

(kBT )
5
2 ,

ζTA = 1

v2
TA

[
− r4/3(23 − 12r + 4r2)

3(1 − r)3

+ r5/6(3 + 2r)

(1 − r)7/2
arcsin(

√
1 − r)

]
, (61)

ζLA = 1

v2
LA

[
r4/3(3 + 16r − 4r2)

3(1 − r)3

+ r5/6(1 − 6r)

(1 − r)7/2
arcsin(

√
1 − r)

]
,

where τTA
sf,i and τLA

sf,i are, respectively, the intravalley spin relax-
ation times due to scattering with long-wavelength TA and LA
phonon modes. Table VII lists the values of all parameters
in the above expression. To enable an accurate analytical
integration in comparison with the full numerical integration,
the explicit dependence on the band structure anisotropy has
been considered.127 This anisotropy is expressed in Eq. (61) via
r = mt /ml , which denotes the ratio between the longitudinal
and transverse effective masses of the electron (with respect
to the valley axis). As seen from the middle and left panels
of Fig. 7, the analytical integrations match very well with the
most detailed numerical integration. These figures also show
that 1/τsf(T ) of the EPM + ABCM numerical results decrease
slightly faster than T −5/2 for both scattering with TA and LA
phonon modes. It indicates the dependence of |Msf| on higher-
order wave-vector components when |q| gradually increases.22

The figure shows that only minor changes are introduced in all
intravalley processes when replacing the detailed conduction
band structure with spheroid dispersion and the numerical
phonon data with the analytical approximation. This behavior
supports the validity of the invoked approximations, including
the use of an elastic continuum approximation. The stronger
deviation of the EPM + ABCM curve in the case of optical
phonon modes shows the effect of higher-order matrix element
terms. Although the contribution to spin relaxation from LA
and optical phonon modes is negligible at low temperatures
(compared with TA modes), their effect should be considered
at room temperature (especially the optical modes).
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FIG. 8. (Color online) g-process τsf (T ) from LA phonon at
different levels of approximation (see text). The “TA” curve is
calculated only by EPM + ABCM. The relaxation time is contributed
from all valleys and the spin orientation is set along one of the valley
axes. In ellip + ω(q), the phonon velocity is the same as that of a
long-wavelength LA phonon mode. In the analytical curve the phonon
energy is constant (21 meV).

We study the spin relaxation time due to g-process spin
flips in a similar way. Results of the analytical and numerical
integrations are presented in Fig. 8. The analytical relaxation
rate due to scattering with LA phonon modes (dominant
effect) is reached by integrating Eq. (60) with spin-flip matrix
elements taken from Table V (for the case of s‖[001] and
s‖[100]),

1

τLA
sf,g

=
√

2D2
gsmtm

3
2
d E

g
q

16π
3
2 h̄4ρ

K2
(
E

g
q /2kBT

)
√

kBT sinh
(
E

g
q /2kBT

) . (62)

Values of the scattering constant, phonon energy, and effective
masses are listed in Table VII. Ki is the ith-order modified
Bessel function of the second kind. Figure 8 also shows
a full numerical curve due to scattering with TA phonon
modes. The relative weight of the TA part clearly increases
with temperature. Also can be seen at the high temperature
end, is a relatively large deviation between the analytical
and ellip + ω(q) curves. This deviation is caused by using a
constant phonon energy instead of a linear dispersion relation.
The energy difference affects the phonon population.

Finally, we study the spin relaxation due to f -process spin
flips. Analytical and EPM + ABCM numerical integrations of
Eq. (60) are presented in Fig. 9 for each of the phonon modes.
In the analytical integration, we have used the approximations
of a spheroidal energy dispersion in the conduction band,
and of wave-vector-independent spin-flip matrix elements and
phonon energies (Sec. IV). The analytical integration becomes
relatively simple for each of the nonvanishing modes and for
spin orientation along the valley axis,

1

τ
�i

sf

=
√

2m
3
2
d

3π
3
2 h̄2ρ

AiD
2
�i

K1
(
E

f
q /2kBT

)
√

kBT sinh
(
E

f
q /2kBT

) . (63)

Values of the scattering constants and phonon energies (D�i

and E
f
q ) are listed in Table III, where D�1 stands for D�1,s .

The value of Ai is obtained by summing |Msf|2 over 12 pairs of
valleys. Following the results of Sec. IV A, we get that A1 = 8
and A2/3 = 16. In calculating the values of Ai we have used
the facts that for �1, there is no coupling between valleys
of the x-y plane, whereas the coupling is D2

�1
between any

of the remaining eight pairs of valleys (assuming that s ‖ z).
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FIG. 9. (Color online) Analytical (solid lines) and numerical (-×-
lines) results of τsf (T ) in f -process spin flips where each phonon
mode is represented by a different color. The relaxation time is from
all valleys and the spin orientation is set along one of the valley
axes. ⊥ and ‖ are taken with respect to the cross product of valley
centers (direction of k0,1 × k0,2). The analytical contribution from
TA⊥ modes vanishes (at the zeroth order).

For �2/3, the coupling is |(1 + i)D�2/3 |2 between each of the
4 pairs of the x-y plane and D2

�2/3
between each of the

remaining 8 pairs.
Figure 9 shows that the dominant scattering is with phonon

modes of the LA and TA‖ (�1 and �3 symmetries; see
Table III). Their temperature trends are correctly predicted
by the wave-vector-independent analytical analysis. The same
applies for scattering with phonon modes of the TO⊥ and TO‖.
After a qualitative analysis we find that the big difference
between analytical and numerical results in the LO phonon
case is caused by quadratic-wave-vector terms. This wave-
vector dependence is further complicated by even higher-order
terms when the electron states are further away from valley
centers. For the TA⊥ phonon case, we found in Sec. IV
that there is no wave-vector-independent term. The numerical
result is attributed to linear terms and it is non-negligible due to
the higher phonon population of this mode [lowest energy; see
Fig. 3(a)]. In general, wave-vector-dependent terms contribute
at all modes when the temperature increases. The dependence
on the electron wave vectors (k1,2) can be similarly analyzed
between decomposed k · p basis states (as in the intravalley
and g-process cases). We do not make an explicit derivation
of these terms since the focus is on the leading-order
term contribution (wave-vector independent in the f -process
case).

C. Spin orientation anisotropy coupled with symmetry
breaking mechanisms

The spin relaxation time is, in general, a function of spin
orientation [τsf(s)]. It can be obtained by integration with the
general matrix element expressions derived in Eqs. (17a)–
(17f) and (57)–(59). We can first calculate τsf(s) from one
valley (intravalley) or a pair of valleys (intervalley). The total
τsf(s) is a summation from all of the involved valleys, whose
individual τsf(s) can be related to the calculated one by a proper
coordination rotation.

We first discuss the integrated effect of changing s on
intravalley and g-process spin flips. Figure 10 shows the
temperature dependence of τsf(s) due to intravalley scattering
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FIG. 10. (Color online) τsf (T ,s) of electrons in the z valley
(intravalley) and ±z valleys (g process) for spin orientation s along
high-symmetry directions. The curves of s‖[100] and [110] overlap
each other since integrations of their respective spin-flip matrix
elements over the azimuthal angle of q yield the same result. In
this sense, only the projection ŝz on the valley axis is relevant.

of electrons in the z valley with TA, LA, and optical modes. It
also shows τsf(s) due to the dominant intervalley scattering
between the ±z valleys (g process). These results were
calculated using the kp + ABCM integration procedure with
matrix elements taken from Table V. Each panel shows
results of s along all of the inequivalent high-symmetry
crystallographic directions. The spin lifetime in a given valley
increases with decreasing the projection of the spin orientation
on the valley axis. This effect implies that suppression of the
spin relaxation in one valley is compensated by enhanced
relaxation at perpendicular valleys. As a result, the spin
lifetime due to intravalley and g-process scattering from all
valleys is expected to have a diminished dependence on
the spin orientation. Nonetheless, Fig. 10 can be seen as a
simplified example of how different spin orientations, coupled
with a symmetry-breaking mechanism, can lead to different
experimentally measurable quantities. For example, stress or
electrical fields can selectively change the electron distribution
of different valleys, leading to a significant electron population
only at valleys along a certain axis. In that case, the total spin
lifetime will present a pronounced degree of anisotropy when
changing the spin orientation.

For f -process spin flips, changing the spin orientation
results in slightly more involved relations between spin
relaxation times of different pairs of valleys. The wave-vector
integration of Eq. (60) is not affected by the spin orientation
(Mf

sf are wave-vector independent). Therefore, one only needs
to obtain the values of Ai in Eq. (63) for each of the �i

symmetries. In this application, the 12 pairs of involved
valleys can be divided into 6 groups. Each group consists of
2 pairs related by space-inversion operation and they always
have the same value of |M�i

(s)| = 〈k2, ⇓s |H�i
|k1, ⇑s〉. For

±x ↔ ±y pairs, we use Eqs. (17b), (17d), and (17f) and
denote them with M0,�i

(s). Using crystal symmetry, the matrix
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elements of all other pairs relate to M0,�i
(s) by

±x ↔ ∓y : M�i
(s) = M0,�i

(sx, − sy,sz),

±x ↔ ±z : M�i
(s) = M0,�i

(sx,sz,sy),

±x ↔ ∓z : M�i
(s) = M0,�i

(sx, − sz, − sy), (64)

±y ↔ ±z : M�i
(s) = M0,�i

(sz,sy,sx),

±y ↔ ∓z : M�i
(s) = M0,�i

(−sz,sy, − sx).

After summing all of the contributions, one finds that A1 = 8
and A2/3 = 16 [the same as those obtained in Eq. (63)]
with the direction of s first expressed in terms of (θ,φ)
and then substituted into expressions of M0,�i

. Therefore,
when all valleys are equally populated then the total τsf is
invariant of s (to the leading order). On the other hand,
when symmetry-breaking effects are introduced then valley
repopulation brings in a dependence of the spin relaxation time
on the spin orientation. For example, consider an internally
strained structure in which the f -process scattering with
±z valleys is suppressed (i.e., the ±x and ±y valleys are
equivalent and have sufficiently lower energy). In such a
structure, the above analysis reveals that if the spin is oriented
along z then one should assign in Eq. (63) values of A1 = 0
and A2,3 = 8. Similarly, for orientation along x or y one should
assign A1 = 4 and A2,3 = 4. Using the parameters of this
stressed configuration, the f -process spin relaxation time is
estimated to be shortened by ∼50% when changing the spin
orientation from the z axis to the perpendicular plane.

VIII. SUMMARY AND OUTLOOK

We have presented a comprehensive analysis of all phonon-
induced spin relaxation processes in bulk silicon. The applied
temperature and doping regime of this mechanism has been
identified, among other mechanisms (Sec. II). In decreasing
order of contributions to spin relaxation, detailed expressions
of f -process, intravalley, and g-process matrix elements have
been derived and their dependence on the spin orientation are
unveiled. We have elaborated on the wave-vector dependence
and symmetry properties of each spin-flip process. In analogy
to Herring and Vogt theory on momentum relaxation in
silicon,108 this work unravels the magnitudes and symmetries
of all phonon-induced spin relaxation processes in silicon.

In studying the f -process spin flips, double group selection
rules are used to obtain the wave-vector-independent (leading
order) matrix elements. Spin-orientation-dependent spin-flip
(and spin-conserving) matrix elements were expressed in terms
of scattering constants D�is (and also D�1m) for electron-
phonon interaction with �i symmetry.

Intravalley spin flips were studied by using a combination
of single group theory, k · p perturbation method and rigid-ion
model. The spin-dependent coupling between the expanded
basis functions and symmetrized interactions is formulated via
selection rules. This approach allowed us to derive the leading
order intravalley matrix elements [Eqs. (57) and (58)] and to
resolve their exact dependence on the phonon polarization (ξ ),
its wave vector (q), and on the spin orientation with respect
to the valley axis [s(θ,φ)]. By incorporating the diamond
crystal structure into an elastic continuum model (expressing
ξ in terms of q), we have derived appealing forms of these
matrix elements (Table V). Finally, the analysis identifies

the important band structure parameters. The η parameter
is a measure of the wave-vector-independent spin-orbit cou-
pling between conduction and valence states at the X point
(Table VI). The deformation potential parameter due to scat-
tering with long-wavelength acoustic (optical) phonon modes
is Dop (D′

xy), and it corresponds to interband coupling between
the lowest pair of conduction bands [Eq. (46) and (48)].
This coupling is brought by the proximity of the valley to
the two-band degeneracy at the X point. The �C parameter
denotes the energy gap between the lowest pair of conduction
bands at the valley center.

A complete picture of the relation between intravalley spin-
conserving and spin-flip processes has been provided (together
with the detailed derivations in Appendixes E and F). This
comparison reveals important physical aspects that are being
overlooked when relating spin and momentum relaxation
times via the shift of the g factor (conventional approach in
quantifying the spin lifetime due to the Elliott-Yafet relaxation
mechanism).

g-process spin flips are studied in a similar way to the
intravalley case. In spite of the opposite valley positions of
an electron before and after scattering, Kramers conjugation
relation allows us to expand the electronic states by basis
functions of the same X point. One result of this relation is
that the matrix elements depend on the average between the
initial and final electron wave vectors [K = 1

2 (k1 + k2)] rather
than on their difference (q = k1 − k2). The spin-orientation-
dependent matrix element of the g-process is provided
in Eq. (59). The involved scattering constant has a large
contribution from dilation and uniaxial deformation potential
constants [Eq. (55)]. Comparing the derived matrix elements
with respective results of independent numerical calculations
shows that our analytical approach provides accurate spin-flip
amplitudes at all scattering angles for both intravalley and
g-process cases (Figs. 5 and 6).

Our analysis provides insights into which parts of the
interaction (spin-independent “Elliott” or spin orbit coupling
“Yafet”) dominate the phonon-induced spin relaxation in
silicon. In silicon, the sum of Elliott and Yafet contributions
vanishes at the zero and first order of intravalley scattering
with acoustic phonon modes.18 At the leading order of this
scattering (quadratic-in-q), we have shown that the Elliott
part dominates the spin relaxation. The Elliott contribution is
also shown to dominate the spin relaxation due to intravalley
scattering with optical phonon modes and g-process inter-
valley scattering. The latter two process are, respectively,
linear in q and K. Yafet contributions, however, cannot
be completely ignored in g-process scattering where the
deformation potential constant is affected by the spin-orbit
coupling [Eq. (F12)]. In silicon, Elliott and Yafet contributions
are comparable only in the f process.

We have derived the spin lifetime due to each of the
spin-flip processes by integrating its leading matrix elements.
Analytical forms are given for intravalley scattering with
acoustic phonon modes [Eq. (61)] and for both types of
intervalley scattering [Eqs. (62) and (63)]. Comparison of
these results with numerical calculations at different levels
of approximation show good agreements (Figs. 7, 8, and 9).
The analysis also identifies the phonon modes which lead to
strongest spin relaxation. The f process is led by scattering

085201-19



YANG SONG AND HANAN DERY PHYSICAL REVIEW B 86, 085201 (2012)

with �1 and �3 symmetries (LA and TA‖ phonons). Intraval-
ley spin relaxation is led by scattering with TA phonons.
Intravalley contributions from scattering with LA and optical
phonons become comparable to the TA’s at room temperatures.
g process is led by scattering with LA phonons. We have
also considered the secondary contribution to g-process spin
relaxation from scattering with TA phonons (quadratic-wave-
vector dependence but a larger phonon population).

A. Outlook

Results of this work shed light on new research directions in
group IV spintronics. By having a thorough understanding of
the underlying physics, one can devise a means to enhance the
spin lifetime of room temperature silicon spintronic devices.
Quenching of the dominant f process by certain stress
configurations is the first step in this direction.16,23 In this case,
only the valleys along one crystallographic axis are practically
populated with electrons. To further suppress the remaining
relaxation processes (intravalley and g-process spin flips), one
can make use of the slower relaxation when the spin orientation
is perpendicular to this crystallographic axis (Fig. 10).

In addition to quenching the f process and further opti-
mization by spin orientation, one can also impose geometrical
constraints on the transport. For example, promising candi-
dates seem to be stressed silicon wires with a cross-section
area that is large enough to prevent detrimental surface effects
but is small enough to restrict the phase-space for scattering.
Having the wire axis parallel to the axis of populated valleys
would allow one to achieve significantly longer spin lifetimes.
This fact can be seen from the detailed intravalley and
g-process matrix elements: while in these structures forward
and backward scattering with respect to the axis of the wire
(and populated valleys) dominate the transport, these types
of scattering would not be accompanied by spin flips (e.g.,
for z valley electrons, assign qx ≈ qy ≈ 0 in Table V). This
example shows the insights one can gain from understanding
the symmetries of the matrix elements rather than only having
a knowledge of the integrated effect.

The complete set of matrix elements is also instrumental in
calculating the spin relaxation in the presence of large electric
fields. Due to the mass anisotropy, the valley population
depends on the direction of the field. In addition, the field
can lead to a large departure of the electron distribution
from equilibrium conditions.128 As a result of these effects,
intervalley processes are enabled already at low temperatures
and certain scattering processes are enhanced.88 Using the
dependence of the relaxation on spin orientation and scattering
directions, one can accurately model and understand the spin
relaxation in these conditions.

The presented theory identifies a handful of scattering and
band structure constants which have not been experimentally
determined yet. Evidently, the most important constants are
D�1(3)s of the f -process scattering with phonon modes along
the LA (TA‖) branches and �X, which denotes the spin-orbit
coupling between conduction and valence states at the X point.
In the absence of experimental data, we have used the empirical
pseudopotential method to calculate their values (Tables III and
VI). To determine these constants experimentally one should
resolve various contributions to the measured spin lifetime.

Intravalley, g and f processes have different dependencies
on the wave-vector components, phonon polarization, and
spin orientation. In addition, the energies of the respective
phonon modes are different. As a result, the measured spin
lifetime of each of these processes has a unique dependence
on temperature [Eqs. (61)–(63)], and it can be clearly resolved
by application of a symmetry breaking mechanism (e.g., stress
or electric fields as mentioned before).

Finally, the theoretical approaches presented in this paper
can be used to study the spin relaxation of materials with
different symmetry groups and consequently different wave-
vector-order analysis (e.g., germanium and graphene with
respective utilization of the space groups at the L and K points
of their Brillouin zones). Results of such a study provide a
clear picture of preferred scattering angles, spin orientation,
and dominant spin relaxation mechanisms. As in the case of
silicon, having this information provides guidance in tailoring
the spin relaxation by application of stress, external fields,
or geometrical constraints. When such external influences
become too large, one can repeat the steps of the presented
procedure after adding the external perturbation explicitly in
the Hamiltonian and interaction terms.
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APPENDIX A: DETAILED APPLICATION OF DOUBLE
GROUP THEORY FOR f -PROCESS MATRIX ELEMENTS

In this Appendix, we intend to express interaction matrix
elements 〈k2, ± s|H�i

|k1,s〉 in terms of N�i
independent

constants. First, by the general time-reversal and space-
inversion symmetries we can connect different matrix elements
of each phonon mode [Eq. (13)].

For �1 mode, the (ρz|τ ) operation equates the spin-flip
matrix element to negative of itself (seen from the character of
�1 and the IR matrix of D�6 = D�1 × D1/2 in Table III). We
show this example explicitly,

H�1 → H�1 ,

|k, ⇑z〉 → e
−ik0a

4 × (−i)|k, ⇑z〉,
|k, ⇓z〉 → e

−ik0a

4 × i|k, ⇓z〉,
remembering that basis states in D�6 are |k, ⇑z (⇓z)〉. (ρz|τ )
and other symmetry operations do not provide constraints on
the spin-conserving matrix element. SinceN�1 = 2 [Eq. (11)],
there are two real constants D�1,m and D�1,s . The physical
significance of these two constants will become clear later.
They are defined such that

〈k2, ⇑z |H�1 |k1, ⇑z〉 = D�1,m + iD�1,s . (A1)

For �2, spin-conserving matrix element vanishes (can be
seen, for example, by applying the T σz operation). The spin-
flip matrix element is

〈k2, ⇓z |H�2 |k1, ⇑z〉 TR= −〈−k1, ⇓z |H�2 | − k2, ⇑z〉
(ρxy |τ )= i〈k2, ⇑z |H�2 |k1, ⇓z〉,
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TABLE VIII. List of operations of the G2
32 group. Notations

follow Ref. 100.

Class symbol Operations

C1 (ε|0)
C2 (δ2x |0), (δ2y |0), (δ2x |txy), (δ2y |txy)
C3 δ2z

C4 (δ2xy |τ ), (δ2x̄y |τ + txy)
C5 (δ4x |τ ), (δ−1

4x |τ ), (δ4x |τ + txy), (δ−1
4x |τ + txy)

C6 (ρz|τ ), (ρz|τ + txy)
C7 (ρy |τ ), (ρx |τ ), (ρy |τ + txy), (ρx |τ + txy)
C8 (i|τ ), (i|τ + txy)
C9 (ρxy |0), (ρx̄y |0)
C10 (σ4z|0), (σ−1

4z |0), (σ4z|txy), (σ−1
4z |txy)

C11 (ρxy |txy), (ρx̄y |txy)
C12 (δ2x̄y |τ ), (δ2xy |τ + txy)
C13 (δ2z|txy)
C14 (ε|txy)

by time reversal and (ρxy |τ ) sequentially. Combined with
Eq. (13b), we are led to

〈k2, ⇓z |H�2 |k1, ⇑z〉 = D�2 − iD�2 , (A2)

where D�2 is the independent real constant.
Applying the same operations for �3 and noting that the

only difference from �2 mode is the sign of χ�3 (ρxy |τ ), we
get

〈k2, ⇓z |H�3 |k1, ⇑z〉 = D�3 + iD�3 , (A3)

where D�3 is the independent real constant. As shown in
Eq. (11), the �4 phonon symmetry does not couple electrons
of any spin species (N�4 = 0).

APPENDIX B: GROUP G2
32

Symmetry operations of the G2
32 group are listed in

Table VIII. The table refers to the X point in the z direction.
Tables of X points in the x and y directions are derived
by cyclic permutations. From Table VIII one can study
how vectors and axial-vectors are transformed under the 32

group elements. Character table of the G2
32 group is listed in

Table IX. From the character table one can decompose the
direct products of {X1,X4} into direct sums of IRs [Eq. (18)].
One can also construct all sorts of direct product rules from
IRs that present components of vectors, axial vectors, or
(anti)symmetric potentials [Eq. (20)].

APPENDIX C: k · p HAMILTONIAN PARAMETERS AND
THE PARTITIONING

Comparing directly the matrices form of Eq. (24) and the
Hamiltonian H1 in Eq. (23), the four independent integral
constants readily follow:

h̄k0 = 〈X2′
1

∣∣pz

∣∣X2′
1

〉
, (C1a)

m0P = h̄
〈
Xx

4

∣∣py

∣∣X2′
1

〉
, (C1b)

4m2
0c

2�X = ih̄
〈
Xx

4

∣∣(∇V × p)y
∣∣X2′

1

〉
, (C1c)

4m2
0c

2α = −ih̄2〈Xx
4

∣∣∂V/∂y
∣∣X2′

1

〉
. (C1d)

These constants can also be expressed as other equivalent
integrals (e.g., h̄k0 = −〈X1

1|pz|X1
1〉).

To analytically diagonalize the Hamiltonian matrix in
Eq. (25) we note that the X-point energy gap, Eg,X ≈ 4.3 eV,
is significantly larger than other energy scales. Therefore, we
use degenerate second-order perturbation theory and lump
the valence band effect onto the conduction band (Löwdin
partitioning).129 We get a reduced 4 × 4 matrix,

H̄cc = Hcc + H
†
vcHvc

Eg,X

, (C2)

whose four spin-dependent basis states are

X̄L = X̄1 + H
†
vc

Eg,X

X̄4. (C3)

X̄1 = [|X2′
1 , ↑〉,|X2′

1 , ↓〉,|X1
1, ↑〉,|X1

1, ↓〉]T and X̄4 =
[|Xx

4 , ↑〉,|Xx
4 , ↓〉,|Xy

4 , ↑〉,|Xy

4 , ↓〉]T . Higher-order
perturbation does not bring dominant terms up to quadratic k

dependence. It has been explicitly checked. The eigenvalues

TABLE IX. Character table of the G2
32 group.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M2 1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
M3 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 1 1
M4 1 −1 1 1 −1 1 −1 1 1 −1 1 1 1 1
M5 2 0 −2 0 0 2 0 −2 0 0 0 0 −2 2
M ′

1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1
M ′

2 1 1 1 −1 −1 −1 −1 −1 1 1 1 −1 1 1
M ′

3 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1
M ′

4 1 −1 1 1 −1 −1 1 −1 −1 1 −1 1 1 1
M ′

5 2 0 −2 0 0 −2 0 2 0 0 0 0 −2 2
X1 2 0 2 0 0 0 0 0 2 0 −2 0 −2 −2
X2 2 0 2 0 0 0 0 0 −2 0 2 0 −2 −2
X3 2 0 −2 2 0 0 0 0 0 0 0 −2 2 −2
X4 2 0 −2 −2 0 0 0 0 0 0 0 2 2 −2
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of H̄cc that pertain to the energies of the upper and lower conduction bands read

E±(k) = h̄2k
′2
z

2m0
+ h̄2

(
k2
x + k2

y

)
2mt

± �Ec(k)

2
, (C4)

�Ec(k) = 2

√√√√(h̄2k0k′
z

m0

)2

+
(

h̄2kxky

mcv

)2

+ |η|2(k2
x + k2

y

)− 4�C�Xαk′
z

Eg,X

, (C5)

where k′
z = kz − 2π/a and mcv = h̄2Eg,X/2P 2. The energy

gap between the conduction bands is �Ec(k). Values of the
parameters are provided in Tables VI and VII. The η-related
term21 as well as the αk′

z-related term in Eq. (C4) are the
leading spin-orbit effect on the energy. Along the Z-symmetry
axis connecting the X and W points [k′

z = ky = 0 or k′
z = kx =

0; see Fig. 3(a)] as well as the part of � axis very close to the
X point, the splitting between the lower and upper conduction
bands is induced by the spin-orbit coupling. This feature
corresponds to the celebrated spin hot spot at the edge of
the Brillouin zone.21,22 Figures 4(b) and 4(c) show the energy
dispersion of the two conduction bands along the Z axis.

APPENDIX D: SPIN ALIGNMENT

In this Appendix, we present the routine for linearly com-
bining doubly degenerate eigenvectors such that the resulting
eigenvectors spins are aligned along a desired direction of s
[Eq. (6)]. This routine is for Hamiltonians that include spin-
orbit coupling and when the crystals have a space-inversion
symmetry. Particularly, it is tailored for basis states which
go back to themselves after sequential space-inversion and
time-reversal operations. The chosen X-point basis as well as
general plain-wave basis belong to this category. Otherwise,
the routine can be readily modified and made applicable.

In general, we express the double degenerate eigenvectors
in basis |X〉 ⊗ | ↑ (↓)s〉, where |X〉 is the spin-independent part
(Secs. V A and V D). σ · ŝ in Eq. (6) is written as [1,0;0,−1] in
this basis. Suppose one of the double degenerate eigenvectors
is ca(k), and it has 2m elements, where m is the number of spin-
independent basis states (m = 4 in our k · p Hamiltonian).
ca

2i−1(2i)(k) are coefficients of pure spin up (down) basis states.
Then, from the general consideration of time-reversal and
space-inversion symmetries of the Hamiltonian and the basis
states, we know that components of the other eigenvector
cb(k) can be written as cb

2i = (ca
2i−1)∗ and cb

2i−1 = −(ca
2i)

∗.
This property satisfies the first equality of Eq. (6). To satisfy
the other spin alignment definition in Eq. (6), we write a
normalized linear combination,

c⇑ = (ca + wcb)/
√

1 + w2, (D1)

such that

(c⇓)†
[
Im ⊗

(
1 0
0 −1

)]
c⇑ = 0,

where c
⇓
2i = (c⇑

2i−1)∗, c
⇓
2i−1 = −(c⇑

2i)
∗, and Im is a m-

dimensional identity matrix. We are led to

−d − wb + w2d∗ = 0,

where

b =
m∑

i=1

(∣∣ca
2i−1

∣∣2 − ∣∣ca
2i |2
)
, d =

m∑
i=1

(
ca

2i−1c
a
2i

)
.

Thus, we get the combination parameter in Eq. (D1):

w = (b −
√

b2 + 4|d|2)/(2d∗). (D2)

We further have w ≈ −d/b if b � d. In the case of EPM
states, this general procedure requires to replace the |X〉 basis
(m = 4) with a plane-wave basis (where typically m > 100).

APPENDIX E: INTRAVALLEY MOMENTUM SCATTERING
AND DEFORMATION POTENTIAL

In this Appendix, we derive results of intravalley mo-
mentum scattering by selection rules with k · p Hamiltonian
eigenstates. The procedure paves the way for analyzing more
involved intravalley (Sec. V B) and g-process (Sec. V C)
spin-flip scattering in a similar approach.

The leading terms in momentum scattering matrix elements
depend linearly on the phonon wave vector. We show it by a
wave-vector-order analysis.

Zeroth order. At k1 = k2, the in-phase atomic vibration
does not depend on lattice sites. Thus, the phonon-induced
interaction in Eq. (7) reduces to displacement of the entire
crystal,

∑
j ∇rV+(r − Rj ) = ∇Vcrystal. Based on the relation

∇Vcrystal = i[p,H ]/h̄, (E1)

the coupling of the in-phase part between spin-degenerate
eigenstates of H vanishes,

Mi(k,s; k,s) = Mi(k,s; k, − s) = 0. (E2)

For the out-of-phase part, ξ−(q) is linear with q,

Mo(k,s; k,s) = Mo(k,s; k, − s) = 0. (E3)

Therefore, all the zero-order terms vanish.
First order. We write the matrix elements of momentum

scattering using the basis states of the X point. Here, the effect
of spin-orbit coupling can be safely neglected. As a result, in
the expansion of |k,s〉 [Eqs. (26) and (27)] we omit B(k) and
keep only the coefficients of A(k). These coefficients and the
translational part are then linearized around K = (k1 + k2)/2,
providing

A(k1,2) = A(k0) ∓ q/2 · ∇kA(k)|k0 + · · ·
=
[

0,1, ± Pqx

2Eg,X

, ± Pqy

2Eg,X

]
+ · · · , (E4)

exp(ik′
1,2 · r) = exp(ik′

0 · r)(1 ∓ iq · r/2 + · · · , (E5)
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where K was replaced by the wave vector of the valley center
(k0). The error brought into the matrix element with this
replacement is of higher order (quadratic) in q. We substitute
these linearized forms into Eq. (26) and the resulting states are
then plugged into the in-phase and out-of-phase part of Eq. (8).
This procedure identifies three linear terms with relatively
large coefficients, and the matrix element up to leading order
reads

M(k1,s; k2,s) = ��M (0)
m + M (1)

m =
3∑

j=1

Im,j ,

Im,1 = ξ−(q) · 〈X1
1

∣∣∇V−
∣∣X1

1

〉
,

Im,2 = P

2Eg,X

∑
�=x,y

[
q�ξ

+(q) · 〈X�
4

∣∣∇V+
∣∣X1

1

〉− c.c.
]
,

Im,3 = −ξ+(q) · 〈X1
1

∣∣(iq · r)∇V+
∣∣X1

1

〉
, (E6)

where c.c. denotes complex conjugate. These conceivably
dominant terms are further examined to see if they are kept by
selection rules.

The integral forms of intravalley momentum scattering
are further restricted by group theory. Both the basis states
couplings and interactions are identified as parts belonging
to IRs of G2

32. Using Eqs. (18)–(20b) and the discussion that
follows, we write the following decompositions:〈

X1
1

∣∣...∣∣X1
1

〉→ X1 ⊗ X1 = M1 ⊕ M ′
3 ⊕��M4 ⊕��M2

′, (E7a)〈
X�

4

∣∣...∣∣X1
1

〉→ X4 ⊗ X1 = M5 ⊕ M ′
5, (E7b)

∇V+ → (M ′
3 ⊕ M5) ⊗ M1 = M ′

3 ⊕ M5, (E7c)

∇V− → (M ′
3 ⊕ M5) ⊗ M ′

2 = M4 ⊕ M ′
5. (E7d)

In writing the first line, we have used Eq. (19a) to cross out
IRs in which only off-diagonal coupling between basis states
is possible (i.e., between X2′

1 and X1
1). The first integral, Im,1

in Eq. (E6), couples X1
1 states via a vector-type operation on

the antisymmetrical potential part (∇V−). Since the respective
decompositions in Eqs. (E7a) and (E7d) have no mutual IR,
this type of coupling vanishes. We get

Im,1 = 0. (E8)

The second integral, Im,2 in Eq. (E6), couples X1 and X4

states via a vector-type operation on the symmetrical potential
part (∇V+). M5 appears in the respective decompositions
[Eqs. (E7b) and (E7c)]. Following the discussion that precedes
Eq. (21) we can find the invariant integrand form. Then, by
noting that V+ can be replaced by the crystal potential (set
k1,2 = (0,0,1)2π/a in Ref. [93]), the integral is analytically
solved using Eq. (E1):

Im,2 = im0P
2

h̄2 [qxξ
+
x (q) + qyξ

+
y (q)]. (E9)

The third integral, Im,3 in Eq. (E6), couples X1
1 states via a

second-rank tensor [r ⊗ ∇V+(r)]. To write a decomposition
expression, it should first be cast into a symmetrized form,

r ⊗ ∇V+ =
∑

α

(r − τ α) ⊗ ∇Vat(r − τ α) + τ ⊗ ∇V−.

(E10)

As shown before, ∇V−(r) cannot couple between X1
1 states.

The symmetrized sum term on the right-hand side transforms
as

(M ′
3 ⊕ M5)⊗2 = (M5 ⊗ M5) ⊕ (M ′

3 ⊗ M ′
3) ⊕ 2(M ′

3 ⊗ M5)

= (M1 ⊕ M2 ⊕ M3 ⊕ M4) ⊕ (M1) ⊕ 2(M ′
5).

(E11)

Combined with Eq. (E7a), we see that the two M1 in Eq. (E11)
contribute to Im,3 in Eq. (E6). There should be two independent
parameters associated with the two M1’s. Of the nine tensor
components of

∑
α(ri − τα,i)∂Vat(r − τ α)/∂rj , one indepen-

dent parameter originates from the product of longitudinal
components (i = j = z) and belongs to M ′

3 ⊗ M ′
3 = M1, and

the other from the sum of transverse component products
(i = j = x plus i = j = y) and belongs to the M1 out of
M5 ⊗ M5. Putting all of the pieces together, the overall matrix
element of intravalley momentum scattering reads

M(k1,s; k2,s)

= im0P
2

h̄2

[
qxξ

+
x (q) + qyξ

+
y (q)
]

− i

x,y,z∑
j

qj ξ
+
j

A,B∑
α

〈
X1

1

∣∣ (rj − ταj )
∂Vat(r − τ α)

∂rj

∣∣X1
1

〉
.

(E12)

Deformation potential theory provides a concise ap-
pearance for the matrix element of intravalley momentum
scattering,98,108,130

x,y,z∑
j

〈 k0|Djj |k0 〉 εjj (q), (E13)

where deformation potential operators and strain tensor (ε̄)
elements at the long-wavelength regime are

Djk = −pjpk

m0
+ lim

ε̄→0

∂Vε[(1 + ε̄) · r]

∂εjk

, (E14)

εjk(q) = i(qj ξ
+
k (q) + qkξ

+
j (q))/2. (E15)

Vε is the crystal potential under strain ε̄. Here εjk(q)
in Eq. (E15) is stripped out of the amplitude factor√

h̄/[2ρV ω(q)]
√

n(q) + 1/2 ± 1/2 in order to compare it
with the expression of Eq. (8). To relate with Eq. (E12)
we substitute Eq. (E14) and (E15) into Eq. (E13) and use
ψk0 (r) � eik′

0zψX1
1
(r). The second term in Djj leads to exactly

the last term of Eq. (E12) with an opposite sign. For the kinetic
term in Djj , we write

〈
X1

1

∣∣p2
j

∣∣X1
1

〉 =∑
n

〈
X1

1

∣∣pj |Xn〉
〈
Xn

∣∣pj

∣∣X1
1

〉 � m2
0P

2

h̄2 , (E16)

where j = {x,y} considering the dominant coupling of px,y

between X1
1 and valence X4 states.131 p2

z does not have this
dominant coupling. Therefore, the first term in Djj is exactly
the second line of Eq. (E12) with a minus sign. Physical results
do not change upon this global minus sign. Of the diagonal
deformation potential constants Djj = 〈 k0|Djj |k0〉, there are
two independent values Dzz and Dxx = Dyy (in z valley).
Dilation and uniaxial deformation potentials are related to
them via �d = Dxx and �u = Dzz − Dxx .
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All in all, we have shown the equivalency of our procedure
with known deformation potential theory for intravalley
momentum scattering.

APPENDIX F: SOME DETAILS IN INTRAVALLEY AND
g-PROCESS SPIN FLIP MATRIX ELEMENTS

1. Intravalley

We invoke group theory and evaluate the integrals
in Eqs. (42b)–(42e). The out-of-phase matrix element,∑

μ,ν Iμ,ν;2, includes a single dominant Elliott process. Its
coefficient product, iη/�C , comes from AX1

1
and ∂BX2′

1
/∂kx(y).

Its integral reads 〈X1
1|∇V−|X2′

1 〉. Using appropriate decompo-
sitions,〈

X1
1

∣∣...∣∣X2′
1

〉→ X1 ⊗ X1 = ��M1 ⊕��M3
′ ⊕ M4 ⊕ M ′

2, (F1a)

∇V− → (M ′
3 ⊕ M5) ⊗ M ′

2 = M4 ⊕ M ′
5, (F1b)

we see that these states can be coupled by the longitudinal
component of ∇V− (transforms as M4). We have crossed out
IRs in which only diagonal coupling is possible (e.g., between
X1

1 and X1
1). All in all, one combination is kept:∑

μ,ν

Iμ,ν;2 = iη

�C

〈
X2′

1

∣∣∂V−
∂z

∣∣X1
1

〉
(iqx + qy)ξ−

z (q). (F2)

The remaining nonvanishing matrix elements relate to the
in-phase potential. The sum

∑
μ,ν Iμ,ν;3 includes a single dom-

inant Elliott process. Its coefficient product, −iP η/Eg,X�C ,
comes from ∂BX2′

1
/∂kx,y and ∂A

X
x(y)
4

/∂kx(y). Its integral reads

〈X2′
1 |∇V+|Xx,y

4 〉. Using appropriate decompositions,〈
X2′

1

∣∣ · · · ∣∣X�
4

〉→ X4 ⊗ X1 = M5 ⊕ M ′
5, (F3a)

∇V+ → (M ′
3 ⊕ M5) ⊗ M1 = M ′

3 ⊕ M5, (F3b)

we see that these states can be coupled by the transverse
components of ∇V+ (transform as M5). Similar to the
derivation of the second momentum integral [Eq. (E9)], we
reach at an analytical result for the third spin integral,

∑
μ,ν

Iμ,ν;3 = iηP 2m0

2�Ch̄2 (qx − iqy)[qxξ
+
y (q) + qyξ

+
x (q)]. (F4)

The sum
∑

μ,ν Iμ,ν;4 also includes a single dominant Elliott
process. Its coefficient product, −iη/�C , comes from AX1

1

and ∂BX2′
1
/∂kx,y . Its integral reads 〈X2′

1 |r ⊗ ∇V+|X1
1〉. The

interaction is first cast into Eq. (E10) where both parts
(tensor and antisymmetric potential) can couple between the
states. Each of the respective decompositions in Eqs. (E11)
and (F1b) share a common M4 IR with Eq. (F1a). Using the
transformation properties of M4, the resulting integral reads∑

μ,ν

Iμ,ν;4 = iη(qx − iqy)

�C

〈
X2′

1

∣∣∂V−
∂z

q · τξ+
z (q)

+
A,B∑
α

(y − τα,y)
∂Vat(r − τ α)

∂x
[qxξ

+
y (q) + qyξ

+
x (q)]

∣∣X1
1

〉
.

(F5)

The sum
∑

μ,ν Iμ,ν;5 includes dominant Elliott processes
coupled by ∇V+. One of the dominant products comes

from AX1
1

and 2∂2BX2′
1
/∂kz∂kx(y). The corresponding integral

〈X2′
1 |∇V+|X1

1〉 vanishes, for that there are no common IRs
between Eqs. (F1) and (F3b). Other dominant products
come from AX1

1
and ∂2B

X
x(y)
4

/∂k2
y(x), and from B

X
x(y)
4

and
2∂AX2′

1
/∂kx∂ky . Repeating the analysis that led to Eqs. (E9)

and (F4), we reach at

∑
μ,ν

IE
μ,ν;5 = −iP 2m0

2�Ch̄2

{
η
[
iq2

y ξ
+
x (q) − q2

x ξ
+
y (q)
]

− (2η′ − η)qxqy[ξ+
x (q) − iξ+

y (q)]
}
. (F6)

The only Yafet process is included in Iμ,ν;5 with co-
efficient product 4P 2/(Eg,XEC) that comes from AX1

1
and

2∂2AX2′
1
/∂kx∂ky . Its integral reads 〈X2′

1 |∇V so
+,k0

|X1
1〉. The k-

independent part of V so
+,k0

does not contribute to this matrix
element: 〈X2′

1 |∇(∇V+ × p)|X1
1〉 vanishes by time-reversal

symmetry [Eqs. (22b) and (22d)]. The relatively small in-
teraction ∇(∇V+ × h̄k0) can couple X1

1 with X2′
1 states. The

interaction transforms as second-rank tensor and belongs to
(M ′

3 ⊕ M5)⊗2. From Eqs. (E11) and (F1a), we see that M4 is
the common IR. To be specific, it is the component ∂2V+/∂x∂y

that belongs to M4. In spite of the relatively small magnitude,
we still give its expression explicitly,

∑
μ,ν

I Y
μ,ν;5 = P 2qxqy(ξ+

x − iξ+
y )

Eg,X�C

h̄2k′
0

4m2
0c

2

〈
X2′

1

∣∣∂2V+
∂x∂y

∣∣X1
1

〉
,

(F7)

and shall find it a compensating part in leading to a concise
result.

Given these dominant contributions for spin relaxation, we
may attempt to relate them to some known physical quantities.
First of all, we find out that the terms in Eq. (F4) and Eq. (F6)
(excluding small η′ − η part) can be combined and they share
a common factor iη(qx − iqy)(qxξ

+
y + qyξ

+
x )/�C with the

second term in Eq. (F5). Second, the left-out η′ − η part in
Eq. (F6) is found to be exactly compensated by the Yafet part
[Eq. (F7)]. It is shown with the help of132

h̄2

4m2
0c

2

〈
X2′

1

∣∣∂2V+
∂x∂y

∣∣X1
1

〉 � 2Pm0α

h̄2 . (F8)

At this phase, the total of Eqs. (F4)–(F7) closely resemble a
deformation potential constant D′

xy = 〈X2′
1 |Dxy |X1

1〉 defined
in Eq. (E14), up to a constant prefactor. However, care
should be used due to its off-diagonal nature. Contrary to
diagonal deformation potential that appeared in the momentum
scattering (e.g., dilation and uniaxial), ∂Vε[(1 + ε̄) · r]/∂εxy

contains a part induced by internal displacement.98 Thus, the
sum of Eqs. (F4)–(F7) alone is not sufficient to form a complete
deformation potential constant. Out-of-phase phonon polariza-
tion vector ξ−, on the other hand, can be expressed in terms of
ξ+ and internal displacement for small q (see Table II and its
discussion). Replacing ξ− in Eq. (F2) with equivalent ξ+ terms
(from the fourth row in Table II), we obtain the final intravalley
spin-flip matrix element expression in Eq. (45) with Eq. (46)
of the main text.

Finally, we mention an alternative choice to derive these
results with a basis states of the � axis at k0. In this case,
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third-order perturbation theory expanded around k = k0 gives
a similar result (with the help of wave-vector-order analysis
and the appropriate adjustments to the space group of �-axis).
From our results, we are able to conclude that the leading
contributing term with this alternative approach is

h̄

m0Eg,k0�C

∑
i,j

〈�1 ↓ |q · p|�i
5 ↓〉〈�i

5 ↓ |Vso|�2′ ↑〉

× 〈�2′ ↑ | h̄

m0Eg,k0

[
q · p
∣∣�j

5 ↑ 〉〈�j

5 ↑ ∣∣ξ+(q) · ∇V0
]

+ εxy(q)Vxy |�1 ↑〉,

where i,j = {x,y}. p, |�〉, and Eg,k0 denote, respectively, the
momentum operator, the spin-independent state and the energy
gap between conduction and valence bands at k0. εxy(q)Vxy ,
with Vjk defined by the last term in Eq. (E14), is a partial
combination of in-phase and out-of-part interactions.

2. g-process

We analyze the terms IE and IY in Eq. (53) and derive
their expressions in detail. Following the reasoning that led
to Observation 2 of the intravalley case, the Elliott part (IE)
has a dominant coefficient iη/�C from ∂BX2′

1
/∂kx,y and AX1

1
.

However, the basis states associated with this coefficients are
〈X1

1| and |X1
1〉, as can be inferred by the index arrangement

of μ′ [below Eq. (53)]. The Yafet part (IY ) has a dominant
coefficient −P/Eg,X from ∂A

X
x(y)
4

/∂kx(y) and AX1
1

between

〈Xy(x)
4 | and |X1

1〉. In spite of this coefficient disobeying
Observation 2, the Yafet part is kept and will be shown not
too small compared with the Elliott part.

Having identified the important coupling between basis
states, we can determine which of the phonon modes dominate
the g-process spin relaxation. It is determined by applying
selection rules connecting opposite points of the � star. The
Elliott part is analyzed first. From Eq. (53), a first Brillouin
zone phonon wave vector q = −2k′

0 ≈ (0,0,0.3)2π/a is
needed to conserve the crystal momentum. With ψ∗

X1
1
= ψX2′

1
,

the character of the state product has the following identity:

χ
k0

�′
2
χ

k0
�1

= χ
2k0

�′
2

= (χ−2k0

�′
2

)∗ = (χ
−2k′

0
�1

)∗. The last equality is
obvious if one refers to the character table of the � group
(e.g., Table V of Ref. [99]). Thus, the Elliott part involves a

phonon with a character χ
−2k′

0
�1

. IR of �1 with a first Brillouin
zone wave vector is identified with the LA mode. Similarly,
the coupling of the Yafet part is between ψ�1,k0 and ψ�5,k0 , and

it leads to χ
−2k′

0
�5

for the interaction. The spin-orbit potential
transforms as �5, and χ�1(�′

2)χ�5 = χ�5 . Thus, the Yafet part
involves a phonon mode that transforms as �1 or �′

2, which
corresponds to LA or LO mode, respectively. The LO phonon
has much greater energy than that of the LA phonon and we
drop it from the leading Yafet contribution. In conclusion, the
LA mode dominates both the Elliott and the Yafet coupling.

The leading-order matrix element of the g process [Eq. (53)]
can be related to some form of a deformation potential
parameter. It can be done since the coupling can be expressed
between basis states of the same X point. The Elliott part is

explicitly written as

IE = −2η

�C

〈
X1

1

∣∣e2ik′
0z

(
ξ+
LA,z

∂V+
∂z

+ ξ−
LA,z

∂V−
∂z

) ∣∣X1
1

〉
×(Kx − iKy), (F9)

where we have used the approximation that ξ±
LA has only a

nonzero longitudinal component (it is exact when the wave
vector is on the � axis). To find the nonvanishing part of this
integral, the integrand is converted into parts belonging to IRs
of the X-point space group. The new feature that emerges in
a g process is the phase factor e2ik′

0z = 1 + 2ik′
0z − 2k′2

0 z2 +
O((k′

0z)3). For the in-phase part, ∂V+/∂z and z∂V+/∂z belong
to M ′

3 and M1 ⊕ M4. The higher-order term is

z2 ∂V+
∂z

=
∑

α

(z − τα,z)
2 ∂Vat(r − τ α)

∂z
+ τ 2

z

∂V+
∂z

+2τz

[
(z − τA,z)

∂Vat(r − τA)

∂z
− (z − τB,z)

∂Vat(r − τB)

∂z

]
,

which belongs to

M ′⊗2
3 ⊗ M ′

3 ⊕ M ′
3 ⊕ M ′

3 ⊗ M ′
3 ⊗ M ′

2.

As shown by Eq. (E7a), operators that couple X1
1 states belong

either to M1 or M3. Operators that are all even under time
reversal [Eq. (22b)] are further restricted to M1 for even-parity
states [Eqs. (19a) and (22d)]. Thus, the allowed coupling
interaction is

∑
α(z − τα,z)∂Vat(r − τ α)/∂z. Similarly, we find

that there is no comparable out-of-phase contribution. The
resulting Elliott part of the matrix element reads

IE ≈ (−iη)4k′
0

�C

Dzz(Kx − iKy), (F10)

where we have used ξ+
LA,z(−2k′

0) ≈ 1 and Dzz in Eq. (E14).
For Yafet part, the unity leading term in the expansion of

e2ik′
0z results in a nonvanishing integral. It is the reason that

we have kept this part in spite of disobeying Observation 2.
The symmetry properties of ∂(∇V+ × p)x(y)/∂z follow M ′

3 ⊗
M ′

5 = M5, which also appears in the decomposition of the
states product [Xy(x)

4 ⊗ X1
1; see Eq. (18c)]. Together with the

leading coefficient of the state expansion, −P/Eg,X , the matrix
element of the Yafet part reads

IY = 2P

Eg,X

Dso(Kx − iKy), (F11)

where the scattering constant integral is denoted by

Dso = h̄

4c2m2
0

〈
Xx

4

∣∣∂(∇V+ × p)y
∂z

∣∣X1
1

〉
≈ 6.7 meV · 2π/a, (F12)

with its value calculated from EPM. The out-of-phase part
leads to a slightly smaller coupling integral (≈4 meV · 2π/a),
but with a small polarization ξ−

LA,z(−2k′
0) ≈ 0.2. This property

renders its contribution too small compared with the leading
Elliott part. It is therefore neglected.

Altogether, the leading g-process matrix element is Eq. (54)
with Eq. (55) in the main text.
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129P.-O. Löwdin, J. Chem. Phys. 19, 1396 (1951).
130M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).
131〈Xn|pj |X1

1〉 = 〈Xn|[pj ,H0]|X1
1 〉/(EX1

1
− En) = Nh̄〈Xx,y

4 |∂V+/

∂rj |X1
1〉/(EX1

1
− En), and we keep only the upper valence

band X4 for Xn since Eg,X is much smaller than other energy
gaps (|EX1

1
− En|). When taking further bands explicitly into

consideration, the kinetic term in Eq. (E16) remains in agreement
with Im,2 in Eq. (E9) if our state basis includes these further
bands.

132In deriving this equation we performed integration by parts
and related ∂2V+(r)/∂x∂y with [∂V+/∂x,py]/ih̄. Then we have
inserted a complete sum of projection operators |Xi〉〈Xi | between
∂V+/∂x and py . Finally, we keep only |X4〉〈X4| of the valence
band following energy proximity as in Eq. (E16).

085201-28

http://dx.doi.org/10.1103/PhysRevB.12.2265
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1103/PhysRevB.48.14276



