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A U (1) slave-spin representation is introduced for multiorbital Hubbard models. As with the Z2 form of
de’Medici et al. [Phys. Rev. B 72, 205124 (2005)], this approach represents a physical electron operator as
the product of a slave spin and an auxiliary fermion operator. For nondegenerate multiorbital models, our U (1)
approach is advantageous in that it captures the noninteracting limit at the mean-field level. For systems with either
a single orbital or degenerate multiple orbitals, the U (1) and Z2 slave-spin approaches yield the same results in
the slave-spin-condensed phase. In general, the U (1) slave-spin approach contains a U (1) gauge redundancy, and
properly describes a Mott insulating phase. We apply the U (1) slave-spin approach to study the metal-to-insulator
transition in a five-orbital model for parent iron pnictides. We demonstrate a Mott transition as a function of
the interactions in this model. The nature of the Mott insulating state is influenced by the interplay between the
Hund’s rule coupling and crystal-field splittings. In the metallic phase, when the Hund’s rule coupling is beyond
a threshold, there is a crossover from a weakly correlated metal to a strongly correlated one, through which the
quasiparticle spectral weight rapidly drops. The existence of such a strongly correlated metallic phase supports
the incipient Mott picture of the parent iron pnictides. In the parameter regime for this phase and in the vicinity
of the Mott transition, we find that an orbital selective Mott state has nearly as competitive a ground-state energy.
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I. INTRODUCTION

Many important questions remain on the physics of the iron
pnictides and related iron-based high-Tc superconductors.1–6

One central issue is the strength of electron correlations
these systems contain. The metallic nature and the collinear
antiferromagnetic (AFM) ground state7 in the parent pnictides
can arise within a weak-coupling approach, in which the
Fermi surface nesting plays an important role.8 On the
other hand, the large room-temperature electrical resistivity,
showing the bad metal behavior with the electron mean-free
path on the order of the interelectron spacing, as well as the
suppression of Drude weight in optical conductivity,9–11 the
well-defined zone-boundary spin waves,12 and the renormal-
ization of local density approximation (LDA) band structure
in the angle-resolved photoemission spectroscopy (ARPES)
measurements13 provide evidence for sufficiently strong elec-
tron correlations such that the system is in close proximity
to a Mott transition with dominant contributions to the spin
spectral weight from quasilocal moments.14–28

This incipient Mott picture is further supported by the
properties of iron chalcogenides.4–6 In either the 11- or the
122-chalcogenides, the magnetic ordering wave vector and the
large magnetic moment29–32 (ranging from 2 to 3.4 μB) can
hardly be explained by a Fermi surface nesting mechanism, but
is readily understood within a quasilocal moment model.33–36

It has also been shown that the band-narrowing effect, either
due to the expansion of the iron lattice unit cell in an iron
oxychalcogenide37 or from the ordered iron vacancies in 122
iron selenides,35,38,39 may drive the system through the Mott
transition to a Mott insulator.

In general, the degree of electron correlations can be
measured by the ratio U/D, where U refers to a characteristic
interaction strength, such as the Coulomb repulsion in a
Hubbard model, and D is the full bandwidth, a scale of the

kinetic energy of the system. A Mott transition separating the
metallic and the Mott insulating phases takes place at Uc ∼ D.
In the metallic phase, electron correlations can alternatively
be measured by the quasiparticle spectral weight Z, which
is unity at the noninteracting limit U = 0, and vanishes at
the Mott transition U = Uc. The incipient Mott picture relies
on the existence of a (putative) Mott transition, and assume
that the system is not too far from this transition so that Z is
relatively small.

The above considerations suggest that it is very important
to theoretically investigate how a metal-to-Mott-insulator
transition takes place in a model which is applicable to the
parent iron pnictides and/or chalcogenides. In a previous
paper, by studying a two-orbital and a four-orbital model, the
authors have shown that a Mott transition generally exists
in these models.40 But, both models are at half-filling. By
contrast, in the parent iron pnictides, six electrons occupy
five 3d orbitals of each Fe. This means that the system is
away from half-filling. It would be important to investigate
the extent to which the Mott insulating states persist in such a
situation.

Historically, the Mott transition in a single-orbital Hub-
bard model has been studied by using various tech-
niques, such as dynamical mean-field theory41 (DMFT)
and Gutzwiller approximation.42 Among these methods, the
Kotliar-Ruckenstein slave-boson method43 has been broadly
used. In this theory, a Mott transition at finite U/D is obtained
already at the mean-field level. However, it is difficult to apply
this approach to multiorbital systems as it would introduce
4M slave-boson fields for a model with M orbitals; the
number of variational variables is already huge even for M =
5. Recently, several other slave-particle theories following
the idea of charge-spin separation have been proposed.44–46

Among these theories, two of them, the slave-rotor theory45

and the slave-spin theory,44 have been applied to multiorbital
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systems. In both theories, a slave-bosonic variable [a quantum
O(2) rotor in the slave-rotor theory, and a quantum S = 1/2
spin in the slave-spin theory] is introduced to carry the electric
charge, and an auxiliary fermion (the spinon) carries the spin
of the electron. The metallic phase corresponds to the state
that the slave particles are Bose condensed, so that charge
excitations are gapless along with the spin excitations. By
contrast, the Mott insulator corresponds to the state that the
slave particles are disordered and gapped; charge excitations
are gapped, while the spin excitations remain gapless. The
slave-rotor method is very economical because it introduces
only one rotor per site taking account of the total charge.
It is also very efficient if the interactions have an SU (2M)
symmetry for an M-orbital system. However, it can not be
easily applied to systems with a nonzero Hund’s rule coupling
which breaks the SU (2M) symmetry. It is also not convenient
to handle systems that exhibit strong orbital dependence,
such as the orbital selective Mott transition (OSMT). The
slave-spin theory overcomes these drawbacks by introducing
a slave spin for each orbital and spin flavor. Compared with
the Kotliar-Ruckenstein slave-boson theory, it is still very
economical because it introduces only 2M slave spins per
site. It has been successfully used to study the Mott transition
and OSMT in multiorbital systems with a nonzero Hund’s
rule coupling.47 There are, however, several issues with the
slave-spin representation. First, it has difficulties when applied
to a multiorbital system in which one or more orbitals are away
from half-filling due to crystal-field splitting. For instance, it
is hard to properly describe the noninteracting limit in such
nondegenerate multiorbital models. Second, in its original
construction, the slave-spin representation has a Z2 gauge
redundancy. This makes the spinons carry both spin and charge
currents, and causes difficulties in describing a Mott insulating
phase.48

In this paper, we propose an XY slave-spin theory that is
free of these issues. This slave-spin theory has a U (1) gauge
redundancy, and properly describes Mott insulating phases.
We develop a mean-field theory, which can be applied to
multiorbital systems with a nonzero crystal-field splitting. For
a model with a single orbital or degenerate multiorbitals, on
the other hand, our U (1) slave-spin mean-field theory and
the Z2 slave-spin theory49 give the same results in their
spin-condensed phases. We then apply our formulation to
study the Mott transition in a five-orbital model for the
parent iron pnictides. We establish the existence of a Mott
transition in this model. Both the nature of the metallic
and Mott insulating phases are strongly affected by the
interplay of Hund’s rule coupling and the crystal-field splitting.
A crossover to a strongly correlated metallic state exists
when the Hund’s rule coupling is beyond a threshold. The
existence of this state is in agreement with the incipient Mott
picture.

The rest of the paper is organized as follows. In Sec. II,
we first introduce our construction of the U (1) slave-spin
theory, and develop a mean-field theory based on this new
construction. We also compare our construction with the
slave-rotor and Z2 slave-spin theories. In Sec. III, we apply the
U (1) slave-spin mean-field theory to study the Mott transition
in a five-orbital model for the parent iron pnictides, and show
how the transition is affected by the interplay between Hund’s

rule coupling and the crystal-field splitting. Finally, Sec. IV
contains some concluding remarks.

II. METHOD

In this paper, we are interested in the metal-to-insulator
transition in a multiorbital system, for which the Hamiltonian
reads as

H = H0 + Hint. (1)

H0 contains the tight-binding parameters among the multiple
orbitals,

H0 = 1

2

∑
ijαβσ

t
αβ

ij d
†
iασ djβσ +

∑
iασ

(�α − μ)d†
iασ diασ , (2)

where d
†
iασ creates an electron in orbital α with spin σ at site

i, �α is the onsite energy reflecting the crystal-field splitting,
and μ is the chemical potential. Hint contains onsite Hubbard
interactions

Hint = U

2

∑
i,α,σ

niασ niασ̄

+
∑

i,α<β,σ

{U ′niασ niβσ̄ + (U ′ − J )niασ niβσ

−J (d†
iασ diασ̄ d

†
iβσ̄ diβσ − d

†
iασ d

†
iασ̄ diβσ diβσ̄ )}. (3)

where niασ = d
†
iασ diασ . In this model, U , U ′, and J , re-

spectively, denote the intraorbital repulsion, the interorbital
repulsion, and the Hund’s rule exchange coupling. In the
following, we will take U ′ = U − 2J .50

A. U(1) slave-spin theory

To study this multiorbital model, we implement the idea
of charge and spin separation of the d electrons by using
the slave-spin approach. For each orbital and spin flavor, we
rewrite the electron creation operator to be

d
†
iασ = S+

iασ f
†
iασ , (4)

where S+
iασ is a ladder operator of the slave quantum S = 1/2

spin carrying the charge degree of freedom of the electron,
and f

†
iασ is a spinon creation operator. We further enforce a

constraint for each site,

Sz
iασ = f

†
iασ fiασ − 1

2
, (5)

which restricts the Hilbert space to the physical one.
Note that our slave-spin formulation in Eq. (4) is different

from that introduced in Refs. 44 and 51, in which

d
†
iασ = O

†
iασ f

†
iασ , (6)

where

O
†
iασ = S+

iασ + ciασ S−
iασ , (7)

with ciασ being a complex number. In that formulation, the
gauge redundancy is reduced from U (1) to Z2 in Eqs. (6) and
(7) due to the mixing between S+

iασ and S−
iασ (hence they are

referred to as a Z2 slave-spin representation); as a consequence,
the slave spins can not carry the U (1) charge.
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In our Eqs. (4) and (5), there is a U (1) gauge redundancy
corresponding to f

†
iασ → f

†
iασ e−iθiασ and S+

iασ → S+
iασ eiθiασ .

The slave spins carry the U (1) charge, similarly as the slave
rotors.45 We will refer to this as a U (1) slave-spin theory.
In our construction, the phase that corresponds to disordered
slave spins [preserving the U (1) symmetry] but with gapless
spinons corresponds to a Mott insulator.

Next, we develop a mean-field theory based on the
construction of Eqs. (4) and (5). A naive mean-field theory
based on Eq. (4) would not produce the correct quasiparticle
spectral weight in the noninteracting limit.51 To make progress,
we rewrite the slave-spin operators in their Schwinger bo-
son representation: S+

iασ = a
†
iασ biασ , S−

iασ = b
†
iασ aiασ , and

Sz
iασ = (a†

iασ aiασ − b
†
iασ biασ )/2. The constraint in Eq. (5)

then becomes a
†
iασ aiασ − b

†
iασ biασ = 2f

†
iασ fiασ − 1. Here, we

need to introduce an extra constraint a
†
iασ aiασ + b

†
iασ biασ = 1

so that the Schwinger bosons represent S = 1/2 spins. We
then see that aiασ and biασ are hard-core bosons. In light
of the Kotliar-Ruckenstein slave-boson mean-field theory,43

we now define a dressed operator in the Schwinger boson
representation which automatically takes into account this
constraint:

z
†
iασ = P +

iασ a
†
iασ biασ P −

iασ , (8)

where P ±
iασ = 1/

√
1/2 + δ ± (a†

iασ aiασ − b
†
iασ biασ )/2, and δ

is an infinitesimal positive number to regulate P ±
iασ . z† and a†b

are equivalent in the physical Hilbert space. In the Schwinger
boson representation, Eq. (4) becomes

d
†
iασ = z

†
iασ f

†
iασ . (9)

At the mean-field level, we treat the constraint (5) on
average by introducing a Lagrange multiplier, and decompose
the boson and spinon operators. We obtain two mean-field
Hamiltonians, respectively, for the spinons and the Schwinger
bosons:

H mf
f = 1

2

∑
ijαβσ

t
αβ

ij 〈z†iασ zjβσ 〉f †
iασ fjβσ

+
∑
iασ

(�α − λiασ − μ)f †
iασ fiασ , (10)

H mf
S = 1

2

∑
ijαβσ

t
αβ

ij 〈f †
iασ fjβσ 〉z†iασ zjβσ

+
∑
iασ

λiασ

2

(
n̂a

iασ − n̂b
iασ

) + HS
int, (11)

where 〈. . .〉 denotes the mean-field value, n̂a
iασ = a

†
iασ aiασ ,

and λiασ is the Lagrange multiplier to handle the constraint
in Eq. (5). The quasiparticle spectral weight is defined as
Ziασ = |〈ziασ 〉|2. In Eq. (11), HS

int refers to the interaction
Hamiltonian in the Schwinger boson representation. It can be
obtained by rewriting Eq. (3) in the slave-spin representation
Hint → Hint(S),40 then substitute the Schwinger bosons for
the spin operators. The mean-field Hamiltonian H mf

S has an
internal U (1) symmetry of the bosons. For a single orbital, it
is a Bose-Hubbard model for two species of bosons, and is
equivalent to a model of interacting XY spins in a magnetic
field. At commensurate fillings, by breaking the internal U (1)
symmetry, this model has a phase transition from a bosonic

Mott insulator to a superfluid with decreasing the interactions.
These two phases correspond to the Mott insulating and
metallic states in the original d-electron problem. We then
approach the Mott transition from the ordered phase. This
can be done by assuming the Bose condensation takes place
in the composite boson field ziασ , and further adopting a
single-site approximation to Eqs. (10) and (11) with the decou-
pling z

†
iασ zjβσ ≈ 〈z†iασ 〉zjβσ + z

†
iασ 〈zjβσ 〉 − 〈z†iασ 〉〈zjβσ 〉. For

simplicity, we focus on the paramagnetic phase, and assume
translational symmetry. These allow us to drop the spin and
site indices in the formulas. The mean-field boson Hamiltonian
then reads as

H mf
S ≈

∑
αβ

εαβ(〈z†α〉zβ + 〈zβ〉z†α)

+
∑

α

λα

2

(
n̂a

α − n̂b
α

) + HS
int, (12)

where εαβ = ∑
ijσ t

αβ

ij 〈f †
iασ fjβσ 〉/2. In Eq. (12), we Taylor

expand zα and z†α in terms of Â − 〈Â〉 (where Â = n̂a,n̂b,a†b),
and keep up to the linear terms in Â − 〈Â〉, obtaining

z†α ≈ z̃†α + 〈z̃†α〉ηα

[
n̂a

α − n̂b
α − (

2nf
α − 1

)]
, (13)

where z̃†α = 〈P +
α 〉a†

αbα〈P −
α 〉, ηα = (2n

f
α − 1)/[4n

f
α (1 − n

f
α )],

n
f
α = 1

N

∑
k〈f †

kαfkα〉, and n
f
α = 〈n̂a

α〉 = 1 − 〈n̂b
α〉 from the

constraints. We find that Eq. (13) already gives good mean-
field results, and will hence drop the higher-order terms
in the expansion. Note that the approximate form of z†α in
Eq. (13) is only used to simplify H mf

S , but can not be fed into
Eq. (9) to calculate the electron Green’s functions since the
approximate operator behaves differently from the original one
in the physical Hilbert space. Nevertheless, 〈zα〉 = 〈z̃α〉. With
Eq. (13), Eq. (12) is then approximated to be

H mf
S ≈

∑
αβ

εαβ(〈z̃†α〉z̃β + 〈z̃β〉z̃†α)

+
∑

α

(
λα

2
+ ε̄αηα

) (
n̂a

α − n̂b
α

) + HS
int, (14)

where ε̄α = ∑
β(εαβ〈z̃†α〉〈z̃β〉 + c.c.). Further using the con-

straint (5), we can move the term proportional to ηα to H mf
f

by introducing an effective onsite potential μ̃α = 2ε̄αηα . The
resulting mean-field Hamiltonians are then

H mf
f =

∑
kαβ

[
ε

αβ

k 〈z̃†α〉〈z̃β〉+δαβ (�α−λα+μ̃α − μ)
]
f

†
kαfkβ,

(15)

H mf
S =

∑
αβ

[
εαβ(〈z̃†α〉z̃β + 〈z̃β〉z̃†α) + δαβ

λα

2

(
n̂a

α − n̂b
α

)]

+ HS
int, (16)

where ε
αβ

k = 1
N

∑
ij t

αβ

ij eik(ri−rj ), and δαβ is Kronecker’s delta
function. Equations (15) and (16) are the main formulation
of our slave-spin mean-field theory. Note that although the
mean-field Hamiltonian in Eq. (16) contains quartic terms of
boson operators from the HS

int term, it is defined on a single
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site. Given that the bosons are hard core (or, equivalently,
recognizing that they can be transformed back to the slave-spin
representation), we can diagonalize the Hamiltonian exactly.
The mean-field parameters 〈z̃α〉 and λα can then be solved
self-consistently. In the noninteracting limit, it is easy to check
that Zα = |〈z̃α〉|2 = 1 can be achieved by taking λα = μ̃α; the
quasiparticle weights are equal to 1 as it should be.

B. Comparison with the Z2 slave-spin theory

Here, we compare our U (1) slave-spin theory with the
Z2 slave-spin theory. One advantage of the U (1) slave-spin
theory over the Z2 slave-spin approach is that it can be
directly generalized to the multiorbital systems with nonzero
crystal-field splitting and/or away from half-filling. As an
example, we consider a two-orbital model at half-filling and
with equal bandwidth but with a finite crystal-field splitting. In
the noninteracting limit, we expect the quasiparticle spectral
weight Zα=1,2 = 1 and the spinon band structure is identical
to the tight-binding dispersion of the d electrons. The Z2

slave-spin mean-field theory failed to obtain these results.
This is easy to see: Both of the two orbitals are away
from half-filling in the presence of the crystal-field splitting.
According to Eq. (17), to obtain Z1(2) = |〈O1(2)〉|2 = 1, it is
necessary that λ1 = −λ2 	= 0. In absence of the potential μ̃ in
Eq. (15), this already distorts the band structure of the spinons
from the original tight-binding form. Hence, one can not
obtain the desired spinon filling as required by the constraint.
However, in our theory, Zα = 1 is guaranteed by the condition
λα = μ̃α . These two potentials cancel out exactly as seen in
Eq. (15). Therefore, the spinon band structure is identical to
the tight-binding one, and the noninteracting limit is properly
recovered.

However, we find that at the mean-field level and in
the symmetry-broken phases of the bosons/spins, the two
theories have very similar forms. To see this explicitly, we
compare the mean-field Hamiltonians of the two theories
in the slave-spin representation. In this representation, the
mean-field Hamiltonian of the U (1) slave-spin theory can be
obtained by performing a Schwinger-boson-to-spin mapping
to the Hamiltonian H mf

S in Eq. (16). H mf
S then reads as

H mf
S =

∑
αβ

[
εαβ(〈O†

α〉Oβ + 〈Oβ〉O†
α) + δαβλαSz

α

]

+ Hint(S), (17)

where

O†
α = 〈P +

α 〉S+
α 〈P −

α 〉, (18)

P ±
α = 1/

√
1/2 + δ ± Sz

α , and Zα = |〈Oα〉|2. Surprisingly, we
see that the mean-field Hamiltonian of the Z2 theory takes
exactly the same form as in Eq. (17) if we define

O†
α = (〈P −

α 〉〈P +
α 〉 − 1)S−

α + S+
α . (19)

Interestingly, the two definitions in Eqs. (18) and (19) give the
same quasiparticle spectral weight Zα = |〈Oα〉|2. In models
with a single orbital or degenerate multiple orbitals, μ̃α in Eq.
(15) becomes orbital independent and can thus be absorbed
into the chemical potential. Therefore, in these cases, in the

metallic phase, the U (1) slave-spin mean-field theory and the
Z2 theory give the same results (up to a constant in the free
energies). It should be stressed that, even for single-orbital
or degenerate multiorbital models, the agreement between the
two theories is obtained only in the ordered phase of the slave
spins. Generally, the constructions in the two formulations are
different in the sense already mentioned. In the U (1) slave-spin
theory, the operator equation (4) has a U (1) gauge redundancy,
and allows a proper Mott insulating phase.

III. MOTT TRANSITION IN A FIVE-ORBITAL MODEL
FOR IRON PNICTIDES

In a previous paper,40,52 we have discussed the metal-
to-insulator transition in two- and four-orbital models. For
both models, we find a metal-to-Mott-insulator transition at
finite U . We also find that the nature of the phase transition
and the critical value Uc can be strongly influenced by
the Hund’s rule coupling. These results are based on the
assumption that the system under study is at half-filling. But,
the parent iron pnictides are away from half-filling, with six d

electrons occupying five orbitals in each iron atom. To consider
this more involved case, here we use the U (1) slave-spin
mean-field theory to study the five-orbital Hubbard model for
iron pnicitdes. We take the tight-binding parameters as those
proposed in Ref. 53 for the parent LaOFeAs. The interaction
part of the Hamiltonian is as given in Eq. (3). For simplicity,
here we consider only the density-density interactions and drop
the spin-flip and pair-hopping terms in Eq. (3). The results with
the full interactions are qualitatively similar.40

Figure 1 shows the ground-state phase diagram at electron
filling n = 6 of the five-orbital model in the J -U plane. We
find a single transition from a metal to an insulator. At J =
0, Uc ≈ 13.1 eV. In this case, we have also independently

FIG. 1. (Color online) Ground-state phase diagram of the five-
orbital model at n = 6.0. The solid curve with symbols shows the
boundary between the metallic and Mott insulating phases. The
dotted line shows a crossover in the metallic phase where the system
changes from a weakly correlated metal to a strongly correlated metal.
The dashed line indicates a low- to high-spin transition in the Mott
insulating phase. The atomic configurations corresponding to the low-
and high-spin Mott states are illustrated on the right side.
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determined USR
c ≈ 11.0 eV from the slave-rotor mean-field

theory.54 For a model with M-fold-degenerate orbitals, the
ratio Uc/USR

c = (M + 1)/M .44,45 This relation approximately
holds in the five-orbital model, in which we find Uc/USR

c ≈
1.19. It can be understood by the fact that in this model, the
largest crystal-field splitting (� ≈ 0.5 eV) is relatively small
compared to the full bandwidth (D ≈ 4.0 eV), so the orbitals
are nearly degenerate.

A nonzero Hund’s rule coupling strongly affects the metal
insulator transition (MIT) and the nature of both the insulating
and metallic states. In the insulating phase, we find that the
degenerate xz and yz orbitals are always at half-filling, and
hence in a Mott insulating state, while the x2 − y2 orbital
is fully occupied, in a band insulating state. The transition
is therefore an orbital selective MIT.40 Due to the interplay
of J and crystal-field splitting �, the other two orbitals
can be either in a Mott insulating (J > �) or in a band
insulating state (J < �). Accordingly, the five-orbital model
can accommodate either a high-spin (S = 2) or a low-spin
(S = 1) Mott state, as illustrated in Fig. 1. These two states
are separated by a low-spin-to-high-spin transition inside the
insulating phase.

A general effect of the Hund’̄s coupling is to reduce
the orbital fluctuations, as it partially lifts the degeneracy
of the ground-state configurations.40,47 This effect is more
significant when J is small and the system is at or close
to half-filling, where the orbital fluctuations are strong. It is
known that orbital degeneracy effectively increases the kinetic
energy.55,56 By reducing the orbital fluctuations, the Hund’s
coupling among the degenerate orbitals will effectively reduce
the kinetic energy, which is proportional to D. As a result,
it is expected that Uc decreases with increasing J . In the
models at half-filling, Uc indeed decreases monotonically
with increasing J/U , consistent with the above argument.
But, the phase diagram of the five-orbital model shows a
significant difference: as J/U is increased from zero, Uc

first decreases for J/U � 0.1, but then increases with J/U

for J/U � 0.1. To understand the different behaviors of
Uc in the four- and five-orbital models, we estimate and
compare the Mott gaps in these two models at two cases:
0 < J � � and J � �. The Mott gap GM measures the
distance between the upper and lower Hubbard bands in a
Mott insulator. It can be approximated by GM ≈ GA − D;
here, GA = En+1 + En−1 − 2En is the excitation gap in the
atomic limit, and En is the energy of the atomic configuration
with n electrons. A reasonable estimate of Uc can be obtained
from GA ∼ D. For 0 < J � �, the dominant configuration for
the undoped compound is the S = 1 low-spin state. For this
configuration, GA = U + J in both the four- and five-orbital
models. Hence, when J/U is small, in both models we expect
Uc ∼ D/(1 + J/U ), decreasing with J/U . But, for J � �,
the dominant configuration is the S = 2 high-spin state, and
GA depends on the electron filling of the high-spin state. In the
four-orbital model, the system is at half-filling, GA ∼ U + 3J ,
and Uc ∼ D/(1 + 3J/U ), still decreasing with J/U . But, in
the five-orbital model with n = 6, GA ∼ U − 3J . This gives
Uc ∼ D/(1 − 3J/U ). When J 
 U , the behavior of Uc is
still dominant by D, which decreases with J . But, further
increasing J , the J dependence of D becomes weak, and the
factor 1/(1 − 3J/U ) will finally make Uc increasing with J .

FIG. 2. (Color online) (a) Evolution of the quasiparticle spectral
weight with U at n = 6.0 and J/U = 0.1. (b) Same as (a) but at
J/U = 0.25. The inset shows the difference of free energies (�f )
between three competing states for the same model parameters, with
fm, fMI, and fOS, respectively, denoting the free energies of the
metallic, Mott insulating, and orbital selective Mott states.

Therefore, we expect a nonmonotonic behavior of Uc with
increasing J/U in the five-orbital model, which is seen in
the numerical results shown in Fig. 1. Interestingly, similar
behavior has also been reported in a recent study on the
different parameter regime of a different model (with three
degenerate orbitals).47

The Hund’s rule coupling also affects the properties in
the metallic state. In Fig. 2, we compare the evolution of
quasiparticle spectral weight Zα for the same model, but at two
different J/U values. In both cases, the insulating phase is the
S = 2 high-spin Mott state. On the other hand, Zα behaves very
differently in the metallic phases. At J/U = 0.1, Uc ≈ D, and
Zα drops rapidly down to zero only at U ≈ Uc. The orbital
dependence of Zα is weak. At J/U = 0.25, the Mott transition
takes place at U ≈ 3D. But, Zα drops rapidly to small but
nonzero values at U ≈ 2.7 eV. This rapid drop allows us to
define a crossover scale U ∗ in the metallic state. In Fig. 1, we
plot this crossover line in the phase diagram. For large J/U , U ∗
can be smaller than D. U ∗ increases with decreasing J/U and
the crossover line ends when it crosses the MIT phase boundary
at J/U ≈ 0.11. At U < U ∗, the spectral properties of the
system are similar to its noninteracting limit, with weakly
renormalized quasiparticle spectral weights. But, for U > U ∗,
the quasiparticle spectral weights are strongly suppressed. In
this regime, electron correlations are sufficiently strong in the
metallic phase even at U � D, and the system is close to a Mott
insulator. So, U ∗ roughly separates the regimes of a weakly
correlated metal and a strongly correlated metal. The strongly
correlated metallic phase has the features prescribed in the
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incipient Mott picture. As another remarkable observation,
we find that for U > U ∗, Zα become significantly orbital
dependent. For example, at J/U = 0.25 and for U � 4 eV,
Zxy � 0.1 and is much smaller than that of the other orbitals.
This implies that the system is close to an orbital selective Mott
phase (OSMP). We have calculated the ground-state energy
of an OSMP with xy orbital insulating but all other orbitals
metallic, and compare it with the energies of the metallic and
insulating solutions in the inset of Fig. 2. Although the OSMP
never becomes the true ground state, it is indeed energetically
close. The stabilization of an OSMP requires a high-spin
configuration.57 This is consistent with the observation that a
threshold is needed to trigger the strongly correlated metallic
state.

IV. CONCLUSION

We have developed a U (1) slave-spin theory, which al-
lows the study of metal-to-Mott-insulator transition in both
single-orbital and multiorbital systems. For models with a
single orbital or multiple degenerate orbitals, we show that
the mean-field theory in the slave-spin-condensed phase is
mathematically equivalent to that of the previous Z2 slave-spin
mean-field theory. For models with multiple nondegenerate

orbitals, our U (1) slave-spin formulation provides proper
descriptions for both the metal and Mott insulating phases.

We have applied the U (1) slave-spin approach to study
a five-orbital Hubbard model for the parent iron pnictides.
We find that the model exhibits a metal-to-Mott-insulator
transition. The interplay between the Hund’s rule coupling
and crystal-field splittings strongly affect the Mott transition
and the associated phases. The insulating phase can be either
an S = 1 low-spin Mott state or an S = 2 high-spin Mott state,
depending on the strength of the Hund’s rule coupling. In the
metallic phase, a crossover between a weakly correlated to a
strongly correlated metallic phase exists when the Hund’s rule
coupling is beyond a threshold. Inside the strongly correlated
metallic phase, the quasiparticle spectral weights are strongly
suppressed, in agreement with the incipient Mott picture. In
this phase and in the vicinity of the Mott transition, we find
that an orbital selective Mott phase has ground-state energies
which are nearly as competitive as those of the metallic and
Mott insulating states.
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