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Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5
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An explanation of the paradoxical behavior of the residual resistivity ρ0 of the heavy-fermion metal CeCoIn5

in magnetic fields and under pressure is developed. The source of this behavior is identified as a flattening of
the single-particle spectrum, which exerts profound effects on the specific heat, thermal-expansion coefficient,
and magnetic susceptibility in the normal state, the specific-heat jump at the point of superconducting phase
transition, and other properties of strongly correlated electron systems in solids. It is shown that application of
a magnetic field or pressure to a system possessing a flat band leads to a strong suppression of ρ0. Analysis of
its measured thermodynamic and transport properties yields direct evidence for the presence of a flat band in
CeCoIn5.
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Measurements of the resistivity ρ(T ) in external mag-
netic fields H have revealed a diversity of low-temperature
behaviors of this basic property in heavy-fermion (HF)
metals, ranging from the familiar Landau Fermi-liquid (LFL)
character to challenging non-Fermi-liquid (NFL) behavior.1–4

The resistivity ρ(T ) is frequently approximated by the formula

ρ(T ) = ρ0 + AT n, (1)

where ρ0 is the residual resistivity and A is a T -independent
coefficient. The index n takes the values 2 and 1, respectively,
for FL and NFL behaviors and 1 � n � 2 in the crossover
between. The term ρ0 is ordinarily attributed to impurity
scattering. The application of the weak magnetic field is known
to produce a positive classical contribution ∝H 2 to ρ arising
from orbital motion of carriers induced by the Lorentz force.
However, when considering spin-orbit coupling in disordered
electron systems where electron motion is diffusive, the
magnetoresistivity may have both positive (weak localization)
and negative (weak antilocalization) signs.5

Our focus here is on the compound CeCoIn5, whose H -T
phase diagram is drawn schematically in Fig. 1. Its resistivity
ρ(T ,H ) differs from zero in the region beyond the solid curve
that separates the superconducting (SC) and normal states.
Above the critical temperature Tc of the SC phase transition,
the zero-field resistivity ρ(T ,H = 0) varies linearly with T .
On the other hand, at T → 0 and magnetic fields H � Hc2 �
5 T, the curve ρ(T ,Hc2) is parabolic in shape.1,3 As studied
experimentally, CeCoIn5 is one of the purest heavy-fermion
metals. Hence the applicable regime of electron motion is
ballistic rather than diffusive, and both weak and antiweak
localization scenarios are irrelevant. Accordingly, one expects
the H -dependent correction to ρ0 to be positive and small. Yet
this is far from the case: specifically ρ0(H = 0) � 1.5 μ� cm,
while ρ0(H = 6 T) � 0.3 μ� cm.1,3

To resolve this paradox, we suggest that the electron
system of CeCoIn5 contains a flat band. Flattening of the
single-particle spectrum ε(p) is directly relevant to the problem

addressed since, due to Umklapp processes, quasiparticles of
the flat band produce a contribution to ρ0 indistinguishable
from that due to impurity scattering.6,7 Furthermore, it is
crucial that the flat band somehow becomes depleted at T → 0
and H = 6 T, to avoid contradiction of the Nernst theorem.
This depletion entails a dramatic suppression of the flat band
contribution to ρ0.

Before proceeding to the analysis of this suppression
and its relevance to the behavior observed in CeCoIn5, we
call attention to salient aspects and consequences of the
flattening of ε(p) in strongly correlated Fermi systems. The
theoretical possibility of this phenomenon, also called swelling
of the Fermi surface or fermion condensation, was discovered
two decades ago8–10 (for recent reviews, see Refs. 11–13).
It has received new life in the conceptual framework of
topological matter, where it is characterized by nontrivial
topology of the Green’s function in momentum space and
associated with topologically protected flat bands.14–18 At
T = 0, the ground state of a system having a flat band is
degenerate, and therefore the occupation numbers n∗(p) of
single-particle states belonging to the flat band, which form a
so-called fermion condensate (FC), are continuous functions of
momentum that interpolate between the standard LFL values
{0,1}. This leads to an entropy excess:

S∗ = −
∑

p

n∗(p) ln n∗(p) + [1 − n∗(p)] ln[1 − n∗(p)], (2)

which does not contribute to the specific heat C(T ). How-
ever, in contrast to the corresponding LFL entropy, which
vanishes linearly as T → 0, S∗ produces a T -independent
thermal-expansion coefficient α ∝ −∂S∗/∂P ,19 where P is
the pressure. In its normal state, CeCoIn5 does in fact
exhibit a greatly enhanced and almost T -independent thermal-
expansion coefficient,20 so it is reasonable to assert that it
possesses a flat band. Analysis of the experimental data on
magnetic oscillations21,22 supports this assertion. CeCoIn5

is found to have two main Fermi surfaces. The α sheet is
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FIG. 1. (Color online) Schematic T -H phase diagram of
CeCoIn5. The vertical and horizontal arrows crossing the transition
region marked by the thick jagged lines depict the LFL-NFL and
NFL-LFL transitions at fixed H and T , respectively. As shown by
the solid curve, at H < Hc2 the system is in its superconducting (SC)
state, with Hc0 denoting a quantum critical point hidden beneath the
SC dome where the flat band could exist at H � Hc0. The hatched
area with the solid curve Tcross(H ) represents the crossover separating
the domain of NFL behavior from the LFL domain. A part of the
crossover marked with the dots is hidden in the SC state. The NFL
state is characterized by the entropy excess S∗ of Eq. (2).

observable at all fields down to Hc2, while the magnetic
oscillations associated with the β sheet become detectable
only at magnetic fields H � 15 T, behavior in accord with the
posited flat character of this band.

In the theory of fermion condensation, the aforementioned
ground-state degeneracy is lifted at any finite temperature,
where FC acquires a small dispersion proportional to T , the
spectrum being given by10

ε(p,n∗) = T ln
1 − n∗(p)

n∗(p)
. (3)

However, the lifting of the degeneracy does not change the FC
occupation numbers n∗(p), implying that the entropy excess S∗
would persist down to zero temperature. To avert a consequent
violation of the Nernst theorem, FC must be completely
eliminated at T → 0. In the most natural scenario, this happens
by means of a SC phase transition, in which FC is destroyed
with the emergence of a pairing gap � in the single-particle
spectrum.8,23–26 We propose that this scenario is played out in
CeCoIn5 at rather weak magnetic fields H � Hc2, providing
for elimination of the flat portion in the spectrum ε(p) and
the removal of the entropy excess S∗. In stronger external
magnetic fields sufficient to terminate superconductivity in
CeCoIn5, this route becomes ineffective, giving way to an
alternative scenario involving a crossover from the FC state to
a state having a multiconnected Fermi surface.11,27–29 In the
phase diagram of CeCoIn5 depicted in Fig. 1, such a crossover
is indicated by the hatched area between the domains of NFL
and LFL behavior and also by the line Tcross(H ).

We observe that the end point Hc0 of the curve Tcross(H )
nominally separating NFL and LFL phases is a magnetic-field-
induced quantum critical point (QCP) hidden in the SC state.30

This is the most salient feature of the phase diagram for the
behavior of the resistivity ρ(T ,H ). Since the entropies of the
two phases are different, the SC transition must become first
order11 near the QCP, in agreement with the experiment.31

FIG. 2. (Color online) Left panel: Normalized low-temperature
thermal-expansion coefficient αN vs normalized temperature TN of
the normal state of CeCoIn5 at different magnetic fields H shown
in the legend. All the data represented by the geometrical symbols
are extracted from measurements.32 The dash-dot line indicates the
LFL behavior taking place at low temperatures under the application
of magnetic fields. The NFL behavior at higher temperatures
characterized by both α = const and S∗ of Eq. (2) is shown as the
horizontal line. Right panel: Normalized low-temperature thermal-
expansion coefficient (α/T )N vs TN at different H shown in the
legend. The data33 and T were normalized by the values of α/T and
by the temperature Tinf � Tcross, correspondingly, at the inflection
point shown by the arrow. The horizontal solid line depicts the LFL
behavior, (α/T ) = const. The dash line displays the NFL behavior
(α/T ) ∝ 1/T .

Moreover, LFL behavior remains in effect in the domain T →
0, H > Hc2. It follows that imposition of fields H > Hc2 will
drive the system from the SC phase to the LFL phase, where
FC, or equivalently the flat portion of the spectrum ε(p), is
destroyed. Thus, application of a magnetic field H > Hc2 to
CeCoIn5 is predicted to cause a steplike drop in its residual
resistivity ρ0, as is in fact seen experimentally.1 Furthermore,
it is to expected that the higher the quality of the CeCoIn5

single crystal, the greater is the suppression of ρ0.
As suggested by this analysis of the H -T phase diagram, the

behavior of the dimensionless thermal-expansion coefficient,
treated as a function of the dimensionless temperature TN , is
found to be almost universal. Both the left and right panels
of Fig. 2 show that all the normalized data extracted from
measurements on CeCoIn5

32,33 collapse onto a single scaling
curve. As seen from the left panel, the dimensionless coef-
ficient αN (T ,H ) = α(T ,H )/α(TN,H ), treated as a function
of TN = T/Tcross, at TN < 1 shows a linear dependence, as
depicted by the dash-dot line, implying CeCoIn5 exhibits LFL
behavior in this regime. At TN � 1 the system enters the
narrow crossover region. At TN > 1, NFL behavior prevails,
and both α and S∗ cease to depend significantly on T , with αN

remaining close to the horizontal line. The observed limiting
behaviors, namely, LFL with α ∝ T and NFL with α = const,
are consistent with recent experimental results,33 as it is seen
from the right panel. From this evidence we conclude that
essential features of the experimental T -H phase diagram of
CeCoIn5

1 are well represented by Fig. 1.
In calculations of low-temperature transport properties of

the normal state of CeCoIn5, we employ a two-band model,
one of which is supposed to be flat, with the dispersion given
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by Eq. (3), while the second band is assumed to possess
a LFL single-particle spectrum having finite T -independent
dispersion. We begin the analysis with the case H = 0, where
the resistivity of CeCoIn5 is a linear function of T . As will be
seen, this behavior is inherent in electron systems having flat
bands. We first express the conductivity σ (T ) in terms of the
imaginary part of the polarization operator 
(j):34

σ = lim ω−1Im
( j,ω → 0)

∝ 1

T

∫∫
dυdε

cosh2(ε/2T )
|T ( j,ω = 0)|2

× |ImGR(p,ε)ImGR(p,ε), (4)

where dυ is an element of momentum space, T ( j,ω) is the
vertex part, j is the electric current, and GR(p,ε) is the retarded
quasiparticle Green’s function, whose imaginary part is given
by

ImGR(p,ε) = − γ

[ε − ε(p)]2 + γ 2
(5)

in terms of the spectrum ε(p) and damping γ referring to the
band with the finite value vF of the Fermi velocity. Invoking
gauge invariance, we have T ( j,ω = 0) = e∂ε(p)/∂p. Upon
inserting this equation into Eq. (4) and performing some
algebra we arrive at the standard result:

σ (T ) = e2n
vF

γ (T )
, (6)

where n is the number density of electrons.
In conventional clean metals obeying LFL theory, the

damping γ (T ) is proportional to T 2, leading to Eq. (1) with
n = 2. NFL behavior of σ (T ) is due to the NFL temperature
dependence of γ (T ) associated with the presence of FC.6,7 In
the standard situation where the volume η occupied by FC
is rather small, overwhelming contributions to the transport
come from inelastic scattering, represented diagrammatically
in Figs. 3(a) and 3(b), where FC quasiparticles (distinguished
by the double line) are changed into normal quasiparticles or,
vice versa, normal quasiparticles turn into FC quasiparticles.
Contributions of these processes to the damping γ are
estimated on the basis of a simplified formula:34

γ (p,ε) ∝
∫∫∫ ε

0

∫ ω

0
|�(p,p1,q|2ImGR(p − q,ε − ω)

× ImGR(−p1,−ε)ImGR(q − p1,ω − ε)

× dp1dqdωdε, (7)

where now the volume element in momentum space includes
summation over different bands. Calculations whose details
can be found in Ref. 6 yield

γ (ε) = η(γ0 + γ1ε), Re�(ε) = −ηγ1ε ln
εc

|ε| , (8)

FIG. 3. Scattering diagrams that contribute to the imaginary part
of the mass operator �(ε), referring to the band with finite value of
the Fermi velocity. The single line corresponds to a quasiparticle of
that band, and the double line corresponds to a FC quasiparticle.

with η denoting the volume in momentum space occupied
by the flat band and εc being a characteristic constant,
specifying the logarithmic term in �. Accounting for vertex
corrections34 ensures transparent changes in Eq. (7) and cannot
be responsible for the effects discussed in our article. We
note that Eq. (8) leads to the lifetime τq of quasiparticles,
h̄/τq � a1 + a2T , where h̄ is Planck’s constant and a1 and
a2 are parameters. This result is in excellent agreement with
experimental observations.35 Given this result, one finds that
ρ(T ) = ρ0 + AT , i.e., the resistivity ρ(T ,H = 0) of systems
hosting FC is indeed a linear function of T , in agreement
with experimental data on CeCoIn5. Furthermore, the term ρ0

arises even if the metal has a perfect lattice and no impurities
at all.

The presence of the flat band manifests itself not only in
kinetics but also in the thermodynamics of CeCoIn5, e.g., in
the occurrence of an additional term �C = Cs − Cn in the
specific heat C(T ), given by

�C = − 1

2T

∫ [
d�2(p)

dT

]
Tc

n(p)[1 − n(p)]dυ, (9)

where �(p) is the energy gap and Cs and Cn are the specific
heats of superconducting and normal states, respectively. It is
FC contribution that endows CeCoIn5 with a record value of
the jump �C/Cn = 4.5 (Ref. 36) of the specific heat at Tc (the
LFL value being 1.43). The enhancement factor is evaluated
by setting T = Tc in Eq. (9). Importantly, in systems with
flat bands, the quantity q = −(1/2Tc)(d�2/dT ) has the same
order10 as in LFL theory, where q � 5. To illustrate the point,
suppose that the momentum distribution n(p) depends only on
the absolute value of p. One then obtains

�C(Tc)

Cn(Tc)
∼ vF

Tc

∫
n(p) [1 − n(p)] dp . (10)

Thus, the ratio �C(Tc)/Cn(Tc), shown to be proportional to
the volume in momentum space occupied by the flat band,
behaves as 1/Tc, implying that �C(Tc)/Cn(Tc) diverges at
Tc → 0, in agreement with data on CeCoIn5, where Tc is only
2.3 K.

Equation (9) can be recast in the form37

�C(Tc)

Cn(Tc)
= qS−1(Tc)

Tcχ (Tc)

Cn(Tc)
, (11)

suitable for extracting the Stoner factorS(Tc) = χ (Tc)/χ0(Tc).
Based on the experimental data,38 one finds
S(Tc) ∼ 0.3.

It is straightforward to apply these results to analysis of the
slope of the peak of the specific heat in the superconducting
state of CeCoIn5 as T → Tc, based primarily on Eq. (9). More
precisely, we have

dC(T → Tc)/dT

dCBCS(T → Tc)/dT
= �C

Cn(Tc)
, (12)

the right side of this relation being evaluated with the aid of
Eq. (10). This narrowing of the shape of C(T ) toward the
λ-point curve, so familiar in the case of superfluid 4He, is in
agreement with experimental data on CeCoIn5.

The component of the damping γ linear in energy given
by Eq. (8) is responsible for a logarithmic correction to
the specific heat C(T ) of the normal state of CeCoIn5,
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observed in Ref. 38. With f (ε) = [1 + eε/T ]−1 and R(p,ε) ≡
−i ln [GR(p,ε)/GA(p,ε)], the formula of Ref. 34 for the
entropy S(T → 0) is recast as

S(T ) = −T −1
∫

dυ

∫ ∞

−∞
ε
∂f (ε)

∂ε
R(p,ε)dε, (13)

where, by virtue of Eq. (8), R(p,ε) = tan−1{η/[1 +
η ln(εc/|ε|) − ε(p)/ε]}. Changing variables to w = ε(p)/ε ∝
(p − pF )/ε and ε = zT and retaining only leading terms, S(T )
is expressed as the sum S = S+ + S−, with

S± ∝ T

∫ ∞

0

z2ezdz

(1 + ez)2

∫ ∞

−∞
tan−1

[
η

1 + η ln(εc/T ) ∓ w

]
dw.

(14)

These integrals are evaluated analytically to yield S(T ) −
SFL(T ) ∝ ηT ln T , in agreement with available experimental
data on the specific heat of CeCoIn5.38

Now we show that the application of field H > Hc2 on
CeCoIn5 generates the steplike drop in the residual resistivity
ρ0. Indeed, as seen from Fig. 1, at low temperatures T < Tcross,
the application of fields H > Hc2 drives the system from the
SC state to the LFL one, where the flat portion of ε(p) is
destroyed. Thus, the term η vanishes, strongly reducing ρ0. The
suppression of ρ0 in magnetic fields is associated with another
NFL phenomenon recently observed in CeCoIn5 (Ref. 22).
This is the deviation of the temperature dependence of the
amplitude of magnetic oscillations A(T ) from the standard
Lifshitz-Kosevich-Dingle form:

A(T ) = AD(X/ sinh X). (15)

Here AD ∝ e−Y is the Dingle factor, while Y = 2π2kBTD/ωc,
X = 2π2kBT /ωc, TD is the Dingle temperature, and ω is the
cyclotron frequency. Conventionally TD , assumed to be con-
stant, is associated with impurity scattering. More generally,
TD is related to the value of ρ0 in Eq. (1), which, as we have
seen, becomes T dependent in a system with a flat band. This
is because the flat band, in the present context, guarantees
an overwhelming contribution to ρ0 that must disappear at
T < Tcross(H ) to evade violation of the Nernst theorem. This

inexorable sequence triggers the abrupt downward jump of ρ0

and of TD correspondingly, leading in turn to an upward jump
of the Dingle factor AD near < Tcross(H ), which agrees with
observations.22 In parallel with this challenging behavior of the
residual resistivity in magnetic fields, it is apposite to address
the behavior of ρ0 versus pressure P , studied in CeCoIn5

experimentally in Ref. 39. At P > P ∗ = 1.6 G Pa, ρ0 drops
reversibly by one order of magnitude to a very small value of
about 0.2 μ� cm. We can reasonably infer that the application
of pressure eliminates FC,12 triggering a jump in ρ0 to the
lower value measured. It should be emphasized that a nonzero
contribution of FC to ρ0 is associated with the presence of the
crystal lattice, more precisely, with the Umklapp processes,
violating momentum conservation. At the same time, such
a restriction is absent in dealing with the thermal resistivity
w0. If, as usual, one normalizes the thermal resistivity by
w = π2T/(3e2κ) where κ is the thermal conductivity, the
famous Wiedemann-Franz relation then reads ρ0 = w0. The
distinguished role of the Umklapp processes in the occurrence
of ρ0 in Fermi systems with FC implies that in the presence of
FC the Wiedemann-Franz law is violated so that ρ0 < w0. In
CeCoIn5 this violation does take the place.40

In summary, we have shown that the application of magnetic
fields and pressure on CeCoIn5 leads to strong suppression
of the residual resistivity ρ0. By considering the behavior
of the thermal-expansion coefficient, the specific heat, and
the amplitude of magnetic oscillations, we have unveiled the
roles played by the flat band in thermodynamic as well as in
transport properties of CeCoIn5. Our considerations furnish
strong evidence for the presence of a flat band in CeCoIn5,
which thereby becomes the member of a long-expected class
of Fermi liquids.
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