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Dielectric breakdown of a Mott insulator
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We study the nonequilibrium steady state of a Mott insulator coupled to a thermostat and driven by a constant
electric field, starting from weak fields, until the dielectric breakdown, and beyond. We find that the conventional
Zener picture does not describe the steady-state physics. In particular, the current at weak field is found to
be controlled by the dissipation. Moreover, in connection with the electric-field-driven dimensional crossover,
we find that the dielectric breakdown occurs when the field strength is on the order of the Mott gap of the
corresponding lower-dimensional system. We also report a resonance and the meltdown of the quasiparticle peak
when the field strength is half of this Mott gap.
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An early achievement in the understanding of the nonlinear
response of electronic systems driven by strong electric
fields is due to Zener in 1934.1 He computed the rate of
interband transitions of a one-dimensional noninteracting band
insulator in a constant electric field, assuming that there is
no back-feeding from the conduction to the valence band.
This predicted a threshold electric field Eth above which the
dielectric breakdown of the insulator occurs.

Following Oka, Arita, and Aoki’s proposal that this single
electron picture also applies to Mott insulators,2 many efforts
have been made to check their idea by testing Zener’s formula:
Eth ∝ �2 where � is the gap of the insulator. Numerically,
this out-of-equilibrium strongly interacting problem has been
tackled by means of time-dependent (TD) methods such as
the TD density matrix renormalization group3 or TD exact
diagonalization in one-dimensional (1D) finite systems,4 and
by TD dynamical mean-field theory in infinite dimensions.5

There, the lack of a dissipation mechanism (necessary to get a
nontrivial steady state as earlier understood by Refs. 6 and 7)
causes a continuous heating up of the system.8

Experimentally, the electric field dependence of the current
density is extracted from the current-voltage characteristic
when applying a bias voltage on large samples.9 Several exam-
ples exhibit a much smaller threshold field than the estimation
from Zener’s formula.10 In this article, we address this problem
by driving out of equilibrium a two-dimensional (2D) Hubbard
model coupled to a dissipative thermostat. We treat both the
strong electric field and the strong interaction, and we bypass
the transient dynamics by means of the nonequilibrium steady-
state dynamical mean-field theory (NESS-DMFT) developed
recently by the author and collaborators.11

Hereafter, we describe the model and detail the computa-
tions. Then, we summarize the influence of the dissipation on
the equilibrium physics of the Mott transition. Later, we study
the influence of the electric field on the spectral properties
of the Mott insulator and argue that the dissipation is the
leading mechanism for the interband current. Afterwards, we
undertake the systematic exploration of the nonlinear response
of the system as the electric field is increased and as the
dimensional crossover to the corresponding 1D system takes
place, until the full-dimensional reduction predicted on general
grounds in Ref. 11. In particular, we discuss a small jump in the
conductivity and the meltdown of the quasiparticle peak when
the field strength is half of the Mott gap of this 1D system.

We also detail the physics of the dielectric breakdown that is
found when the field strength is on the order of this Mott gap,
contrary to Zener’s picture.

I. MODEL

We consider the Hubbard model on a D = 2 square lattice.
The static and uniform electric field is set along an axis of the
lattice E = Eux with E > 0. The Lagrangian of the system
coupled to its environment reads (we set h̄ = 1 and use the
conventions of 11)

L =
∑

iσ

c̄iσ [i∂t − φi(t)] ciσ − U
∑

i

c̄i↑ci↑c̄i↓ci↓

+
∑

〈ij〉σ
c̄iσ tij e

iαij (t)cjσ + conj.

+ γ
∑

iσ l

eiθi (t)b̄iσ lciσ + conj., (1)

where ciσ and c̄iσ are the Grassmann fields representing
an electron at site i with spin σ ∈ {↑,↓}. U is the on-
site Coulombic interaction and tij ≡ (a/2π )2

∫
dk eik·xij ε(k)

sets the hopping amplitude between two nearest neighbors
distant of a: ε(k) = ε0[cos(kxa) + cos(kya)], each dimension
contributing by 2ε0 to the bandwidth of the equilibrium
noninteracting (E = U = 0) system. Integrals over kx and ky

are computed between −π/a and π/a. The last term in Eq. (1)
is the coupling to the thermostat which is composed of inde-
pendent noninteracting electronic reservoirs in equilibrium at
a very low temperature T and a chemical potential μ0 = U/2
to work at half-filling, that is, with one electron per site on
average (we also restrict ourselves to the paramagnetic solution
and drop the spin indices). γ is a real hopping parameter,
the b’s represent the electrons in the reservoirs, and the l

labels their energy levels. The Peierls phase factors, αij (t) ≡
q

∫ xi

xj
dx · A(t,x) and θi(t) ≡ ∫ t

dt ′ φi(t ′), are required by the
gauged U(1) symmetry associated with the conservation of the
charge q of the electrons. φ and A are the scalar and vector
potentials: E = −∇φ − ∂tA. |q|Ea is the energy an electron
acquires when hopping to a neighboring site under the work
of the electric field. To work with gauge-invariant quantities,
we use the variables � ≡ ω − φ and κ ≡ k − qA and later
absorb the Hartree shift by redefining � − U/2 into � .
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FIG. 1. (Color online) In-gap DOS for U = 20 and E = 6 (T =
0.05). Dotted line: Very weak dissipation  = 0.09 (case presenting
oscillatory instabilities) revealing the BZ “archipelagos” centered
around εa = ±qEa and both composed of two 1D BZ islands at
εa ± U/2. Solid line: The same for  = 0.25 where the quasiparticle
peak around ε = 0 is much stronger and the details of the BZ islands
are now almost indistinguishable.

An efficient dissipation is achieved if the bandwidth W

of the local density of states (DOS) of the reservoirs is
the largest energy scale. The other details of these DOS
are not relevant and we take them to be Gaussian, yield-
ing a contribution of the dissipation to the Keldysh self-
energy: �K

th(� ) =  exp(−� 2/πW 2) tanh(�/2kBT ) where
 ≡ γ 2/W . We work at small dissipation  but large enough
for the momentum resolved spectral function to be positive
everywhere, ensuring a stable steady state. Otherwise, this
signals oscillatory instabilities (such as Bloch oscillations)
developing on top of the steady-state solution.12

II. COMPUTATIONAL DETAILS

The nonequilibrium steady state is solved by means of the
NESS-DMFT algorithm developed in11 and based on a gauge-
invariant Schwinger-Keldysh formalism.13 The interaction
contribution to the retarded and Keldysh self-energies (�R

U and
�K

U ) are computed using second-order iterated perturbation
theory in U (IPT) as the impurity solver. Although it is
not a �-derivable approximation, it is a current conserving
approximation at half-filling.14 For each value of the electric
field, the dressed retarded and Keldysh Green’s functions
(GR

U and GK
U ) are obtained in the strongly interacting regime

by starting from the noninteracting solution, then by slowly
increasing the interaction (U 
→ U + δU ) while converging
at each step the impurity and the following lattice equations
[see Eqs. (7), (8), (9), and (3) in Ref. 11]

GR
U = GR

U−δU + GR
U−δU ∗ δ�R ∗ GR

U , (2)

GK
U = GR

U ∗ �K ∗ GR
U

∗
, (3)

where δ�R ≡ �R
U − �R

U−δU and �K ≡ �K
th + �K

U . To take
further advantage of both the mean-field approximation and
the geometry of the setup, the star product is evaluated in the
mixed (� ; nx ; κy)- space where nx ∈ Z

[f ∗ g](� ; nx ; κy) =
∑

mx

f (� + mxqEa/2; nx − mx ; κy)

× g[� + (mx − nx)qEa/2; mx ; κy],

(4)
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FIG. 2. (Color online) (a) Height of the equilibrium quasiparticle
peak ρ(ε = 0) as a function of U for different dissipations  (E = 0,
T = 0.05). (b) The two meltdowns of the quasiparticle peak at
E � ωK and E  U/2, followed by the growth of the peak of
the equilibrium 1D model. Dashed line: Level of the dissipative
background at ε  0 estimated from the equilibrium data (U =
16,T = 0.05, = 0.25).

with f (� ; nx ; κy) ≡ (a/2π )
∫
dκx eiκxnxaf (�,κ). Each evalu-

ation of Eqs. (2) and (3) requires performing a single numerical
summation and the overall computation is slower than the
equilibrium algorithm by a factor 2Nx = 2 × 2π/aδκx only,
where δκx is the discretization step for κx . Hereafter, numerical
results are obtained with ε0 = a = q = kB = 1.

III. INFLUENCE OF THE DISSIPATION IN EQUILIBRIUM

In equilibrium (E = 0) and as the interaction U is in-
creased, the Hubbard model exhibits a well-known quantum
phase transition from a metal to a Mott insulator characterized
by the opening of an energy gap �  U − 2Dε0 separating the
so-called Hubbard bands.15 The presence of a weak dissipation
 smoothens the sharp features of the spectral function over an
energy window . In particular, the edges of the Hubbard bands
leak into the gap, responsible for a dissipative in-gap DOS
controlled by /U 2. Dissipation also delays the transition
which turns into a smooth crossover taking place onto an
extended region in U (Ref. 16). There, what is left of the
metal manifests itself by a weakly dispersive Kondo-like
resonance of width ωK , centered around the Fermi level, and
containing a fraction Z of all the states. When increasing U ,
the height of this quasiparticle peak is first roughly constant
(and decreases with ) while ωK decreases continuously. Deep
in the strongly interacting phase, the peak becomes controlled
by the dissipation as ωK is rather constant (and set by )
while its height vanishes as 1/U 2 (and grows with ) [see its
dependence on U and  in Fig. 2(a)].

IV. INFLUENCE OF THE ELECTRIC FIELD ON THE
SPECTRAL PROPERTIES

Since deep in the strongly interacting regime, each Hubbard
band exhibits the spectral features of a single noninteracting
band and U only enters through the gap � [see Fig. 3(a)],
one can expect the effects of the electric field on the spectral
function of the Mott insulator to be similar to the case of a
noninteracting band insulator.

In the well-known case of a single noninteracting band,
some Bloch-Zener (BZ) islands appear in the DOS beyond the
edges of the band, equally spaced in energy by |q|Ea, with a
weight that is exponentially killed on a scale ε

1/3
0 (|q|Ea)2/3 as

one gets away from the band edges, and the energy structure of
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FIG. 3. (Color online) (a) Equilibrium spectral function ρ(ε,κ)
integrated over κy for U = 20. (b) The same for 2ε0 = 2 < E = 8 <

U = 20 is now almost κx independent and the bands have a width
2ε0, similar to the 1D model (T = 0.05, = 0.35).

which is controlled by the DOS of the equilibrium 1D system
along the y direction.12

In our Mott insulator case, we find that this scenario indeed
occurs as we observe similar islands in the DOS. They have the
structure of the corresponding equilibrium 1D Mott insulator.
Since the second of these has a gapped DOS, the islands
are in fact “archipelagos” centered on multiples of ±qEa

and composed of two islands of width 2ε0 and separated
by U . We illustrate in Fig. 1 this rich structure of the DOS
between the Hubbard bands. These in-gap islands allow the
transition of carriers from the lower to the upper Hubbard
band by successive excitations of energy |q|Ea. However, the
dissipation creates a continuous in-gap DOS, damped as a
power law as one gets away from the band edges, and it is
therefore expected to be the main contribution for those in-gap
states (see Fig. 1). It was indeed the case in all the stable steady
states we explored.

Before we start the systematic study of the nonlinear
regime, notice that as the field is increased, the system
experiences a dimensional crossover from the insulating phase
of the 2D equilibrium Hubbard model (at E = 0) to the
insulating phase of the 1D equilibrium model (when |q|Ea

is the largest energy scale).11 Since both exhibit a similar
DOS deep in the strongly interacting regime (at least for the
paramagnetic solutions obtained with the local approximation
of the single-site DMFT), one expects a smooth variation from
the 2D DOS with a pseudogap �2D  U − 4ε0 between bands
of width 4ε0 towards the 1D DOS with a pseudogap �1D 
U − 2ε0 between bands of width 2ε0 (Ref. 17). Therefore, the
qualitative features of the current characteristic can already be
predicted by simply reasoning on Fig. 1.

Below, we detail the fate of the insulating phase when
increasing the electric field by focusing on the momentum
resolved spectral function ρ(ε,κ), the local DOS ρ(ε), and the
current density J (E) plotted in Fig. 4. The latter also provides
qualitative information on the asymmetry in κx of the momen-
tum distribution function n(κ): J ∝ −2

∫
dκ ∂κx

ε(κ) n(κ).

A. |q|Ea � 2ε0 � U

Let us start with very weak fields. At moderate values of U

for which the quasiparticle peak is still present (Z > 0), a small
electric field such as |q|Ea � ωK can excite the states lying in
an energy shell ωK below the Fermi level (ε = 0) to the empty
states above, resulting in a tiny current. This reorganization of
the distribution of occupied states around ε = 0 is qualitatively
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FIG. 4. (Color online) (a) Current density J (E) for different U

(T = 0.05, = 0.25). The first jump is located at E  U/2 and the
maximum at E  U . (b) The same data are plotted against E − U

to prove the scaling J (E − U ) in the metalized regime. The dotted
curve corresponds to  = 0.50.

similar to having an effective temperature, and causes the
partial meltdown of the quasiparticle peak [see Fig. 2(b)].18

As soon as |q|Ea is larger than ωK , the transition rate is now
controlled by the small in-gap DOS created by the leakage
of the Hubbard bands, leading to a drop in the differential
conductivity. Deep in the strongly interacting regime, the
quasiparticle peak vanishes (Z → 0) and the growth of the
tiny current is controlled by the dissipative in-gap DOS which
is on the order of /�2.

B. 2ε0 � |q|Ea � U

As the electric field intensity gets larger 2ε0 (i.e., the
fraction of the noninteracting bandwidth corresponding to the
x direction), ρ(ε,κ) loses much of its dependence on κx and
becomes essentially the one of the 1D Hubbard model [see
Fig. 3(b)].20 This is a first step towards the full dimensional
reduction of the system. Meanwhile, n(κ) is still very close to
the one of the 2D Hubbard model in equilibrium [see Fig. 5(a)]
and the current is very weak.

C. 2ε0 � |q|Ea ∼ U/2

When the electric field intensity is comparable with the
energy separating the lower Hubbard band with the Fermi level
(ε = 0), |q|Ea  �1D/2  U/2 − ε0, carriers can be excited
from the former to the dissipative background around the latter.
Concomitantly, the large amount of vacant states offered by
the upper band favors a rapid pumping of these newly occupied
states to the upper band. These resonant processes contribute to
a significant increase of the current density until |q|Ea  U/2.
Here again, a stronger dissipation favors a larger current via the
increase of the in-gap DOS. Notice also that the combination of
the BZ archipelagos centered at ±qEa creates a large midgap
BZ island on top of the dissipative background (see Fig. 1)
which also contributes to this resonance. Furthermore, the
reorganization of the distribution of occupied states around
ε = 0 (the fraction of occupied states decreases significantly
just below ε = 0 while it increases symmetrically above) is
qualitatively similar to having a high effective temperature.
This explains the complete meltdown of the quasiparticle
peak that we observe until the resonance is broken when
|q|Ea � U/2 + ε0 [see Fig. 2(b)].
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FIG. 5. (Color online) (a) The momentum distribution function
n(κ) for 2ε0 = 2 < E = 8 < U = 20 is similar to 2D equilibrium
[contrary to ρ(ε,κ) in Fig. 3(b)]. (b) n(κ) just after the dielectric
breakdown for 2ε0 = 2 < E = 20  U = 20 (T = 0.05, = 0.35).

D. 2ε0 � |q|Ea ∼ U

When the electric field is of the magnitude of the Mott
gap |q|Ea  �1D, carriers in the lower band can directly
populate the upper band. This is the dielectric breakdown.
The electric current increases rapidly as the field is further
increased and reaches a maximum at |q|Ea  U . After the
dielectric breakdown, one expects U to be quite irrelevant
and the scaling J = J (E − U ) to hold [see Fig. 4(b)] since
the structure and the occupation of each Hubbard band are
almost independent of U , except for small corrections due to
the dissipative background and the quasiparticle peak (if any).
The Hubbard bands can be seen as two noninteracting systems
connected to a thermostat: electrons are excited from the first
one to the second, then are absorbed by the thermostat which
also repopulates the first system. The dissipation enters this
picture in two ways. One the one hand, a stronger dissipation
accelerates the repopulatation of the lower Hubbard band and
should therefore favor a larger current. On the other hand,
the dissipation is expected to reduce the current because it is
responsible for fewer states in the Hubbard bands since they
leak into the gap and since it also strengthens the quasiparticle
peak. All together, we show in Fig. 4(b) that a stronger
dissipation favors a smaller value of the maximum current but
a larger current away from this maximum. Together with the
sharp current increase, the weight of n(κ) is strongly displaced
along κx [see Fig. 5(b)]. Notice the sharper discontinuity of
n(κ) due to the fact that the lower (upper) Hubbard band has
now a sizable fraction of unoccupied (occupied) states.

E. 2ε0 � U � |q|Ea

When the electric field is stronger than any other energy
scale, the dimensional reduction predicts that the system
behaves as a collection of uncoupled 1D Hubbard chains in
equilibrium.11 The DOS being bounded, the electric field is
too strong for any transition to take place (except in the outer
dissipative background) as soon as |q|Ea � U + 2ε0. Both
ρ(ε,κ) and n(κ) are the ones of the 1D Hubbard model in
equilibrium and the current vanishes accordingly.

V. DISCUSSION

We have investigated the steady-state physics of a 2D Mott
insulator driven out of equilibrium by a constant electric field
and coupled to a thermostat. We argued that the interband
current is mostly due to the presence of in-gap states created
by the dissipation. Also contrary to Zener’s picture, we
observed the dielectric breakdown of the Mott insulator after
|q|Ea  �1D. Furthermore, we revealed a resonance around
|q|Ea  U/2 responsible for a small jump in the conductivity
and for the meltdown of the quasiparticle peak. We also showed
that the dimensional crossover takes place on two separated
energy scales: The spectral properties turn to the ones of the
1D Mott insulator as soon as |q|Ea � 2ε0, whereas the distri-
bution functions only reach thermal equilibrium in 1D when
|q|Ea � U .

We expect this scenario to be also relevant for three-
dimensional samples crossing over to 2D, where the DMFT
solutions are all the more valid. We also believe that our
results can be put to experimental test with cold atoms trapped
in optical lattices where strong electric fields (|q|Ea > U )
can be mimicked by forcing the lattice potential19 and the
dissipation can be engineered by coupling the Mott insulator
to a superfluid fraction of the atomic condensate.
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