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Intrinsic spin-orbit coupling in superconducting δ-doped SrTiO3 heterostructures
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We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO3 heterostructures.
Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically
suppressing orbital pair breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting
upper critical field, exceeding the Pauli limit by a factor of 4. Moreover, transport scattering times several orders
of magnitude higher than for conventional thin-film superconductors enable this system to enter a different regime
of cleanliness, where intrinsic band spin-orbit coupling effects arise in these symmetrically doped samples.
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Unconventional superconductivity is a subject of great
theoretical and experimental interest.1–3 A central issue in this
field is the discovery and understanding of nontrivial pairing
mechanisms, such as the spin-triplet Cooper pair, which has
been explicitly investigated in heavy fermions,1 Sr2RuO4,4

and crystals with broken inversion symmetry.5 Recently, novel
pairing has also been predicted in two-dimensional systems
breaking inversion symmetry.6,7 Experimentally, measure-
ments of the superconducting upper critical field Hc2 give vital
information. In particular, violations of the Pauli paramagnetic
limit8,9 can be used to unravel the nature of the electron spins in
the superconducting state. Notably, the presence of spin-orbit
coupling (SOC) can be quantified,10 as demonstrated by the
Hc2 studies of metal thin-film superconductors11 and bilayer
systems where interface SOC drastically enhances Hc2.12

Electron-doped SrTiO3 has attracted much attention as a
low-density bulk superconductor13 with high mobility.14 These
characteristics enable the creation of novel low-dimensional
systems,15 and are vital to shed light on the rich physics
present at the LaAlO3/SrTiO3 (LAO/STO) interface, where
the presence of the Rashba spin-orbit interaction has been
discussed, affecting both the normal- and superconducting-
state transport properties.16,17 However, despite the fact that
the conduction band structure of STO is similar to the GaAs
valence band,18,19 the latter a model system for spintronics,
the role of possible intrinsic SOC in the transport properties of
doped STO is still unclear.

In this work, we study the violation of the superconducting
Pauli limit due to intrinsic SOC in a systematic series of
symmetric, doped STO heterostructures. Using the δ-doping
technique, we selectively add Nb dopants in a narrow region
inside an otherwise continuous undoped STO host crystal. As
the thickness of the dopant layer is reduced, the destruction of
superconductivity by orbital pair breaking is geometrically
suppressed, and the superconducting Hc2 is enhanced for
magnetic fields applied parallel to the dopant plane. In the
thin regime, when the dopant layer is just a few nanometers
thick, the superconductivity is robust beyond the conventional
Pauli limit, demonstrating the presence of spin-orbit scattering
(SOS) in the STO. The SOS and the transport scattering times
estimated from a Werthamer-Helfand-Hohenberg (WHH)

theory fit demonstrate a distinct thickness dependence from
that expected for the common spin scattering mechanisms.
From the fact that the scattering length does not change as the
doped layer thickness decreases, due to the absence of a surface
or interface close to the dopant plane, as well as the lack of
the Rashba effect due to the inversion-symmetric structure, we
conclude that this result originates from the intrinsic SOC of
STO.

The samples were fabricated with various thicknesses of
1 at. % doped Nb:SrTiO3 (NSTO) films embedded between
cap and buffer layers of undoped STO, using pulsed laser
deposition. High-temperature growth, above ∼1050 ◦C, in
a low oxygen partial pressure of less than 10−7 Torr was
chosen to achieve high-quality STO films, by managing the
defect chemistry of the strontium and oxygen vacancies.20 On
a TiO2-terminated STO (100) substrate, a 100 nm undoped
STO buffer layer was first grown, followed by the 1 at. %
NSTO layer with various thicknesses in the range 3.9 � d �
457 nm. A 100 nm undoped STO cap layer was grown above
the doped layer, to prevent surface depletion.21 Postannealing
in a moderate oxidizing condition was used to fill oxygen
vacancies formed during growth. Transport measurements
were made using a standard four-probe method with sample
cooling achieved using a dilution refrigerator with an in situ
rotator. For zero-field measurements, the residual magnetic
field was reduced below an absolute value of μ0H = 0.1 mT,
where μ0 is the vacuum permeability.

All samples were superconducting at low temperatures, as
shown in Fig. 1(a). The transition temperatures Tc, defined
by the temperature below which the resistance was 50%
of the normal-state value, were in the range 253 � Tc �
374 mK, as shown in Fig. 1(b). All samples, except for the two
thinnest, showed sharp 10%–90% transition widths (∼10 mK).
While samples with thickness d � 8.8 nm showed relatively
constant Tc (∼260 mK), several thinner samples showed a
higher Tc while maintaining a sharp transition, suggesting
possible changes to the superconducting properties close to
the two-dimensional (2D) limit. The transition broadening
in some of the thinner samples may be explained either by
inhomogeneity22 or by the Bose metal phase between the
superconducting and insulating states.23
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FIG. 1. (Color online) (a) Sheet resistance R, normalized by the
normal-state value Rn as a function of temperature T . Numbers refer
to the δ-doped layer thickness d in nanometers. (b) Superconducting
transition temperature Tc versus d . Tc is defined by the temperature
at the half value of the normal-state resistance; the 10%–90% width
of the superconducting transition is shown as an error bar.

First, the anisotropy of Hc2 was used to measure the
dimensionality of the superconductivity. We investigated
the variation of Hc2 by rotating the sample with respect to the
magnetic field, as shown in Fig. 2(a). A bulk 1 at. % NSTO
substrate was also measured as a reference. As d decreased, a
clear modulation of Hc2 as a function of the angle θ between
the magnetic field and the sample plane was found. Here Hc2

was defined as the field at which the resistance was half that
of the normal state. For samples with d � 99 nm, excellent
fits to these data could be made using Tinkham’s model,24

which is valid when the superconducting thickness is less than
the Ginzburg-Landau coherence length dTinkham < ξGL(0) (see
Appendix A). These fits are shown in Fig. 2(a).

The dimensional crossover of superconductivity is more
clearly demonstrated by the temperature dependence of Hc2;
therefore we next measured H⊥

c2(t) and H
‖
c2(t), the out-of-

plane (θ = 90◦) and in-plane (θ = 0◦) upper critical fields,
respectively (here t = T/Tc), as shown in Figs. 2(b) and 2(c).
In the perpendicular field geometry, all samples showed a
linear temperature dependence. In the parallel field geometry,
however, for d � 99 nm, H

‖
c2(t) showed a clear square-root

form, which is characteristic of the 2D superconducting state.
These data clearly demonstrate a three-dimensional (3D) to
2D crossover of the superconducting character as a function
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FIG. 3. (Color online) H
‖
c2 (circles), H⊥

c2 (squares, scaled by a
factor of 5), and the Pauli paramagnetic limit H

p
c (triangles) plotted

vs 1/d . H
‖
c2 and H⊥

c2 are measured at T = 50 mK data. Dashed lines
are guides to the eye.

of d. By estimating dTinkham and ξGL(0) from the H⊥
c2 and H

‖
c2

data, we find that dTinkham decreases in proportion to the growth
thickness d, and in the thinnest sample is much smaller than
ξGL(0) ≈ 100 nm, as plotted in Fig. 2(d), confirming the 2D
nature of the superconductivity.

A crucial and intriguing aspect of the H
‖
c2(t) data is

the violation of the Pauli paramagnetic limit. The Pauli
paramagnetic limiting field8,9 is given by H

p
c = �0/

√
2μB,

where μB is the Bohr magneton (with a g factor of 2), and
�0 = 1.76kBTc is the BCS superconducting gap for a weak-
coupling superconductor, where kB is Boltzmann’s constant.
This limit is appropriate, since via tunneling bulk doped STO
is known to be in the weak-coupling regime.25 The variation of
H⊥

c2, H
‖
c2, and H

p
c as a function of 1/d is shown in Fig. 3. H

‖
c2

exceeds the Pauli limiting field H
p
c by a factor of more than 4

in the thinnest sample, while H⊥
c2 and H

p
c remained essentially

constant.
In the case of a 2D superconductor in a parallel magnetic

field, if the sample is thin enough that orbital depairing is
suppressed, spin paramagnetism is the dominant mechanism
for destroying superconductivity.11 In the presence of SOS,
however, H

‖
c2 can be robust beyond the Pauli limit because

spin is no longer a good quantum number. It should be
noted that the renormalization of normal-state properties by
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FIG. 2. (Color online) (a) Angular dependence of the upper critical field Hc2 at T = 50 mK, normalized by the value at θ = 0◦. Dashed
curves are fits to Tinkham’s model. Results for representative samples (numbers refer to d in nanometers) and a bulk 1 at. % NSTO substrate
(Subs.) are shown. (b) Normalized perpendicular upper critical field H⊥

c2/H
⊥
c2(0 K) plotted as a function of the reduced temperature t = T/Tc,

for all samples. H⊥
c2(0 K) was obtained by extrapolation to T = 0 K from a fitting to the data in (b) over the range of 0.7 � t � 1. (c) Normalized

parallel upper critical field data, and fits using the same fitting procedure. (d) Ginzburg-Landau coherence length ξGL (open rectangles) and
dTinkham (closed diamonds) versus d . Dashed line is d = dTinkham.
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FIG. 4. (Color online) (a) Contour plot showing the deviation between the WHH simulation and the experiment by using Hc2(θ ) data for
the d = 8.8 nm sample. The minimum point is located at λ = 3.6, α = 9.8 × 10−2. (b) Hc2(θ ) of the d = 8.8 nm sample at T = 50 mK. Dotted
line is the best fit obtained from the WHH simulation. Inset: H⊥

c2(T ) and H
‖
c2(T ) data and the WHH theory fit (dotted line). (c) Variation of τso

and τtr with d for the five thinnest samples, obtained from best fits to the WHH theory. The error bar of τso is given by assuming 10% thickness
variation of the superconducting layer.

many-body effects can also enhance the Pauli limit.26 How-
ever, Shubnikov–de Haas oscillations in these δ-doped samples
showed that the electron mass is consistent with the band
structure at low temperature.15 Given the low electron density,
strong correlation effects near half filling are also absent.

To investigate the effects of SOS in more detail, we
performed a numerical fit of the Hc2(θ,t) data to the WHH
theory,10 taking into account corrections for the thin-film case
(see Appendix B). Within this theory, the two crucial fitting
parameters, the orbital depairing parameter α and the SOS rate
λso, are given by

α = h̄

2m∗D
, (1)

λso = 2h̄

3πkBTcτso
, (2)

where h̄ is the Planck constant divided by 2π , m∗ is the
effective electron mass, D = v2

Fτtr/3 is the diffusion constant,
and vF is the Fermi velocity. τtr and τso are, respectively,
the transport and SOS times. For various α and λso, we
calculated the sum of the squares of the differences between
the WHH model and the Hc2(θ ) data (we denote this sum
as 
), for the case d = 8.8 nm, as shown in Fig. 4(a). A
unique minimum value of 
 was found, giving an excellent
fit to the experimental data, as shown in Fig. 4(b). A similar
analysis was performed on data for the other samples where
H

‖
c2 exceeded H

p
c . We obtain, for example, τtr = 8.3 × 10−14

s and τso = 3.8 × 10−13 s from α and λso, respectively, for
d = 3.9 nm. This clearly indicates that the SOS is a highly
significant contribution to the total scattering rate, in spite of
its relatively small absolute value compared to conventional
metal films.10–12

A crucial aspect of these SOS data is revealed by the
thickness dependences of τso and τtr, as shown in Fig. 4(c).
A clear decrease of τso with decreasing d is found, while τtr

is relatively unchanged. This dependence suggests that the
SOS is not dominated by either the Elliott-Yafet mechanism
where τso ∝ τtr, or the D’yakonov-Perel’ mechanism where
τso ∝ 1/τtr.27 This rather unexpected result suggests that the
SOS observed has a different origin.

We next clarify a possible mechanism for the observed SOS
by comparison with other systems. It should be emphasized

here that this combination of SOC with high-mobility conduc-
tion electrons places our system in a different regime compared
to other thin-film superconductors that violate the Pauli limit.
For example, the use of heavy atoms to induce SOC in
superconducting bilayers has been studied.12 However, in this
case, as is usual for conventional superconducting thin films,
the mean free path collapses in the thin limit. A similar collapse
occurs with substrate gating at the LAO/STO heterointerface28

where an asymmetric confining potential and Rashba SOC are
expected.16,17 δ-doping is a crucial determinant for this differ-
ence: since there is no obvious surface or interface surrounding
the conducting layer, the scattering length due to disorder
is unchanged (and even increased) with decreasing d.29

Additionally, the symmetry of the structure, giving rise to zero
net effective electric field, means that Rashba SOC is absent.

We can thus interpret this as intrinsic SOC of STO,
due to the d orbitals of the Ti atoms.18 Indeed the bulk
conduction bands of STO have a similar structure to the
valence bands of GaAs, where nonperturbatively large SOC
has been demonstrated.19 However, in the case of STO there
are few studies of electron SOC. It should be noted that
calculations indicate that these confined δ-doped samples
have a multiple-subband structure;15 therefore the change of
τso observed may relate to intersubband-induced spin-orbit
interaction,30 or intersubband scattering,31 causing nontrivial
change in both the transport and SOS times.

The fact that the energy scale of the observed SOC
(∼2 meV) is bigger than the superconducting gap (∼40 μeV)
suggests the possibility of mixed spin-triplet and -singlet
states, giving rise to novel superconducting states in these
low-dimensional layers.6,7,32,33 In the normal state, we also
expect that the SOS should make an important contribution to
the transport properties; specifically 2D weak antilocalization
(WAL) would be expected, as found in studies of SOC in metal
thin films.34 Preliminary studies have indeed observed clear
2D WAL,35 suggesting that the combination of high-mobility
electrons and SOC in STO can be employed in spintronic
architectures, which can be made over a range of densities via
both growth control36 and field-effect gating, the latter simul-
taneously introducing Rashba contributions to the SOC.37
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APPENDIX A: TINKHAM’S MODEL

The magnetic-field response of a two-dimensional super-
conductor can be described by Tinkham’s model,24 which
assumes that the superconductor is thinner than the Ginzburg-
Landau coherence length, dTinkham < ξGL. It should be noted
that the model does not include the effects of SOS or the Pauli
paramagnetic limit, and assumes an isotropic superconducting
wave function. According to the model, the angular depen-
dence of the upper critical field can be shown to be∣∣∣∣Hc2(θ ) sin θ

H⊥
c2

∣∣∣∣ +
(

Hc2(θ ) cos θ

H
‖
c2

)2

= 1, (A1)

where θ is the angle between the magnetic field and the sample
plane. The temperature dependence of the upper critical field
in perpendicular and parallel field geometry is given by

H⊥
c2(t) = �0

2πξGL(0)2
(1 − t), (A2)

H
‖
c2(t) = �0

√
12

2πξGL(0)dTinkham
(1 − t)1/2, (A3)

where t = T/Tc is the reduced temperature, �0 = h/2e =
2.07 × 10−15 Wb is the flux quantum, and ξGL(0) is the
Ginzburg-Landau coherence length extrapolated to T = 0 K.
From Eqs. (A2) and (A3), dTinkham and ξGL(0) can be found
using

dTinkham =
√

6�0H
⊥
c2

π (H ‖
c2)2

, (A4)

ξGL(0) =
√

�0

2πH⊥
c2

. (A5)

Thus, dTinkham can be calculated by measurement of H⊥
c2 and

H
‖
c2 of a sample experimentally. As noted by Ben Shalom

et al.,17 in the case of the LaAlO3/SrTiO3 interface, the value
of dTinkham is an upper bound on the thickness. In our case we
find good agreement between the grown dopant layer thickness
d and dTinkham in thick samples, but dTinkham deviates slightly
from d as H

‖
c2 exceeds the Pauli limiting field in the thinnest

samples (d � 8.8 nm), possibly indicating a limit of the model.

APPENDIX B: WHH THEORY

The Werthamer-Helfand-Hohenberg theory10 was used to
more quantitatively fit the data for the superconducting upper
critical field Hc2 in the main text, in order to determine the
SOS time in the system. Within this theory Hc2 is the implicit

solution of the equation

lnt +
(

1

2
+ iλso

4γ

)
ψ

(
1

2
+ h̄ + 1

2λso + iγ

2t

)

+
(

1

2
− iλso

4γ

)
ψ

(
1

2
+ h̄ + 1

2λso − iγ

2t

)
− ψ

(
1

2

)
= 0,

(B1)

where ψ is the digamma function. With a slight correction38

from the original WHH paper, the terms are defined as

h̄ = DeHc2

πkBTc
, (B2)

λso = 2h̄

3πkBTcτso
, (B3)

γ =
√

(αh̄)2 − 1

4
λ2

so, (B4)

α = h̄

2mD
, (B5)

where D is the diffusion constant, τso the SOS time, and m the
electron mass. To include the effect of the finite thickness of a
thin film, the term h̄ in Eq. (B1) should be replaced by h̄ang(θ ),
which is given by39

h̄ang(θ ) = D

2πkBTc

(
2eHc2| sin(θ )| + 1

3h̄
[deHc2 cos(θ )]2

)
,

(B6)

where d is the thickness of the superconducting layer.
In the case of α = λso = 0 (no SOS, but also no Pauli

paramagnetic limit), the above formula is reduced to the orbital
term only, where Hc2 is the solution of

lnt + ψ

(
1

2
+ h̄

2t

)
− ψ

(
1

2

)
= 0. (B7)

In fitting the data, the orbital-only case [Eq. (B7)] could not
accurately fit the data for samples with H

‖
c2 larger than the Pauli

paramagnetic limit (not shown). However, we could obtain a
very successful fit with the full WHH theory [Eq. (B1)], as
discussed and shown in the main text (Fig. 4).

Several sources of error should be considered in this fit.
First, it has been argued that cooling superconducting ultrathin

15

10

5

0

λ s
o

7.06.05.04.0

d (nm)

FIG. 5. Optimal value of λso from the WHH fitting for the d =
5.5 nm sample, depending on the thickness d used in the model.
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5.5 nm sample was used.

films below 60 mK is extremely difficult;40 thus the Hc2(t)
data may artificially saturate at low temperatures due to a lack
of cooling. However, by fitting to data at temperatures only
above 75 mK, we find an increase of the value of τso of only
2% compared to the full fitting curve. Second, the influence of
error in the value of d used in Eq. (B6) can also be considered.
This effect is demonstrated in Fig. 5, where the value of τso

obtained from the fitting is plotted against d for the d = 5.5 nm
sample. As is clear, sensitivity of the fit to variation in d gives

rise to variation in τso; we obtain τso = (6.8 ± 1.0) × 10−13 s
for d = 5.5 ± 0.5 nm.

We note that the WHH theory makes various simplifying
assumptions: The superconductor should be in the dirty
limit, where the electron mean free path is shorter than the
BCS coherence length � 
 ξBCS. Second, the SOS time is
much larger than the transport scattering time, τso � τtr. In
order to estimate these parameters, we assume a single-band
approximation with spherical Fermi surface and used an
electron effective mass m∗ = 1.24m0, where m0 is the
bare electron mass, extracted from Shubnikov–de Haas
oscillations.15 In the d = 5.5 nm sample, for instance, we
found � ≈ 100 nm, ξBCS ≈ 470 nm. From the WHH fit,
we estimated τso ≈ 6.8 × 10−13 s and τtr ≈ 6.2 × 10−14 s.
Therefore, we conclude that our system is in the dirty limit,
and SOC can be treated as a perturbation. The latter, however,
becomes less clear with decreasing thickness, for which
τtr/τso ≈ 0.1. As a further check, we used a nonperturbative
theory proposed by Schopohl and Scharnberg.41 The value
of H

‖
c2 for various λso using this theory is shown in Fig. 6,

along with the original WHH model (neglecting the finite-size
corrections of Aoi et al.39). Since in absolute terms the
observed values of H

‖
c2 are not large due to the relatively low

Tc, we estimate an error of only ∼20% in the determination
of τso by using the original WHH model, as shown, which
does not significantly affect the result of the original fitting.

1M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
2P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
3A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136
(1964) [Sov. Phys. JETP 20, 762 (1965)].

4A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657
(2003).

5E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt,
A. Gribanov, Y. Seropegin, H. Noel, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 (2004).

6L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
7S. K. Yip, Phys. Rev. B 65, 144508 (2002).
8B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
9A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

10N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147,
295 (1966).

11P. M. Tedrow and R. Meservey, Phys. Rev. B 8, 5098 (1973).
12X. S. Wu, P.W. Adams, Y. Yang, and R. L. McCarley, Phys. Rev.

Lett. 96, 127002 (2006).
13C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler, and E. R.

Pfeiffer, Phys. Rev. 163, 380 (1967).
14O. N. Tufte and P. W. Chapman, Phys. Rev. 155, 796 (1967).
15Y. Kozuka, M. Kim, C. Bell, B. G. Kim, Y. Hikita, and H. Y. Hwang,

Nature (London) 462, 487 (2009).
16A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri,

and J. M. Triscone, Phys. Rev. Lett. 104, 126803 (2010).
17M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and

Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010).
18L. F. Mattheiss, Phys. Rev. B 6, 4718 (1972).

19B. Grbic, R. Leturcq, T. Ihn, K. Ensslin, D. Reuter, and A. D. Wieck,
Phys. Rev. B 77, 125312 (2008).

20Y. Kozuka, Y. Hikita, C. Bell, and H. Y. Hwang, Appl. Phys. Lett.
97, 012107 (2010).

21A. Ohtomo and H. Y. Hwang, Appl. Phys. Lett. 84, 1716 (2004).
22O. Foyevtsov, F. Porrati, and M. Huth, Phys. Rev. B 84, 045103

(2011).
23N. Mason and A. Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999).
24M. Tinkham, Phys. Rev. 129, 2413 (1963).
25G. Binnig and H. E. Hoenig, Solid State Commun. 14, 597

(1974).
26T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev.

B 19, 4545 (1979).
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