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Fermi edge singularity and finite-frequency spectral features in a semi-infinite one-dimensional wire
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We theoretically study a charge qubit interacting with electrons in a semi-infinite one-dimensional wire. The
system displays the physics of the Fermi edge singularity. Our results generalize known results for the Fermi edge
system to the regime where excitations induced by the qubit can resolve the spatial structure of the scattering
region. We find resonant features in the qubit tunneling rate as a function of the qubit level splitting. They occur
at integer multiples of hvF /l. Here vF is the Fermi velocity of the electrons in the wire, and l is the distance
from the tip of the wire to the point where it interacts with the qubit. These features are due to the constructive
interference of the amplitudes for creating single coherent left- or right-moving charge fluctuation (plasmon) in
the electron gas. As the coupling between the qubit and the wire is increased, the resonances are washed out.
This is a clear signature of the increasingly violent Fermi sea shake-up, associated with the creation of many
plasmons whose individual energies are too low to meet the resonance condition.
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I. INTRODUCTION

Systems in which a localized impurity, with an internal
quantum mechanical degree of freedom, interacts with an
electron gas, play an important role in many-body theory. On
the one hand, they allow theorists to investigate interaction
effects and many-body correlations beyond the perturbative
regime. On the other hand, they explain observed phenomena
such as the resistance minimum (as a function of temperature)
in dilute magnetic alloys, i.e., the Kondo effect.1 Another
impurity phenomenon that has been studied extensively is the
so-called Fermi edge singularity.2 In its original incarnation,3,4

the effect refers to power-law singularities in the soft-x-ray
absorption, emission, and photoemission spectra of metallic
samples. As with the Kondo effect,5 the phenomenon has
received renewed attention due to technological breakthroughs
in nanophysics and quantum transport.6 In this context, an
oft-considered system consists of an electron that tunnels
inelastically from a localized state into a degenerate Fermi
gas, losing energy ε in the process. The electrons in the Fermi
gas absorb this energy by scattering off the localized hole
left behind by the tunneling electron. The interaction leads
to a tunneling rate with a power-law singularity at small ε.
This is in contrast to a system without interactions, in which
only elastic tunneling would have been possible. A detailed
introductory discussion of the Fermi edge physics in this basic
system can be found in Chap. 6 of Ref. 7.

Recent studies of the Fermi edge singularity have consid-
ered nonequilibrium,8–15 nonstationary,16 and band structure17

phenomena. Most studies have focused on the behavior of
transition rates in the vicinity of the singularity. As we show in
this paper, the transition rate may also have distinct many-body
signatures away from the singularity. We confine our attention
to the equilibrium situation. (Equilibrium here refers to the
initial state of the Fermi gas. The Fermi edge singularity always
involves the relaxation of the localized impurity. This means
that initially the impurity is in an excited state.)

The system we study consists of an electron gas interacting
with a two-level system (charge qubit). A concrete realization
of the qubit could be an electron tunneling between the lowest

two states of a double quantum dot.18,19 The qubit state space
is spanned by the vectors |+〉 and |−〉. The total Hamiltonian
for the system is H = H0 + HT , where

H0 = (H+ + ε)|+〉〈+| + H−|−〉〈−|,
(1.1)

HT = γ |+〉〈−| + γ ∗|−〉〈+|.

The energy ε represents a gate voltage that controls the qubit
level splitting and γ is a small tunneling amplitude between
the two qubit states. Both these parameters are typically
under experimental control. The Hamiltonians H± = T + V±
describe the electron gas. The kinetic term T is the same for
both Hamiltonians. The finite-range potentials V± represent
the electrostatic potential produced by the qubit. This potential
depends on the internal state of the qubit, so that V+ �= V−. We
denote the ground-state energies associated with the Fermi sea
ground states |F±〉 of H± as E

(±)
0 . Without loss of generality

we assume that E
(+)
0 + ε > E

(−)
0 , so that the ground state of

H0 has the qubit in the state |−〉.
From the point of view of the electron gas, the qubit acts as

a dynamic localized impurity, while from the point of view of
the qubit, the electron gas acts as a dissipative environment.
The system can be mapped onto a spin-boson model,20 i.e.,
a qubit coupled to a bosonic bath. (We explicitly perform
this mapping in Sec. III.) The bosonic quanta associated with
excitations in the electron gas are charge density fluctuations,
also known as plasmons. The bath spectral function turns out
to be Ohmic at small energies. The dynamics of the spin-boson
model is a well-studied problem. It is known (see Sec. VII of
Ref. 20) that for sufficiently large qubit level splittings, and
with the bath at zero-temperature equilibrium, the qubit, when
initialized in the excited state, undergoes exponential decay to
the ground state at a rate that is accurately given by Fermi’s
golden rule. Through the mapping back to our model, this
implies the following. If, at t = 0, our system is initialized in
state |F+〉 ⊗ |+〉, then at later times t , the probability n+(t)
of finding the qubit in state |+〉 is given by

n+(t) = e−Wt , (1.2)
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provided that ω � W , where W is the qubit tunneling rate
calculated from Fermi’s golden rule, and

ω = ε + E
(+)
0 − E

(−)
0 . (1.3)

This condition can be understood intuitively as follows.
Equation (1.2) can only hold if the qubit levels ± remain
sufficiently well-defined despite being broadened by the
coupling of the qubit to the environment. Thus the qubit level
broadening must be far smaller than the energy difference
between the + and the − state. The qubit level broadening
equals the tunneling rate W , while the effective qubit level
splitting is ω.

The quantity we study in this work is the qubit transition
rate W . Based on the above argument, our starting point is
Fermi’s golden rule, which gives

W = |γ |2
∫ ∞

−∞
dt eiεt 〈F +|eiH+t e−iH−t |F+〉. (1.4)

(See Appendix A for details.) We obtain an explicit expression
for W in terms of the energy ε and the potentials V±.

How is this quantity connected to Fermi edge physics?
First, we note that the tunneling rate W of Eq. (1.4) is equal
to the photoemmision spectrum, i.e., the intensity of electrons
ejected from the metal, at a fixed x-ray frequency ε, in the
original incarnation of the problem. (See, for instance, Sec. IV
in Ref. 2.) Furthermore, in the language of the Fermi edge
singularity, the quantity 〈F +|eiH+t e−iH−t |F+〉, which appears
in Eq. (1.4) is known as the closed loop factor. (See, for
instance, Sec. III D in Ref. 2.) For the fermion Hamiltonians
H± given in Sec. II, we calculate the closed loop factor and
hence the rate W of Eq. (1.4) exactly.

Before proceeding to the calculation, we briefly review rel-
evant results from the literature. We stress that the derivations
we present from Sec. II onward do not invoke or rely on the
results from the literature quoted here. It is known that, for t

much larger than the time an individual electron spends in the
scattering region, the closed loop factor is given by

〈F +|eiH+t e−iH−t |F+〉 	 e−i�Et (i�t)−α, (1.5)

where �E = E
(−)
0 − E

(+)
0 is the difference between the

ground-state energies of H− and H+ and � is an ultraviolet
energy scale. [The branch with arg(i�t) = ±π/2 is implied.]
The power-law exponent α is determined by the single-
particle scattering matrices S± associated with the fermion
Hamiltonians. Explicitly,6,9

α = Tr

[(
ln S+S

†
−

2π

)2]
. (1.6)

For sufficiently small ω, the asymptotic form of Eq. (1.5) gives
rise to a tunneling rate

W = 2π |γ |2
	(α)

(
ω

�

)α 1

ω
θ (ω), (1.7)

with θ (ω) the unit step function, i.e., θ (ω) = 1 for ω > 0 and
θ (ω) = 0 for ω < 0. This power law remains valid while ω 

min{vF /l,EF ,D − EF }. Here vF is the Fermi velocity, EF is
the Fermi energy measured from the bottom of the conduction
band, and D is the band width. The length scale l is the size of
the scattering region. This is not necessarily the same length

(a)

(b)

FIG. 1. (Color online) The system described by the potential v(x)
of Eq. (2.7). (a) The system with the qubit in the initial state |+〉 and
(b) the system after the transition. The shaded rectangle represents the
semi-infinite wire. The U-shaped contour indicates the single chiral
channel in which electrons propagate. The diagram is only schematic.
In an actual realization, the left and right propagating electrons need
not be spatially separated, i.e., the U shape of the contour may be
squashed into a line. The distance l between the tip of the wire and
the point on the wire closest to the qubit is indicated. The qubit is
represented as a double quantum dot with a single electron in it.
The dashed circle indicates the range of the potential through which
the qubit and the wire interact. In the exploded view, the qubit level
spacing ε and the tunneling amplitude γ are indicated. While the range
of the potential and the distance l are of similar size in the figure,
we investigate the regime where l is much larger than the range of
the potential in the text.

scale as the range of the qubit interaction potentials V±, which
we denote a. Consider, for instance, the system we study below,
namely, a qubit placed next to a semi-infinite wire. (See Fig. 1.)
Here the size of the scattering region is the distance from the
tip of the wire to the point closest to the qubit, which can be
much larger than the range of the potential produced by the
charge of the qubit. In general, l � a.

Since we will be investigating the rate W (ω) for ω outside
the power-law regime, it is useful to understand how the con-
ditions that determine its validity come about. The condition
ω 
 vF /l results as follows. An energy ω corresponds to
density fluctuations (plasmons) in the electron gas with wave-
lengths of at least vF /ω. The result of Eq. (1.7) breaks down as
soon as this wavelength is short enough for these excitations
to resolve the spatial structure of the scattering region. The
restriction ω 
 min{EF ,D − EF } is due to the fact that Eq.
(1.7) becomes invalid when particle or hole excitations are
created in the electron gas close to the band edges.

An analytical expression for � was obtained by Tanabe and
Othaka21 in the regime EF 
 vF /l, where the wavelength of
electrons near the Fermi level are too long to resolve the spatial
structure of the scattering region, so that the potentials V± may
be approximated as δ functions. (This is referred to as the limit
of contact potentials.) � was found to be of the order of EF .
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In the same limit, approximate results for the finite ω behavior
of W have been obtained. As a function of ω, these results
contain features on the scale of EF that are associated with
the band structure of the model. For more detail the reader is
referred to the review in Ref. 2.

We are now in a position to explain what distinguishes
our work from existing studies. The previously studied regime
of EF 
 vF /l applies in a semiconductor, where it is not
uncommon for the Fermi wavelength to be large compared
to other length scales in the problem. However, the opposite
regime, where EF � vF /l, which has not yet been studied in
detail, also has physical relevance: In a metallic sample, the
Fermi wavelength is comparable to the lattice constant, while
the length scale associated with the potential may be much
larger.

In this article we study the regime where EF � vF /a �
vF /l. There are two significant differences between this
regime and the previously studied regime. First, the ultraviolet
energy � is no longer of order EF but, rather, is determined by
the potential vF . Second, the rate W as a function of ω starts
deviating from the power law of Eq. (1.7), at energies ∼vF /l

rather than at energies ∼EF . The source of the deviations
is no longer related to the band structure, but to excitations
resolving the spatial structure of the scattering region. We
confine our attention to the case of an electron gas in a single
chiral channel at zero temperature. We pay particular attention
to the example mentioned above, of a qubit interacting with
a semi-infinite wire, where l � a. We obtain exact analytical
expressions for � and for the closed loop factor at arbitrary
times. We find that � < vF /a and that � depends only on the
shape, and not the magnitude, of V±; i.e., scaling V± → c V±
leaves � unchanged. We compute the tunneling rate W (ω)
away from the threshold ω → 0+. We find that W (ω) has
resonant features at an energy scale vF /l that reveal the nature
of many-body correlations induced by the qubit. Our main
results are contained in Eqs. (4.20), (4.25), (5.3), and (5.10).

The method by which we obtain these results can be
summarized as follows. Our starting point is Eq. (1.4) for
the tunneling rate W , which follows directly from applying
Fermi’s golden rule to the Hamiltonian of Eq. (1.1), without
any further simplifying assumptions. In order to proceed
from there, we take the limit EF → ∞ and linearize the
electrons’ dispersion relation around the Fermi level, while
still taking into account the full spatial dependence of the
potentials V±. As pointed out by Gutman et al. (footnote
36 in Ref. 13), special care must be taken when linearizing
the dispersion relation in order to account for the anomalous
contribution to 〈F +|eiH+t e−iH−t |F+〉 that is related to the
Schwinger anomaly.22 In the derivation that we present, this
anomalous contribution appears quite naturally.23 Our results
are obtained by means of bosonization,24,25 the application
of which to the Fermi edge singularity was pioneered by
Schotte and Schotte.26 This method does not require any
further approximations. It provides an exact mapping from
our model onto an equivalent spin-boson model,20 where a
spin is coupled to a bosonic bath. In general the bath spectrum
is Ohmic for sufficiently low energies. For the example of a
semi-infinite wire interacting with a qubit at a point on the wire
that is a distance l � a from the tip of the wire, the bosonic
bath spectrum has a nontrivial structure at higher energies.

This in turn is what leads to the nontrivial finite ω behavior of
the tunneling rate W (ω).

The rest of this article is structured as follows. In Sec. II
we specialize to a Fermi gas consisting of a single chiral
channel and introduce a model to describe a semi-infinite wire
interacting with a qubit at a point a distance l from the tip of the
wire. In Sec. III we use bosonization to map the system onto a
spin-boson model. We also discuss Anderson’s orthogonality
catastrophe from the point of view provided by bosonization.
In Sec. IV we derive a general and exact formula for the
closed loop factor, using the mapped system. This allows us
to calculate the ultraviolet energy scale � exactly. In Sec. V
we apply the general results of Sec. IV to the specific system
introduced in Sec. II, for which the tunneling rate W (ω) has
nontrivial features at finite ω.

II. A SINGLE CHIRAL CHANNEL

Here we give a mathematical definition of the type of
electron gas we study. Associated with the electrons in a chiral
channel of length L with periodic boundary conditions are
creation and annihilation operators ψ†(x) and ψ(x), which,
respectively, create or annihilate a fermion in state |x〉 localized
at position x. They obey the usual anticommutation relations

{ψ(x),ψ†(x ′)} =
∞∑

n=−∞
δ(x − x ′ − nL) (2.1)

and are periodic with period L. At the point in our derivation
where it becomes convenient to do so, we send the system size
L to infinity.

The noninteracting many-fermion Hamiltonians H± have
the same linear dispersion but different external potentials.
Without loss of generality (see Appendix B for details), we
can set the external potential in H+ to 0, so that

H+ =
∫ L/2

−L/2
dx ψ†(x)(−i∂x − μ)ψ(x), (2.2)

while H− = H+ + V with

V =
∫ L/2

−L/2
dx v(x)ρ(x), ρ(x) = ψ†(x)ψ(x). (2.3)

(Here we work in units where the Fermi velocity vF = 1.)
Associated with H− is the one-dimensional (1D) scattering
matrix e−iv0 , where

v0 =
∫ L/2

−L/2
dx v(x). (2.4)

The ground state of H+ is the Fermi sea

|F+〉 =
∏
k�μ

c
†
k|0〉, (2.5)

where |0〉 is the state with no particles, the operator

c
†
k = 1√

L

∫ L/2

−L/2
dx eikxψ†(x), (2.6)

creates a fermion in a momentum eigenstate, and k is quantized
in integer multiples of 2π/L.

The general results we obtain are applied to the case where
the electron gas resides in a semi-infinite 1D quantum wire.
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In the limit of a high Fermi energy, this system is mapped
onto Eqs. (1.1), (2.2), and (2.3) through the standard trick of
“unfolding,” so that coordinates x and −x refer to the same
spatial point, but to “different sides of the road,” i.e., ψ†(−x)
and ψ†(x) create electrons at the same position but moving
in opposite directions.27 Thus the potential v(x) is symmetric
about x = 0. The system is depicted in Fig. 1. As a simple
model for the interaction between the qubit and the electron
gas, we take v(x) = u(x − l) + u(x + l) with

u(x) =
(

av0

2π

)
1

x2 + a2
. (2.7)

Here l is the distance from the tip of the wire to the point on
the wire nearest to the qubit and a is the range of the potential
produced by the qubit. This choice of u(x) allows us to obtain
an exact analytical expression for W (ω). In the regime where
l � a we expect qualitatively similar results for any choice of
u(x) that is localized to a region of length ∼a.

We note here in passing that in any physical realization
of our setup, the qubit is only approximately a two-level
system. Its spectrum contains additional levels above the
|±〉 states. Let the first such level occur at an energy ω0

above the state |+〉. Provided that ω 
 ω0, these levels can
always be integrated out to obtain an effective theory with
involving a two-state system. (See, for instance, Sec. II in
Ref. 20.) The effect of integrating out the excited levels is to
renormalize the tunneling amplitude γ from its “bare” value.
The renormalization becomes significant in the regime where
ω0 < 1/a. Here γ will have a strong a dependence. Thus
when ω0 < 1/a, the γ that appears in our results should
be interpreted as this renormalized, a-dependent tunneling
amplitude.

III. BOSONIZATION

In this section we map the fermion Hamiltonians H± onto
equivalent free boson Hamiltonians, using the technique of
bosonization. Our notation closely follows Haldane’s.24 This
casts the Hamiltonian H into the form of a spin-boson model
with a structured environment. We also calculate the overlap
〈F +|F−〉, where, as stated after Eq. (1.3), |F±〉 are the many-
body ground states of H±, which will be relevant when we
analyze the tunneling rate W in Sec. IV. The bosonization
results that we require are stated without proof in Eqs. (3.2)
and (3.4). For a derivation, we refer the reader to Refs. 24
or 25.

The free fermion Hamiltonian (2.2) together with the Fermi
sea ground state |F+〉 is the starting point for the bosonization
procedure. Associated with density fluctuations in the fermion
system are operators

aq =
(

2π

Lq

)1/2 ∑
k

c
†
kck+q, (3.1)

and a
†
q , q = 2πn/L, n = 1, 2, 3, . . . , which satisfy the

bosonic commutation relations

[aq,aq ′ ] = 0, [aq,a
†
q ′ ] = δq,q ′ . (3.2)

The bosonic annihilation operators aq annihilate the Fermi sea
|F+〉, i.e.,

aq |F+〉 = 0. (3.3)

The quanta created by a
†
q and annihilated by aq are called

plasmons. A central (and nontrivial) result of bosonization is
that, in terms of the bosonic operators, and for a fixed particle
number,

H+ =
∑
q>0

q a†
qaq + E

(0)
+ . (3.4)

It follows directly fromm Eq. (3.1) that the fermion density
ρ(x) can be expressed in terms of the bosonic operators as

ρ(x) = N/L + 1

2π
∂x[ϕ(x) + ϕ†(x)], (3.5)

where N = ∫ L/2
−L/2 dx ρ(x) counts the total number of fermions

and

ϕ(x) = −i
∑
q>0

(
2π

Lq

)1/2

eiqxaq . (3.6)

From Eq. (3.2) it follows that the ϕ operators satisfy the
commutation relations

[ϕ(x),ϕ(x ′)] = 0, (3.7)

[ϕ(x),ϕ†(x ′)] = − lim
η→0+

ln
[
1 − e

i2π
L

(x−x ′)−η
]
. (3.8)

Using Eqs. (3.5) and (3.6) to express the potential V in
terms of the bosonic operators, and using expression (3.4) for
H+, we find for H−

H− = E
(+)
0 + N

L
v0

+
∑
q>0

q

{
a†

qaq +
(

2π

Lq

)1/2[ v∗
q

2π
aq + vq

2π
a†

q

]}
, (3.9)

where

vq =
∫ L/2

−L/2
dx v(x)e−iqx . (3.10)

The Hamiltonian H− is diagonalized by completing the square.
For this purpose we define new bosonic operators,

bq = aq +
(

2π

Lq

)1/2
vq

2π
, (3.11)

which also obey the standard bosonic commutation relations.
In terms of these operators the Hamiltonian H− reads

H− = E
(+)
0 + �E +

∑
q>0

q b†qbq, (3.12)

where

�E = Nv0

L
−
∑
q>0

2π

L

∣∣∣∣ vq

2π

∣∣∣∣2. (3.13)

Substitution of H± from Eqs. (3.4) and (3.12) into the full
Hamiltonian H of Eq. (1.1) reveals that the system is described
by the same Hamiltonian as the spin-boson model. (See, for
instance, Ref. 20.) A quantity that plays a central role in
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the spin-boson model is the bosonic environment’s spectral
function, which, in our notation, is given by

J (q) = πq

∣∣∣∣ vq

2π

∣∣∣∣2. (3.14)

(Here we have implicitly taken the L → ∞ limit.) In the
context of dissipative quantum mechanics, spectral functions
J (q) ∼ qs for q smaller than some large cutoff play an
important role. The case with s = 1 is known as an Ohmic
environment. We see that a potential v(x) that is peaked
around x = 0, for instance, v(x) = λ/[π (x2 + λ2)], produces
an Ohmic environment. When the spectral function has a more
complicated form, one talks of a structured bath. A structured
bath is obtained by engineering the potential v(x). As we
show in Sec. V, the potential v(x) of Eq. (2.7) produces an
environment with an interesting structure.

The ground-state energy of H− is E
(+)
0 + �E and the

ground state solves bq |F−〉 = 0, or using the definition of
bq in terms of aq ,

aq |F−〉 = −
(

2π

Lq

)1/2
vq

2π
|F−〉. (3.15)

From this it follows that the normalized ground state of H− is
the coherent state

|F−〉 = exp
∑
q>0

(
2π

Lq

)1/2(
vq∗
2π

aq − vq

2π
a†

q

)
|F+〉

= e
−i

∫ L/2
−L/2 dx v(x)[ϕ(x)+ϕ†(x)]/2π |F+〉. (3.16)

For future reference we note that the overlap 〈F+|F−〉 is
easily calculated from Eq. (3.16). The details of the calculation
can be found in Appendix C. The result is

〈F +|F−〉 =
(

2π

�L

)α/2

, (3.17)

where � is the energy appearing in Eq. (1.5) and, consistent
with Eq. (1.6) [cf. Eq. (2.4)],

α = (v0/2π )2. (3.18)

For an explicit formula for �, see Eq. (4.25). The fact that the
overlap tends to 0 as L−α/2 is known as the orthogonality
catastrophe.28 The fact that the same ultraviolet energy �

appears in the closed loop factor and in the orthogonality
catastrophe has previously been established (for a contact-type
potential) by Feldkamp and Davis29 and by Tanaka and
Othabe.21

IV. CLOSED LOOP FACTOR

In this section our goal is to calculate the closed loop factor

P (t) = ei�Et 〈F +|Q(t)|F+〉, (4.1)

where

Q(t) = eiH+t e−iH−t . (4.2)

[The convenience of including the factor exp(i�Et), with �E

given by Eq. (3.13), will become apparent below.]
Having mapped the system under consideration onto a spin-

boson Hamiltonian, we could simply quote the answer from

the literature, namely,

P (t) = exp

[
1

π

∫ ∞

0
dq

J (q)

q2
(e−iqt − 1)

]
, (4.3)

with J (q) given by Eq. (3.14). [See, for instance, Eqs. (3.35)
and (3.36) in Ref. 20, but note that P (t) in that work refers
to a different quantity than the one in Eq. (4.1) in the present
work.] However, we prefer to give a self-contained derivation
of this result. This derivation goes slightly farther than simply
calculating P (t), namely, it produces a bosonic expression for
the operator Q(t) that is normal ordered, i.e., in which all
creation operators are to the left of all annihilation operators.
This expression may prove useful in future for studying
nonequilibrium effects. Readers prepared to take Eq. (4.3) as
given may wish to skip to the paragraph following Eq. (4.21).

The starting point of our derivation is to consider the time
derivative of Q, i.e.,

∂tQ(t) = −ieiH+tV e−iH+tQ(t). (4.4)

Since the Hamiltonian H+ is also the momentum operator,
exp(±iH+t) is simply translation by a distance ±t , so that

eiH+tV e−iH+t =
∫ L/2

−L/2
dx v(x)ρ(x − t) ≡ V (t). (4.5)

Thus we find

Q(t) = O exp

[
−i

∫ t

0
dt ′V (t ′)

]
(4.6)

= lim
n→∞ e

−i
∫ tn
tn−1

dt ′ V (t ′) × . . . × e
−i

∫ t1
t0

dt ′ V (t ′)
, (4.7)

where tm = mt/n, m = 0, . . . , n.
Let us now consider one of the individual factors in the

ordered exponent of Eq. (4.7). Using Eq. (3.5) to relate the
density operator to the bosonic operators ϕ and ϕ†, we find∫ τ+�t

τ

dt ′ V (t ′) =
∫ τ+�t

τ

dt ′
∫ L/2

−L/2
dx v(x)

×
{

N

L
− 1

2π
∂t ′[ϕ(x − t ′) + ϕ†(x − t ′)]

}
= �tv0N/L − [A(τ + �t) − A(τ )],

(4.8)

where

A(t) =
∫ L/2

−L/2
dx

v(x)

2π
[ϕ(x − t) + ϕ†(x − t)], (4.9)

so that

e−i
∫ τ+�t

τ
dt ′ V (t ′) = e−i�tv0N/Lei[A(τ+�t)−A(τ )]. (4.10)

Since operators A(τ ) and A(τ + �t) commute
to a c number we have e−i[A(τ+�t)−A(τ )] =
e−[A(τ+�t),A(τ )]/2e−iA(τ+�t)eiA(τ ). Explicitly,

[A(τ + �t),A(τ )] = −2i
∑
q>0

2π

Lq

∣∣∣∣ vq

2π

∣∣∣∣2 sin[q�t] (4.11)

= −2i�t
∑
q>0

2π

L

∣∣∣∣ vq

2π

∣∣∣∣2�t + O(�t2).

(4.12)
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We therefore find

e−i
∫ τ+�t

τ
dt ′ V (t ′) = e−i�E�t+O(�t2)eiA(τ+�t)e−iA(τ ). (4.13)

When substituted back into Eq. (4.7), this leads to the result

Q(t) = e−i�EteiA(t)e−iA(0). (4.14)

We can rewrite this as

Q(t) = e−i�Et e
1
2 [A(t),A(0)]︸ ︷︷ ︸

F1

ei[A(t)−A(0)]︸ ︷︷ ︸
F2

. (4.15)

Factor F1 is what Gutman et al.13 (see their footnote 36) calls
the “anomalous” contribution to the closed loop factor. An
expression involving the determinant of an operator acting on
single-particle Hilbert space often appears in the literature6,8–12

in connection with the closed loop factor. In Appendix E we
show that this determinant is equal to the expectation value of
factor F2.

Below we consider factors F1 and F2 separately. From
Eq. (4.11) we have

e
1
2 [A(t),A(0)] = exp

{
−i

∑
q>0

2π

Lq

∣∣∣∣ vq

2π

∣∣∣∣2 sin(qt)

}
. (4.16)

We write factor F2 in boson normal-ordered form. This is
done to facilitate the calculation of the expectation value with
respect to |F+〉.

ei[A(t)−A(0)] = ei[B†(t)−B†(0)]ei[B(t)−B(0)]e
1
2 [B†(t)−B†(0),B(t)−B(0)].

(4.17)

B(t) =
∫ L/2

−L/2
dx

v(x)

2π
ϕ(x − t). (4.18)

Explicitly evaluating the commutator in Eq. (4.17), we find

ei[A(t)−A(0)] = ei[B†(t)−B†(0)]ei[B(t)−B(0)]

× exp

{∑
q>0

2π

Lq

∣∣∣∣ vq

2π

∣∣∣∣2[cos(qt) − 1]

}
. (4.19)

Combining this with the result in Eq. (4.16) for factor F1, we
obtain

Q(t) = e−i�Etei[B†(t)−B†(0)]ei[B(t)−B(0)]

× exp

{∑
q>0

2π

Lq

∣∣∣∣ vq

2π

∣∣∣∣2[e−iqt − 1]

}
︸ ︷︷ ︸

P (t)

. (4.20)

In the expression for P (t), the infinite-system-size limit can
straightforwardly be taken to obtain

P (t) = exp

{∫ ∞

0
dq

∣∣∣∣ vq

2π

∣∣∣∣2 e−iqt − 1

q

}
, (4.21)

in agreement with Eq. (4.3).

The large-time asymptotics of Eq. (4.21) can be extracted
as follows. First, we write ln P (t) as

ln P (t) =
∫ ∞

0
dq

∣∣∣∣ vq

2π

∣∣∣∣2 e−iqt − 1

q

= lim
y→0+

∫ ∞

0
dq

(∣∣∣∣ vq

2π

∣∣∣∣2 −
∣∣∣∣ v0

2π

∣∣∣∣2 +
∣∣∣∣ v0

2π

∣∣∣∣2
)

× e−iqt − 1

q
e−qy. (4.22)

This expression is then split up into three terms, ln P (t) =
limy→0+ (T1 + T2 + T3), where

T1 =
∫ ∞

0
dq

∣∣∣∣ v0

2π

∣∣∣∣2e−qy e−iqt − 1

q
,

T2 = −
∫ ∞

0
dq

e−qy

q

(∣∣∣∣ vq

2π

∣∣∣∣2 −
∣∣∣∣ v0

2π

∣∣∣∣2
)

, (4.23)

T3 =
∫ ∞

0
dq

e−q(y−it)

q

(∣∣∣∣ vq

2π

∣∣∣∣2 −
∣∣∣∣ v0

2π

∣∣∣∣2
)

.

The integral in T1 is straightforward and leads to T1 =
−α ln(1 + it/y), where α = (v0/2π )2 as in Eq. (3.18) and
consistent with Eq. (1.6). In Appendix D we show that
T3 = O(t−1) and hence vanishes in the large t limit. Term
T2 can be written as

T2 = −α

∫ ∞

0
dq

e−qy

q

(∣∣∣∣vq

v0

∣∣∣∣2 − 1

)
. (4.24)

Thus, for large |t |, we obtain P (t) 	 (i�t)−α , where

� = lim
y→0+

[
1

y
exp

∫ ∞

0
dq

e−qy

q

(∣∣∣∣vq

v0

∣∣∣∣2 − 1

)]
. (4.25)

This implies that � is determined by the shape of v(x) but not
by its overall magnitude: The transformation v(x) → c v(x)
does not affect �.

V. SEMI-INFINITE WIRE

We apply the results of the previous section to the case of a
semi-infinite wire with v(x) given by Eq. (2.7) so that

vq = λ cos(ql)e−|q|a. (5.1)

Substitution into Eq. (4.21) then yields

P (t) = C

{(
1 + it

2a

)2[(
1 + it

2a

)2

+
(

l

a

)2]}−α/4

= C

[
1 + it

2a

]−α[
1 + (l/a)2

(1 + it/2a)2

]−α/4

, (5.2)

where C = [1 + (l/a)2]α/4. Thus in the limit of large t , P (t) 	
(i�t)−α , where

� =
{

2
√

al

[
1 +

(
a

l

)2]}−1

. (5.3)

The latter result could also have been obtained using Eq. (4.25).
We see that P (t), and thus also the tunneling rate W , grows as
lα/2 for l � a,

Some insight into the origin of this result may be obtained
by considering the result in Eq. (3.17) for the overlap
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〈F+| F−〉, which displays the orthogonality catastrophe.
For � given by Eq. (5.3), |〈F+| F−〉|2 ∝ lα/2. Therefore
increasing l mitigates the orthogonality catastrophe. The
tunneling rate W can be written as [cf. Eq. (A1)]

W = 2π |γ |2
∑

n

δ(ε + E
(+)
0 − E(−)

n )|〈F +|n−〉|2, (5.4)

where E(−)
n and |n−〉 are the energies and many-body

eigenstates of H−, the Hamiltonian that describes the electrons
when the qubit is in state |−〉. The results in Appendix C can
be extended to show that not only the ground state–to–ground
state overlap, but every overlap |〈F+| n−〉|2 where |n−〉
contains a finite number of particle hole excitations on top of
|F−〉, scales like lα/2. Thus the scaling behavior of W ∼ lα/2

can be understood as a consequence of the mitigation of
the orthogonality catastrophe. The effect relies on the phase
coherence of electrons in the section of the wire between
|x| = l and x = 0. Hence it is destroyed if the electron phase
is randomized by impurity scattering or if there is inelastic
scattering. Thus the increase in W with increasing l should
persist until l exceeds either the elastic or the inelastic mean
free path in the wire. Of course the result is also only valid
as long as ω � 1/l so that excitations created by the qubit
do not resolve the spatial structure of the potential. Thus, the
larger l, the smaller the energy window 0 < ω � 1/l in which
the enhancement of W due to mitigation of the orthogonality
catastrophe can be observed.

The tunneling rate W is calculated by expanding the third
factor in Eq. (5.2) in a Taylor series in (1 + it/2a) and Fourier
transforming each term separately. Using the identities∫ ∞

−∞
dt eiωt (1 + it/r)−s = 2π

	(s)

(rω)s

ω
e−rω (5.5)

for s, t > 0, and

(s)n ≡ 	(s + n)

	(s)
=

n−1∏
m=0

(s + m), (5.6)

we obtain

W (ω) = C W0(ω)
∞∑

n=0

(
α
4

)
n

n!(α)2n

[−(2lω)2]n, (5.7)

where W0(ω) is the l = 0 result

W0(ω) = 2π |γ |2
	(α)

(2aω)α

ω
e−2aωθ (ω). (5.8)

The factor (α)2n can be rewritten

(α)2n = 22n

(
α

2

)
n

(
α + 1

2

)
n

. (5.9)

Substituting this into Eq. (5.7), we identify the series as the
Taylor expansion of the hypergeometric function 1F2, yielding
one of our main results:

W (ω) = C W0(ω) 1F2

(
α

4
;
α

2
,
α + 1

2
; −(lω)2

)
. (5.10)

As ω → 0+, 1F2(α
4 ; α

2 , α+1
2 ; −(lω)2) tends to 1, so that W (ω)

indeed has the expected power law singularity for small ω

[cf. Eq. (1.7)], with � given by Eq. (5.3). When ω becomes
of the order 1/l, excitations in the wire are able to resolve
the spatial structure of the potential v(x) and W (ω) starts
deviating from simple power law behavior. In the weak
coupling limit, i.e., small α, the hypergeometric function
1F2( α

4 ; α
2 , α+1

2 ; −(lω)2) reduces to cos(lω)2, and W therefore
shows oscillations with period π/l as a function of ω.
These oscillations are due to the resonant creation of a
single plasmon (consisting of an electron-hole pair) with
an energy that satisfies the resonance condition ω = πn/l.
This condition maximizes the single-particle matrix element
〈h| V |p〉, where h and p refer to the single-particle orbitals of
the hole and the excited particle constituting the plasmon. In
plasmon language the equivalent explanation is the following:
at weak coupling (small α) the qubit creates a single plasmon.
The amplitude to create a left-moving plasmon at x = l is
〈F+| aq=ωρ(l) |F+〉 ∼ eiωl , while the amplitude for creating
a right-moving plasmon is 〈F +|aq=ωρ(−l)|F+〉 ∼ e−iωl .
These amplitudes interfere constructively when ω = πn/l,
maximizing the probability for plasmon creation. Plasmon
creation is accompanied by qubit decay. Thus when the
probability to create a plasmon is high, so too is the qubit
decay rate.

As shown in Fig. 2, the oscillations become damped as α

is increased. The damping is a signature of a phenomenon
known as Fermi sea shake-up. At strong coupling (large α),
rather than creating a single plasmon, with energy ω, many
low-energy plasmons are created with energies ωi > 0 such
that their combined energy is

∑
i ωi = ω. They have wave-

lengths 1/ωi � 2l. As a result, the constructive interference
between left- and right-moving components is impossible; the
individual plasmon wavelengths are too large. Hence there is
no clear resonance any more, and the oscillations in W (ω) are
washed out.

0 1 2 3 4 5
0.0

0.5

1.0

lΩ Π

1F
2

FIG. 2. The function 1F2( α

4 ; α

2 , α+1
2 ; −(lω)2), which determines

the finite ω behavior of the tunneling rate W , as a function of ω for
various couplings α, for the potential v(x) of Eq. (2.7). The dotted
curve corresponds to α = 1/8; the dashed curve, to α = 1/2; and the
solid curve, to α = 1. Oscillations with period π/l result from the
resonant creation of a single-particle hole pair by the qubit. At larger
α the oscillations are washed out due to Fermi sea shake-up, i.e., the
excitation by the qubit of a multitude of particle hole pairs with a
broad distribution of energies.
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It is also instructive to investigate the regime 1/l 
 ω. Here
the asymptotic behavior of the hypergeometric function is

1F2

(
α

4
;
α

2
,
α + 1

2
; −(lω)2

)
	 	(α)

	(α/2)
(2lω)−α/2. (5.11)

If we substitute this into the expression [Eq. (5.10)] for W ,
assuming l � a, we obtain

W (ω)|ω�1/l = 2π |γ |2
	(α/2)

(2aω)α/2

ω
e−2aωθ (ω). (5.12)

This is the same rate as would be obtained from a closed loop
factor,

P (t) =
[(

1 + it

2a

)(v0/4π)2]2

. (5.13)

Such a closed loop factor could also be obtained by coupling
the qubit to two independent chiral channels, where the
potential the qubit produces in either channel equals u(x)
of Eq. (2.7), i.e., one of the peaks in the full potential
v(x) = u(x + l) + u(x − l). This means that, in the single-
channel semi-infinite wire, at energies ω � 1/l, the potential
u(x − l) experienced by right-moving electrons and the poten-
tial u(x + l) experienced by left-moving electrons contribute
incoherently to the rate W , as if left-movers and right-movers
belong to separate channels. Could this indicate that electrons
reflected at the tip of the wire have lost all memory of their
in-bound encounter with the qubit by the time that they again
reach the qubit on their out-bound journey? Since the electrons
undergo no relaxation between encounters with the qubit,
the answer is “no.” Rather, what Eq. (5.12) indicates is that
processes in which an individual electron wave packet with
width 1/ω 
 l is scattered twice, once while incident on the
tip and once after being reflected at the tip, are rare and make
a vanishingly small contribution to the rate W (ω).

As stated in the introduction, W corresponds to the
exponential decay rate of the probability to find the qubit
in state |+〉, provided that 1 � W (ω)/ω. We conclude this
section by investigating when this inequality holds. For α < 2,
W/ω diverges when ω → 0+, and the criterion for exponential
decay is violated at small ω. From the small ω asymptotics
W (ω)/ω ∼ |γ |2(ω/�)α/ω2, we conclude that, for α < 2,
exponential decay at rate W occurs when

ω � |γ ||γ /�|α/(2−α). (5.14)

When α > 2, on the other hand, W (ω)/ω no longer diverges
but, rather, reaches a maximum value of order |aγ |2 at ω ∼
1/a. Thus, for α > 2, exponential decay at rate W occurs for
all ω > 0, provided that

1 � |aγ |2. (5.15)

The same regime for exponential decay as in Eqs. (5.14) and
(5.15) was identified more rigorously by Legget et al.20 in the
context of the spin-boson Hamiltonian with an unstructured
Ohmic bath (corresponding to l = 0 in our system). [See their
Sec. VII.B and, in particular, their Eq. (7.17a). Note that the
quantity that we denote α is twice the quantity that they denote
α.] The fact that our qubit is immersed in a structured bath does
not affect the result because the bath spectral function J (q) still

has the same large and small q asymptotics as in the case of
an Ohmic bath.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the quantity 〈F +
|eiH+t e−iH−t |F+〉, known in the language of the Fermi edge
singularity as the closed loop factor, for the case where the
Hamiltonians H± describe electrons in a single chiral channel.
We investigated the regime EF � vF /a, where a is the typical
length scale on which the potentials V± associated with H±
vary, a regime not studied before. We investigated a system
where the Fourier transform of the closed loop factor gives the
tunneling rate of a two-level system (charge qubit) coupled to
the electron gas. Under the assumption of linear dispersion
[cf. Eq. (2.2)] we obtained the exact expression for the
closed loop factor valid for arbitrary V± and arbitrary times.
We studied its large-time asymptotics and obtained an exact
formula for the ultraviolet energy � that appears in Eq. (1.5).
Unlike in the previously studied regime where � ∼ EF , here
we find � < 1/a 
 EF . Furthermore, it turns out that � is
determined by the shape, but not the overall magnitude of the
potentials V±, i.e., scaling V± → c V± leaves � invariant.

We applied our general results to the example of a semi-
infinite wire. The qubit interacts with the wire at a point that is
a distance l from the tip of the wire. In this system we found
that the tunneling rate W could be enhanced without increasing
either γ or α. � decreases like l−1/2 so that W grows like lα/2.
Thus the tunneling rate W becomes higher the farther the qubit
is from the tip of the wire. This effect is due to a mitigation
of the orthogonality catastrophe. It holds as long as l is less
than the phase-coherence length of electrons in the wire and
for level splittings 0 < ω � 1/l.

Armed with an expression for the closed loop factor that is
valid also for small times, we obtain an exact expression for W

for the semi-infinite wire system. The finite ω features of W

probe the spatial profile of the potential V± at length scales 1/ω

(in units where vF = 1). We study how the ω dependence of W

changes as the coupling α between the qubit and the electron
gas grows. At weak coupling (small α), we find that the rate
W oscillates as a function of ω and that the period is π/l. This
is due to the resonant creation of a single plasmon (density
fluctuation consisting of an electron-hole pair). The resonance
condition ω = πn/l ensures that the amplitude for creating
a left-moving plasmon in the vicinity of the qubit interferes
constructively with the amplitude for creating a right-moving
plasmon.

At strong coupling (large α), on the other hand, the
oscillations of the rate W as a function of ω are overdamped.
The reason for this is that, at strong coupling, many low-energy
plasmons are created when qubit decays. The energies ωi of
the individual plasmons are too low to meet the resonance
condition ωi = nπ/l. The large number of plasmons corre-
sponds to a large number of electron-hole pairs created when
the qubit decays. This is known as Fermi sea shake-up. One
of our main results [Eq. (5.10)] is an exact formula for this
damping of W (ω) by means of Fermi sea shake-up. The result
is illustrated in Fig. 2.
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We also analyzed rate W in the ω � 1/l limit and saw
that here the left- and right-moving electrons contribute to
the rate W as if they belong to independent channels. This
happens despite the fact that each electron incident on the
tip encounters the qubit twice, once before being reflected at
the tip and once afterwards, and no electron relaxation occurs
between qubit encounters. The result therefore indicates that
processes in which an individual electron wave packet of width
1/ω 
 l is scattered twice, once while incident on the tip and
once after being reflected at the tip, make a vanishingly small
contribution to the rate W (ω).
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APPENDIX A: OBTAINING W FROM FERMI’s
GOLDEN RULE

In this Appendix we apply Fermi’s golden rule to obtain
the expression in Eq. (1.4) for the transition rate W . The initial
state for the transition is |F+〉 ⊗ |+〉 with energy E

(+)
0 + ε.

Possible final states are of the form |n−〉 ⊗ |−〉, where |n−〉
is an eigenstate of H− and has energy E(−)

n . We have to sum
over all eigenstates of H−. Thus

W−+ = 2π |γ |2
∑

n

δ(ε + E
(+)
0 − E(−)

n ) |〈F+| n−〉|2

= |γ |2
∑

n

∫ ∞

−∞
dt ei(ε+E

(+)
0 −E

(−)
n )t |〈F+| n−〉|2

= |γ |2
∑

n

∫ ∞

−∞
dteiεt<F +|eiH+t |n−〉<n−|e−iH−t |F+〉

= |γ |2
∫ ∞

−∞
dt eiεt 〈F+| eiH+t e−iH−t |F+〉 . (A1)

APPENDIX B: GAUGING AWAY V+

In the main text we chose the potential V+ as 0 and stated
that this does not involve any loss of generality. Here we prove
this claim. Suppose that

H± =
∫ L/2

−L/2
dx ψ†(x)(−i∂x − μ + v±(x))ψ(x). (B1)

Now define position-dependent phases

λ±(x) = −
∫ x

−L/2
dx ′ v±(x ′) (B2)

and total phase shifts λ± = λ±(L/2). Then define a new set of
fermion operators ψ̄(x) related to ψ(x) by

ψ̄(x) = ei[λ+(x)−λ+x/L]ψ(x). (B3)

The operators ψ̄†(x ′) and ψ̄(x) obey the same anticommutation
relations as ψ̄†(x ′) and ψ̄(x) and are also periodic with
period L.

In terms of ψ̄(x) and ψ̄†(x), the Hamiltonian H+ has the
form

H+ =
∫ L/2

−L/2
dx ψ̄†(x) (−i∂x − μ − λ+/L) ψ̄(x), (B4)

while

H+ =
∫ L/2

−L/2
dx ψ̄†(x)( − i∂x − μ − λ+/L

+ v−(x) − v+(x))ψ̄(x). (B5)

Thus, in terms of the new fermion operators, H+ and H− are
of the same form as in Eqs. (2.2) and (2.3), with v(x) →
v−(x) − v+(x) and μ → μ + λ+/L.

APPENDIX C: ANDERSON’s ORTHOGONALITY
CATASTROPHE

Anderson28 states that the overlap 〈F+| F−〉 vanishes
as a power law L−α/2 as the system size grows. For the
present system we can calculate this overlap exactly for
arbitrary potentials v(x). Our starting point is Eq. (3.16)
and the operator identity eA+B = eAeBe−[A,B]/2, provided that
[A,[A,B]] = [B,[A,B]] = 0.

〈F +|F−〉

= 〈F +| exp
∑
q>0

(
2π

Lq

)1/2(
vq

2π
aq − vq∗

2π
a†

q

)
|F+〉

= exp

⎧⎨
⎩−1

2

∑
q>0

2π

Lq

∣∣∣ vq

2π

∣∣∣2
⎫⎬
⎭ . (C1)

In the large-L limit, we rewrite this as

〈F+|F−〉 = lim
y→0+

[
1

y
exp

[ ∫ ∞

0
dq e−qy

( ∣∣∣∣vq

v0

∣∣∣∣2 − 1

)]
︸ ︷︷ ︸

1

× y exp

( ∞∑
q

2π

Lq
e−qy

)
︸ ︷︷ ︸

2

]−α/2

, (C2)

where α = |v0/2π |2 as in Eq. (3.18). The y → 0+ limit of the
two factors marked 1 and 2 can be taken separately. Referring
back to Eq. (4.25), we identify the factor marked 1 as the
energy � that appears in Eqs. (1.5). The sum in the exponent
of the factor marked 2 is the Taylor expansion of the logarithm
function, and hence

y exp

( ∞∑
q

2π

Lq
e−qy

)
= y[1 − exp(−2πy/L)]−1 	 L/2π.

(C3)

This leads to the result

〈F +|F−〉 =
(

2π

�L

)α/2

. (C4)
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APPENDIX D: ASYMPTOTICS OF P(t)

In the main text, in the derivation of the asymptotic form of
P (t), we stated that T3 in Eq. (4.23) vanishes like 1/t in the
large-|t | limit. Here we give a proof. By Fourier transforming
from vq to v(x) we obtain

T3 =
∫

dx

∫
dx ′ v(x)

2π

v(x ′)
2π

∫ ∞

0
dq

e−iq(t−iy)

q
[eiq(x−x ′) − 1]︸ ︷︷ ︸

I

.

(D1)

The integral I can be performed to obtain

I = ln

(
1 + it

y

)
− ln

(
1 + i(t − x + x ′)

y

)
. (D2)

Expanding in 1/t we find I = (x − x ′)/t + O(t−2).

APPENDIX E: DETERMINANTAL FORMULA RELATED
TO THE CLOSED LOOP CONTRIBUTION

Here we show that the expectation value of the factor F2

in Eq. (4.15) with respect to |F+〉 equals a determinant of
an operator acting on single-particle Hilbert space. The proof
relies on the following general result for fermionic systems. Let
B = {|n〉 |n = 1, 2, . . .} be a set of orthonormal single-particle
orbitals and let c

†
n and cn be the associated fermionic creation

and annihilation operators. Let F be a subset of B. Without
loss of generality, we may take F = {|n〉 |n = 1, 2, . . . N}.
Let |F 〉 be the many-fermion state

|F 〉 =
N∏

m=1

c†m |0〉 . (E1)

Let H be the operator

H =
∞∑

m,n=1

hmnc
†
mcn. (E2)

Then eiH |F 〉 = ∏N
m=1 c̃

†
m |0〉, where the fermionic operator c̃

†
m

creates a particle in the orbital |ñ〉 = eih |n〉, where

h =
∞∑

m,n=1

hmn |m〉 〈n| (E3)

is an operator acting on single-particle Hilbert space. This
implies that 〈F |eiH |F 〉 = det eih

FF is a Slater determinant
where eih

FF is an N × N matrix with entries[
eih
FF

]
mn

= 〈m| eih |n〉 . (E4)

The operator f = ∑N
n=1 |n〉 〈n| projects onto the subspace

spanned by the set F , and hence the matrix eih
FF has the same

determinant as the operator 1 − f + eihf , leading to the result

〈F | eiH |F 〉 = det(1 − f + eihf ). (E5)

We derived this result for a state |F 〉 containing a finite number
of particles. We postulate that a similar result holds for state
|F+〉, representing an infinitely deep Fermi sea.

In order to apply the above result to F2 = e−i[A(t)−A(0)], we
have to show that A(t) − A(0) is quadratic in fermion creation
and annihilation operators. This is indeed so, as is seen by
referring to Eqs. (3.5) and (4.9) to obtain

A(t) − A(0) =
∫ t

0
dt ′

∫ L/2

−L/2
dx

[
v(x − t ′) − v0

L

]
ψ(x)†ψ(x).

(E6)

Thus we may use Eq. (E5) to write

〈F+| e−i[A(t)−A(0)] |F+〉 = det(1 − n + e−iδn), (E7)

where n and δ are the single-particle operators

n =
∑
k<μ

|k〉 〈k| ,
(E8)

δ =
∫ t

0
dt ′

∫ L/2

−L/2

[
v(x − t ′) − v0

L

]
|x〉 〈x| .
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