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Band renormalization of a polymer physisorbed on graphene investigated by many-body
perturbation theory
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Many-body perturbation theory at the G0W0 level is employed to study the electronic properties of
poly(para-phenylene) (PPP) on graphene. Analysis of the charge density and the electrostatic potential shows
that the polymer-surface interaction gives rise to the formation of only weak surface dipoles with no charge
transfer between the polymer and the surface. In the local-density approximation (LDA) of density-functional
theory, the band structure of the combined system appears as a superposition of the eigenstates of its constituents.
Consequently, the LDA band gap of PPP remains unchanged upon adsorption onto graphene. G0W0 calculations,
however, renormalize the electronic levels of the weakly physisorbed polymer. Thereby, its band gap is
considerably reduced compared to that of the isolated PPP chain. This effect can be understood in terms of
image charges induced in the graphene layer, which allows us to explain the quasi-particle gap of PPP versus
polymer-graphene distance by applying a classical image-potential model. For distances below 4.5 Å, however,
deviations from this simple classical model arise, which we qualitatively explain by taking into account the
polarizablity of the adsorbate. For a quantitative description with predictive power, however, we emphasize the
need for an accurate ab initio description of the electronic structure for weakly coupled systems at equilibrium
bonding distances.
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I. INTRODUCTION

When a molecule is brought in contact with a surface, its
electronic states are generally renormalized in terms of their
energy positions and widths, where the magnitude of these
effects depends on the adsorption distance. Molecule-surface
interactions may give rise to several phenomena including
hybridization of molecular states with substrate levels, charge
transfer between the molecule and substrate, and formation of
strong short-range interface dipoles. All of these effects can
be described within a static mean-field approach as entailed
in density-functional theory by solving single-particle Kohn-
Sham (KS) equations and employing standard local (LDA) or
semilocal (GGA) approximations for the exchange-correlation
potential.

An additional effect that can greatly alter the level positions
of the molecule, but is not accounted for in such a mean-field
approach, arises due to polarization effects. Electron addition
(removal) energies of the molecule, i.e., the quasiparticle
energies of the molecule, inherently involve a negatively
(positively) charged molecule residing on top of a polarizable
substrate. Thus electrostatic Coulomb forces of this added
electron or hole polarize the underlying surface that, in turn,
affects the energy position of the added electrons or holes,
respectively. In particular, the ionization potential and electron
affinity level, and hence the band gap of the molecule, are
renormalized due to the presence of the substrate.1,2 Even
for physisorbed and weakly coupled molecules, these surface
polarization effects can considerably change the size of the
gap of the molecule compared to its gas phase value.

The response of the electronic system to the added elec-
tron/hole is not captured by local or semilocal KS functionals.

In order to account for this dynamical polarization effect,
we employ many-body perturbation theory on top of DFT
calculations. In the G0W0 approximation, the self-energy �

is given as the product of the noninteracting single-particle
Green function, G0, and the screened Coulomb interaction,
W0, calculated within the random-phase approximation.3 In
this approach, correlation effects including the response of
the electronic system to the added electrons or holes are
taken into account by the nonlocal and energy-dependent
self-energy. As already demonstrated for the case of a benzene
molecule physisorbed on various metallic and semiconducting
substrates,1,4 the G0W0 band gap of the molecule is reduced
relative to its corresponding gas-phase value by an amount that
depends on the polarizability of the surface. In contrast, DFT
calculations employing LDA or hybrid exchange-correlation
functionals like PBE0, render the size of the benzene HOMO-
LUMO gap independent of the underlying substrate.

In this paper, we explore how the electronic structure of a
one-dimensional system—the polymer poly(para-phenylene)
(PPP) used as active material in blue light-emitting diodes5—is
affected by the presence of the two-dimensional graphene
layer. We thereby extend previous ab initio work1,4 that only
treated small organic molecules on various surfaces. We study
the renormalization of the molecular electronic levels by
employing G0W0 calculations. We first provide details on our
computational methodology concerning the DFT and G0W0

calculations. Then, the electronic band structure of graphene
is discussed, both in the hexagonal unit cell and in a larger
rectangular supercell necessary for the calculations of the
adsorbate system. The electronic band structure at the LDA
and G0W0 level of isolated PPP is presented and compared
to available literature results. As the main results, we discuss
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the combined system (denoted as PPP@gr) showing that the
polymer’s quasiparticle (QP) HOMO-LUMO gap is strongly
renormalized due to the presence of the graphene layer. We
model our ab initio results by a classical image-potential model
in order to describe the asymptotic behavior of the potential
felt by an electron outside the substrate. We also extend the
standard image-charge model as to include the polarizability of
PPP leading to a better model description of the G0W0 results
at short polymer-graphene separations.

II. COMPUTATIONAL APPROACH

Self-consistent DFT calculations are performed by using
ABINIT,6 which is a plane-wave based code with periodic
boundary conditions along all three directions. We utilize
norm-conserving pseudopotentials generated by the Troullier-
Martins scheme.7 Exchange-correlation effects are treated
within the local-density approximation. An energy cutoff of
50 Ry is chosen for the electronic wave functions. Brillouin
zone integrations are carried out by using Monkhorst-Pack8

meshes of (5×17×1) k points for the PPP@graphene supercell
along with a Methfessel-Paxton9 smearing with a smearing
parameter of 0.01 Ry. The so obtained DFT ground-state
results serve as a starting point for the subsequent G0W0

computations.
In the G0W0@LDA method, the QP energies are obtained

from the linearized QP equation:

εQP
n = εLDA

n + Zn

〈
ψLDA

n

∣∣�(
εLDA
n

) − Vxc

∣∣ψLDA
n

〉
. (1)

Here, ψLDA
n and εLDA

n are DFT-LDA eigenstates and eigenval-
ues, and the renormalization factor Zn is given by

Zn =
[

1 − ∂
〈
ψLDA

n

∣∣�(ε)
∣∣ψLDA

n

〉
∂ε

∣∣∣∣
εLDA
n

]−1

. (2)

The self-energy � is calculated non-self-consistently from
the convolution of the noninteracting single-particle Green
function G with the screened Coulomb interaction W0, i.e.,
� = iG0W0. Here, the Green function is defined as G0(z) =
(z − H LDA)−1 where the subscript 0 symbolizes the fact that
these quantities are obtained from the Kohn-Sham orbitals and
energies in a non-self-consistent manner. Vertex corrections
are neglected both in the self-energy and in the polarizability
and, hence, in the calculation of W0. In this work, the frequency
dependence of W0 is described by a plasmon-pole model
(PPM).10

In the calculation of the QP energies, there are two main
technical problems that make the G0W0 approach computa-
tionally costly for large unit cells as necessary for studying
the adsorption of molecules or polymers on surfaces. The
first bottleneck arises from the summation over unoccupied
states that appears in the correlation part of the self-energy.
To overcome this problem, we make use of the recently
developed energy effective technique (EET).11 In this method,
all necessary steps in a G0W0 calculation can be restricted
to occupied states only. As demonstrated in Appendix A
for graphene (see Fig. 9), this approximation preserves the
precision of the conventional sum-over-empty-states approach
but speeds up calculations by more than an order of magnitude.

The second difficulty originates from the periodic boundary
conditions in combination with the repeated-slab approach to
model surfaces. Thereby, one commonly constructs unit cells
containing a vacuum layer to separate periodic images in order
to avoid spurious interaction between them. In ground-state
calculations, this poses no big problem since electronic wave
functions and the (semi)local exchange-correlation potential
decay rapidly into the vacuum, and a moderate thicknesses
of the vacuum slab suffices. For GW calculations, the main
difficulty arises from the nonlocal nature of the self-energy, in
particular, nonlocal Coulomb matrix elements, which lead to
long-range image charge effects that converge very slowly as
a function of the inserted vacuum layer.12 To overcome this
obstacle, we make use of a truncated Coulomb potential which
prevents the interaction between periodic images. We utilize
Ismail-Beigi’s method13 for the case of sheetlike geometries
with one confined and two periodic directions. The truncation
length is chosen to be half the lattice parameter perpendicular
to the surface (in z direction). Using this method, G0W0

band energies converge fast as a function of vacuum layer
thickness as can be seen from Fig. 10 in Appendix A.
Care must, however, been taken in the choice of the k

grid since the convergence with respect to the number of
k points is somewhat slowed when using a cutoff Coulomb
potential compared to the convergence behavior for the plain
Coulomb potential (which will be seen from the right panel
of Fig. 10). As in the public version of ABINIT, the truncation
of the Coulomb interaction for slab geometries is not fully
implemented, we have added one term taking the q → 0 limit.
This way, we could assure fast convergence of results with
respect to k grid and vacuum size.

III. RESULTS

A. Graphene

Before we present results for the adsorbed polymer on
graphene (compare Fig. 2), we review the band structure of
uncovered graphene at the LDA and G0W0 level. This is
depicted in Fig. 1 where the LDA (G0W0) band structure is
shown as dashed (solid) lines. As already noted earlier,14 the
G0W0 corrections slightly enhance the overall band widths
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FIG. 1. Band structure of graphene within DFT-LDA (dashed
lines) and within the G0W0 approach (circles and full lines). The
Fermi energy is set to zero.
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FIG. 2. (Color online) (a) Perspective side view of the structural
model describing poly(para-phenylene) (red) adsorbed on graphene
(black). The adsorption height d is indicated. (b) Top view showing
the unit cell vectors of the primitive, hexagonal graphene cell (blue
arrows) as well as the rectangular supercell spanned by vectors a

and b (red arrows). (c) Brillouin zones corresponding to hexagonal
graphene (black) as well as to the supercell (red). High-symmetry
points are indicated.

of π and σ bands; for instance, they increase the gap at the
� point from 6.6 to 7.0 eV. Close to the Dirac point (K),
the Fermi velocity resulting from the LDA dispersion is about
1.01 × 106 ms−1, while the G0W0 value of 1.11 × 106 ms−1 is
about 10% larger and improves the agreement with experiment
(1.1 × 106 ms−1).15 These results emphasize the fact that the
G0W0 quasiparticle band structure not only provides improved
band gaps but also leads to an improved description of
graphene in terms of band widths and Fermi velocities.

In order to study the adsorption of PPP on graphene, we
need to construct an appropriate supercell which is depicted in
Fig. 2. If we denote the primitive lattice vectors of graphene
as a′ and b′, depicted as blue arrows in Fig. 2, the supercell
vectors are given by a = 6a′ and b = 2b′ − a′ (red arrows)
thereby spanning a rectangular supercell containing 24 carbon
atoms in the graphene layer. When the polymer chain direction
is chosen to be parallel to b, its repeat unit is commensurate
with the graphene basis vectors. Since we intend to study the
behavior of a single PPP chain on graphene our choice of
a = 6a′ leads to a polymer chain separation which is large
enough to prevent interaction between periodic replica of PPP
chains.

Figure 3 shows the band structure of uncovered graphene
in the above mentioned supercell containing 24 carbon atoms.
This serves as a consistency test of our computational approach
since for uncovered graphene bands of the primitive hexagonal
cell (compare Fig. 1) are simply folded into the Brillouin zone
corresponding to the supercell. As shown in Fig. 2(c), the
Dirac point, K, is folded to �, such that in the supercell there
is a four-fold degeneracy at � leading to four touching cones.
In �-X direction, just below the Fermi energy, there are two
bands with slightly different slopes that are arising from the
original Dirac cone along the directions K� and KM.
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FIG. 3. DFT-LDA (left) and G0W0 (right) band structure of
uncovered graphene calculated in the supercell (see text). The Fermi
energy is set to zero.

B. Isolated PPP

Before we investigate the adsorption of PPP on graphene,
we present the electronic structure for an isolated PPP chain
computed in the supercell introduced previously. The QP band
structure obtained by G0W0@LDA is compared to LDA results
in Fig. 4. The valence band structure of PPP close to the Fermi
level is characterized by two π bands. The interring bonding
band π1 is strongly dispersing from � down to Y with an LDA
(G0W0) band width of 3.54 eV (3.70 eV), while the interring
nonbonding band π2 exhibits a much smaller dispersion along
�Y. Clearly, all bands along �X direction, i.e., perpendicular
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FIG. 4. (Color online) DFT-LDA (left) and G0W0 (right) band
structure of poly(para-phenylene) (PPP). The Fermi energy is set to
zero at the mid-gap energy. The frontier π orbitals are indicated as
explained in the text.
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to the polymer chain, exhibit a negligible dispersion reflecting
the small interchain interaction. The frontier unoccupied bands
π∗

1 and π∗
2 are the antibonding counterparts of π1 and π2,

respectively. The general trend of the self-energy corrections
is to lower the occupied bands and raise the unoccupied bands
relative to the LDA results. This leads to an increase of the
direct gap at the � point from 1.69 eV at the LDA level
to 3.88 eV for the G0W0 band structure. This finding is in
accordance with previous calculations,16–18 when considering
the fact that we neglect a possible torsion angle between
adjacent phenyl rings and treat PPP as a perfectly planar
π -conjugated polymer.

C. PPP adsorbed on graphene

We now proceed to the main outcome of the paper, i.e.,
the electronic structure of PPP adsorbed on graphene. As a
prerequisite, we first investigate the adsorption geometry by
varying the polymer-graphene distance and the adsorption
site in DFT total-energy calculations. Figure 5 shows the
adsorption energy Ead as a function of adsorption height for
the situation when the center of a PPP ring is positioned on top
of a graphene carbon atom, as depicted in Fig. 2(b), similar to
the A-B stacking in bilayer graphene. The adsorption energy
as well as the adsorption distance is very sensitive to the choice
of the exchange-correlation potential. While LDA predicts an
optimal adsorption distance of about 3.25 Å with an adsorption
energy of about 0.25 eV, GGA19 results in almost no binding
(0.02 eV) at the rather large distance of 4.5 Å. This is, of
course, indicative of a strong van der Waals contribution to
the bonding.21 For simplicity, we employ here an empirical
scheme20 to correct for the missing dispersion forces in GGA,
resulting in an adsorption distance of d = 3.25 Å and a binding
energy of Ead = 0.39 eV as can be seen from Fig. 5 (red circles
and line). When comparing the A-B type of adsorption site
with an A-A type of adsorption position in which the hexagon
of the polymer is on top of a graphene hexagon, we find an
adsorption energy which is by 0.10 eV less favorable. Based
on the van der Waals corrected GGA,20 the most favorable
adsorption site of PPP on graphene is thus analogous to the
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FIG. 5. (Color online) Adsorption energy of PPP on graphene vs
polymer-graphene distance d . Crosses are obtained by LDA, open
triangles by using the PBE-GGA functional,19 and filled circles
by including an empirical van der Waals correction according to
Grimme.20
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FIG. 6. (Color online) Plane-averaged total charge density and
charge density difference (top panel) as well as the electrostatic
potential (lower panel) perpendicular to the graphene plane. The
positions of the graphene plane (diamond) and the polymer chain
(triangle), the Fermi level, EF , and the work function on bottom and
top sides of the slab φb and φt are indicated.

A-B stacking in bilayer graphene and also in accordance with
the adsorption position of a single benzene ring on graphite.1

From the discussion above, it is evident that the bonding
between the polymer and graphene is mainly due to van der
Waals interactions. This is further emphasized by analyzing
the charge-density rearrangements upon adsorption. To this
end, we explore the charge density difference defined in the
following way:


ρ = ρ − (ρpol + ρgr). (3)

Here, ρ denotes the charge density of the combined system,
while ρpol and ρgr are the charge densities of isolated polymer
and graphene, respectively. The plane-averaged charge density
difference as well as the electrostatic potential is depicted in
Fig. 6. We can see that the interaction leads to regions of
minor charge accumulation (
ρ > 0) and charge depletion
(
ρ < 0) between the two constituents, i.e., to the formation
of small surface dipoles. There is, however, no net charge
transfer between the polymer and graphene. Consequently,
the work-function modification due to the polymer adsorption
is negligible, thus the values on the bottom and top side of the
slab, φb and φt , respectively, agree with each other. These
findings further prove that PPP is weakly physisorbed on
graphene.

In what follows, we present the band structure of the
combined PPP-graphene system at the LDA as well as at the
G0W0 level. In order to highlight the effect of image charges
induced in the graphene layer on the electronic bands of PPP,
we not only present data for the optimal adsorption height
discussed above, but we also study the dependence of the band
structure on the adsorption distance d. We start the discussion
by presenting the band structure of the adsorbate system at
d = 4.0 Å as shown in Fig. 7. Let us first focus on the LDA
band structure depicted in the left panel of Fig. 7. Here, the
solid black lines depict the bands of the combined system
while the red, dashed lines indicate the bands of PPP obtained
from a calculation for the isolated polymer. We observe that
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FIG. 7. (Color online) DFT-LDA (left) and G0W0 (right) band
structure of PPP adsorbed on graphene for an adsorption height of
4 Å shown as continuous black lines. The LDA band structure of an
isolated PPP chain is shown as red dotted line and used to identify
PPP derived states in the combined system. The G0W0 band structure
of the frontier PPP states is indicated by the red filled triangles,
connecting lines serve as a guide for the eye. The G0W0 energies
arising from graphene are shown as black filled circles.

the LDA band structure of the combined system appears as
a mere superposition of the band strcutures of the isolated
constituents, i.e., graphene and PPP. The relative alignment
of the two subsystems band structures follows the simple rule
of vacuum level alignment, also known as the Schottky-Mott
limit.22 Thus also the HOMO-LUMO gap of the polymer,
indicated by the red arrow at the � point, remains unaltered
at the level of LDA-DFT. We note that at somewhat smaller
polymer-graphene distances, such as the equilibrium distance
of 3.25 Å, π wave functions of the polymer and graphene start
to overlap slightly leading to a weak hybridization between
the polymer and graphene states. Correspondingly, also small
charge rearrangements and modifications of the electrostatic
potential due to the equilibration of the chemical potentials of
the two materials in contact take place as indicated in Fig. 6.
However, these changes are of the order of 0.1 eV only. For
weakly interacting systems that are van der Waals bonded, we
can summarize that the LDA band structure of the combined
system is given by a superposition of the individual levels of
the isolated subsystems, the polymer and the graphene sheet in
our case, respectively. This is also the reason, why an almost
substrate-independent behavior of the electronic properties
of physisorbed organic molecules has been observed at the
LDA-DFT level.4

Our findings for the the G0W0 band structure, as depicted
in the right panel of Fig. 7, are in stark contrast to this
substrate- and adsorption-distance-independent behavior of
the LDA-DFT band structure. Here, the G0W0 band structure
of the combined system is shown as black, filled circles where
the frontier PPP bands are highlighted by the red triangles
and continuous lines. When compared to the G0W0 results

for the isolated PPP cahin (see Fig. 4), a reduction of the
HOMO-LUMO gap of PPP is evident. While the isolated
chain exhibits a gap of 3.95 eV, the value of the adsorbed
PPP at a distance of 4.0 Å is reduced to 2.70 eV. This is a
consequence of long-range correlation effects as a response of
surface electrons to an added electron or hole in the polymer.
This phenomenon is captured within the G0W0 approach by the
screened Coulomb potential W0. For molecules on surfaces,
this effect is particularly important as it contains the attractive
interaction between the added electron or hole and its induced
image charge. It can lead to a considerable reduction in
the adsorbate’s energy gap—about 1.2 eV for the situation
described above, where the band gap renormalization depends
(i) on the polarizability of the surface and (ii) on the adsorbate’s
distance from the surface. Both effects are absent in the DFT
electronic structure at the LDA or GGA level due to the locality
of exchange-correlation potential, and this deficiency can also
not be cured by using hybrid functionals.4

D. Adsorption distance dependence

To further emphasize the physical origin of the band-gap
reduction upon adsorption, we study its dependence on the
adsorption distance d. The results are depicted in Fig. 8 in
which we plot the energies of the HOMO and LUMO of PPP
at the � point as a function of PPP-graphene distance d, where
the left (right) panel displays LDA (G0W0) results. Note that
the limiting values for d = ∞ are taken from calculations
for an isolated PPP chain. Let us first discuss the distance
dependence for moderately large values of d � 5 Å. Here, the
HOMO and LUMO energies, i.e., the ionization and electron
affinities levels of PPP, are independent of d in LDA while they
show strong and opposite trends in the G0W0 calculations
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FIG. 8. (Color online) The energy of the HOMO (filled triangles)
and LUMO (open squares) of PPP as a function of the adsorption
distance d on a reciprocal scale. The left panel shows LDA results,
while the right panel displays corresponding G0W0 values. The lines
represent various electrostatic models as described in the text. Note
that energies are measured with respect to the vacuum level.
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leading to the above mentioned reduction of the band gap.
This asymptotic distance dependence can be understood by
employing a classical image-potential model of the form23

Vim = −1

4

qq ′

d − d0
. (4)

Here, q ′ = −q(ε − 1)/(ε + 1) is the induced image charge,
where ε is the relative dielectric constant of the sub-
strate and d0 denotes the effective position of the image
plane. It describes the electrostatic interaction between charges
(added electrons or holes) above the surface and the po-
larization charge below the surface. This interaction also
constitutes the basic term of the G0W0 self-energy24 and is
consistent with the physical picture outlined above, i.e., that the
level renormalizations are determined by long-range Coulomb
interactions which decay very slowly with distance. The solid,
black lines in Fig. 8 display the expected image-potential
corrections according to Eq. (4) when inserting an effective
image plane position d0 = 1.0 Å and a dielectric constant of
ε = 3. The former value is in accordance with the image plane
position computed for benzene adsorbed on graphite,1 while
the latter agrees with a recent result by Wehling et al. who
calculated the dielectric constant of graphene to be 2.4.25 Using
these model parameters, the image model (solid line) only
roughly follows the G0W0 values (symbols). It underestimates
the level renormalizations for large distances, particularly so
for the HOMO, and does not capture the fact that the G0W0

electron affinity level seems to saturate at polymer-graphene
distances smaller than 4 Å, and also can not explain the more
complicated behavior of the ionization potential at small d.

We further investigate possible reasons for this deviation.
First, a better agreement between the image model (4) and
G0W0 results for large distances can be achieved when
allowing the position of the effective image plane to move
further away from the graphene plane, e.g., to d0 = 1.5 Å
and also assuming a slightly bigger ε of 4 (black, dashed
lines). These numbers lie still within the range of values
reported for similar surfaces in an earlier work,4 and improve
the agreement for separations d � 5 Å, while they clearly
worsen the description for smaller distances. It is evident that
adjusting d0 and ε will not lead to a satisfactory description
of the data points over the full range of distances due to
the leveling off at small polymer-graphene separations. This
indicates another physical mechanism that becomes important
for smaller distances. It has been noted earlier,26 that the
simple model given in Eq. (4) based on a pointlike charge
does not take into account the polarizability of the adsorbate,
an effect which should be more pronounced at small distances.
To estimate the magnitude and direction of such a polarization
effect, we have extended the standard image potential model
as to to include the polarizability of the adsorbate system in a
simplified manner (see Appendix B for details). To this end,
we consider that the image charge q ′ induces a dipole moment
in the adsorbate system which in turn gives rise to a dipole
field acting on the physical charge. This model (orange line)
qualitatively follows the computed G0W0 values. It agrees with
the standard model at large d but deviates from it at small d

due to a correction of opposite sign whose leading 1/d3 term
is proportional to the polarizability of the adsorbate. Thus
the level-renormalizations level off at small d in accordance

with the G0W0. While our extended model provides physical
insight as to why the standard electro-static model starts to
break down, we emphasize that it is still too crude to capture
details such as the shape of the adsorbate or the anisotropy
of its polarizability. Thus it may serve as a tool for qualitative
understanding but not for a quantitative predictions. Moreover,
there are also other effects which may cause the standard image
charge model of Eq. (4) to fail for small adsorption distances.
For instance, for polymer-graphene distances smaller than
4.5 Å, the added electron (hole) into the π∗

1 (π1) state at �

starts to extend beyond the position of the fictitious image plane
which may also lead to a deviation from the 1/d behavior. Such
small hybridization effects between polymer and graphene are
exemplified by the minor, but clearly visible, dependence of
the HOMO and LUMO LDA energies (left panel of Fig. 8).
Finally, to obtain the full electronic band structure, one needs
to determine the individual self-energies for each k point and
band, which goes far beyond the capability of such model.

IV. SUMMARY

In this paper, we have investigated the electronic properties
of the polymer poly(para-phenylene) (PPP) adsorbed on
graphene by means of ab initio electronic-structure calcula-
tions. Analysis of the charge density shows the formation of
weak interface dipoles, but no net charge transfer between PPP
and graphene. At the level of density-functional theory within
the local-density approximation, we find that the adsorption
of PPP on graphene does not alter the PPP band structure
compared to an isolated PPP chain. However, by incorporating
many-body effects within the G0W0 approximation, we obtain
a considerable reduction of its HOMO-LUMO gap upon
adsorption even for large distances from graphene where
the wave function overlap between graphene and PPP is
negligible. We find that a classical image-potential model in
its standard form describes the G0W0 HOMO and LUMO
energies of PPP only for fairly large distances, while we
observe some deviations from the expected 1/d dependence
for polymer-graphene separations smaller than 4.5 Å down
to the equilibrium van der Waals bond distance of 3.25 Å.
By incorporating the polarizability of the adsorbate into the
model, we are able to qualitatively improve it also for shorter
polymer-graphene distances, thereby identifying the most
likely physical mechanisms for the substrate-induced level
renormalizations of the polymer HOMO and LUMO close
to equilibrium bonding distances. However, for quantitative
description, G0W0 calculations are necessary to properly
predict the electronic structure of the adsorbates close to
surfaces.
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FIG. 9. (Color online) Comparison of the G0W0 gap of graphene
at the � point using the conventional sum-over-empty-states approach
(circles and solid black line) and the energy effective technique (red
line).

APPENDIX A: CONVERGENCE TESTS FOR MONOLAYER
GRAPHENE

As discussed in Sec. II, G0W0 calculations typically involve
time-consuming summations over empty states. Here, we
demonstrate for the case of graphene the convergence of the
QP energies with respect to the number of empty states and
compare with results from the energy effective technique in
which all summations are restricted to occupied states only.
This is shown in Fig. 9 for the QP energy differences between
the highest occupied and the lowest unoccupied band at the
� point. Note that for this convergence test, we have used
a moderately dense sampling of only 6 × 6 × 1 k points.
One can see that the QP energy differences obtained by both
methods converge to the same value. In view of this very good
agreement and the computational efficiency of the EET, we
apply this technique in all G0W0 calculations presented in this
paper.

As outlined in Sec. II, the nonlocal nature of the self-energy
leads to a slow convergence of results as a function vacuum
layer size in slab geometries that can be mediated by using a
truncated Coulomb potential. The left panel of Fig. 10 shows
the convergence of the G0W0 gap at the � point of hexagonal
graphene. The open squares display results for the unmodified
Coulomb potential, while the filled squares are values obatined
by using a cutoff Coulomb potential for slab geometries
according to Ismail Beigi.13 Clearly, the quasiparticle gap
is converged at a graphene layer separation of about c =
20 Å when using the modified Coulomb potential, while it
approaches a converged value only via a 1/c dependence in
the unaltered Coulomb potential (note the reciprocal abscissa
in Fig. 10). For instance, at 20 Å, the error would amount to
about 0.2 eV this particular quasi-particle energy difference.
It should be noted, however, that the k-point convergence
worsens when utilizing a cutoff Coulomb potential. This is
visualized in the right panel of Fig. 10, where we plot the G0W0

gap of graphene at � as a function of Nkx
which defines the k

mesh (Nkx
× Nkx

× 1 points). From the analysis of Fig. 10, we
conclude that a vacuum layer thickness of 20 Å and a k mesh
of 36 × 36 × 1 should be sufficient to converge quasiparticle
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FIG. 10. The convergence of the G0W0 band gap at � point for
monolayer graphene when using a cutoff version of the Coulomb
potential (filled symbols) compared to the plain Coulomb potential
(open symbols). The left panel shows the convergence as a function of
vacuum-layer thickness c for a fixed k-point sampling of 30 × 30 × 1,
while the right panel displays the convergence as a function of k

points (Nkx
× Nkx

× 1 meshes) for a fixed vacuum layer thickness of
c = 15.9 Å.

energies to within 0.1 eV when employing a cutoff Coulomb
potential. For the supercell used in the calculation of the
polymer and the combined polymer-graphene system, this k

mesh translates into a mesh of 5 × 17 × 1, which we have
utilized throughout the paper for all computations involving
the supercell.

APPENDIX B: IMAGE-POTENTIAL MODEL

The classical image-potential model leading to Eq. (4)
assumes a point charge in front of a semi-infinite (z < 0),
polarizable medium described by the dielectric constant ε. A
charge q, which resides a distance z = d above the dielectric,
polarizes the dielectric, an effect which is accounted for by an
image charge q ′ = −q(ε − 1)/(ε + 1) appearing at z = −d.
When integrating the attractive force between the charge and
its image F (d) = qq ′

(2d)2 from d to infinity, the energy correction
given in Eq. (4) is obtained. Note that we use atomic units
throughout, i.e., we set e2/4πε0 → 1.

Let us now extend this simple point-charge description by
allowing the adsorbate system to be polarizable. As indicated
in Fig. 11, we imagine an adsorbed atom at a fixed distance d

above the semi-infinite dielectric. When adding a charge q at
distance z, the induced charge q ′ at −z will now polarize the
atom thereby inducing a dipole moment pz of strength

pz = αEz. (B1)

Here, α denotes the polarizability of the adsorbate, and Ez

is the z component of the electric field at the location of the
physical charge due to the image charge q ′, thus

Ez = q ′

(z + d)2
. (B2)

This induced dipole gives rise to an electric field at z that
exerts a force on the charge q in addition of the image force
due to q ′. Combining the above expressions, one finds for the
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FIG. 11. (Color online) Schematics showing the image-potential
model. A charge q at position z above a dielectric with dielectric
constant ε filling the half space z < 0 induces an image charge q ′ =
− ε−1

ε+1 q which, in turn, induces a dipole with dipole moment pz at
the location d of the adsorbate which is modeled by a homogeneous
polarizable sphere of radius R. The electric fields arising from the
image charge (red line) as well as from the image-charge-induced
dipole (orange line) are illustrated for d = 4 Å, α = 15 a.u., and
R = 2.5 a.u.

z component of the total force

Fz = qq ′
[

1

(2z)2
+ 2α

(z + d)2|z − d|3
]

. (B3)

Here, the first term (red line in Fig. 11) describes the attraction
of the charge q by the image charge q ′, while the second
term (orange line), which is proportional to the adsorbate’s
polarizability α, arises due to the image-charge-induced dipole

field. When integrating the force from d to ∞, the first term
gives Eq. (4), while the second term produces an expression
whose leading term is proportional to 1/d3. Two things should
be noted at this stage. First, the induced dipole at z = d in
turn results in an image dipole at z = −d, which when taken
into account in self-consistent manner, exerts a force on the
charge q at z. However, this effect, which is proportional to α2,
modifies the final result only at leading order of 1/d6, i.e., at
very short distances due to the faster decay of the dipole com-
pared to the monopole field. As a second note, the dipole field
proportional to 1/|z − d|3 would lead to a diverging force if the
charge q approaches the position of the atom z = d. In order
to circumvent this problem arising from a too simple model,
we represent the polarizable adsorbate by a homogeneous,
dielectric sphere of radius R exhibiting the polarizability α.
Then, the field inside the sphere is behaves regularly at z → d

and the force may be readily integrated yielding the energy
renormalization Vim as a function of adsorbate-substrate
separation d:

Vim(d) = qq ′
[

1

4d
− 3α

8Rd3
+ O

(
1

d4

)]
. (B4)

The first term gives again the standard point-charge result,
while the remaining terms starting with 1/d3 are due to
polarization effects of the adsorbate and consequently contain
the polarizability α and the size R of the adsorbate system.
When further allowing for a shift of the image plane to the
position d0, values of α = 15 a.u. and R = 2.5 a.u. result in
the orange curve shown in the right panel of Fig. 8. We note
that the atomic polarizability of an isolated carbon atom is
about 11 a.u.,27 and emphasize that these numerical values
merely serve to underpin the main physical effect rather than
to create quantitative predictions that would require a more
refined electrostatic model that takes into account the actual
shape, the inhomogeneity as well as the anisotropy of the
adsorbate system.
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