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Exact results on the Kondo-lattice magnetic polaron
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In this work we revise the theory of one electron in a ferromagnetically saturated local moment system
interacting via a Kondo-like exchange interaction. The complete eigenstates for the finite lattice are derived. It
is then shown that parts of these states lose their norm in the limit of an infinite lattice. The correct (scattering)
eigenstates are calculated in this limit. The time-dependent Schrödinger equation is solved for arbitrary initial
conditions and the connection to the down-electron Green’s function and the scattering states is worked out. A
detailed analysis of the down-electron decay dynamics is given.
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I. INTRODUCTION

The Kondo-lattice model (KLM) has found widespread
application as a basic model for the description of itinerant
carriers interacting with local magnetic moments formed
by inner shells of the constituting atoms. It was success-
fully applied in the theoretical description of the europium
chalcogenides,1–3 aspects of the physics of manganites4–7 and
the diluted magnetic (III,Mn)V semiconductors.8,9

It has long been known that the KLM, although it forms a
complicated many-body problem not solvable in general, has a
nontrivial, exactly solvable limiting case—the (ferro)magnetic
polaron.1,10,11 This magnetic polaron is set up by adding one
electron into the otherwise empty conduction band and a
ferromagnetically saturated background.

Shastry and Mattis12 gave a detailed discussion of the
spectral properties of the polaron in terms of the retarded
one-electron Green’s function (GF). Berciu and Sawatzky13

have extended the GF solution to describe complex lattices
and longer ranged exchange interactions. Knowledge of the
GF allows for the direct calculation of the bare line shape of a
photoemission experiment14 via the spectral density (SD). This
strength of the GF approach comes at the expense of getting
only indirect information about the underlying eigenstates of
the one-electron quantum system.

Therefore other approaches have solved Schrödinger’s
equation directly to get this state information.1,10,12,15 Sigrist
et al.16 gave a rigorous proof, that the ground state for
a system with antiferromagnetic exchange coupling is of
incomplete ferromagnetic order. We found these derivations
to be incomplete in one way or another and there is, to our
knowledge, no exhaustive derivation of the eigenstates for the
finite system of N lattice sites in the literature until now.

In the limit N → ∞ the free dispersion of the electron
becomes a continuous function of the wave vector. It was
Van Hove who pointed out in his seminal papers17,18 that
in the case of a continuous (free) spectrum the interaction
part of the Hamiltonian can lead to persistent effects not
amenable to scattering theory. These self-energy effects can be
of dissipative nature (finite lifetime of quasiparticles) and/or
cloud effects (formation of a new quasiparticle with infinite
lifetime). Both effects are present in the problem of the
magnetic polaron.

The phenomenon of decaying states has attracted the
interest of many physicists. Far from being comprehensive

here we just want to mention the works that have inspired us
to the present investigation.

Nakanishi19 proposed an extended quantum theory that
contains complex eigenvalues of the Hamiltonian which can be
associated with an unstable particle. To this aim he constructed
the analytic continuation of the propagator for that particle and
found poles in the continuation. By introducing a complex
distribution he was able to construct a new eigenstate of
the Hamiltonian with complex eigenvalue (equal to the pole
position) leading to an exponential decay of the particle in time.
Deviations from an exponential decay law at long times and the
importance of the Van Hove singularity on the lower bound
of the spectrum was discussed by Höhler20 and Khalfin.21

The short-time deviations and the resulting quantum Zeno
effect where derived in Refs. 22 and 23. Sudarshan et al. have
extended the ideas of Nakanishi24 and gave also a more formal
derivation in a rigged Hilbert space formalism.25,26 We will
use the methods developed in the above-mentioned works as
a pragmatic device to get a deeper understanding of the decay
dynamics of a down electron in the problem of the magnetic
polaron.

The paper is organized as follows In Sec. II we explain the
model Hamiltonian and give the parameters used throughout
this work. Section III summarizes the results obtained with
the GF approach. The spectral density of up/down electrons
is discussed in detail. The complete eigenstates for the finite
lattice are derived in Sec. IV. Section V is devoted to the
problems arising in the limit of an infinite lattice. New
(scattering) eigenstates are constructed and the time-dependent
Schrödinger equation is solved for arbitrary initial conditions.
The connection of certain initial conditions with the electronic
GF is given. In Sec. VI a detailed analysis of the dynamics of
the quantum system for two different initial conditions is given.
The connection to the scattering states and the limitations of
scattering theory are discussed. Finally we give a summary
and draw conclusions in Sec. VII.

II. MODEL

Throughout the paper we are concerned with the s-f -like
Hamiltonian:

H =
∑
ijσ

Tij c
+
iσ cjσ − J

2

∑
iσ

(
zσSz

i c
+
iσ ciσ + Sσ

i c+
i−σ ciσ

)
,

(1)

085101-11098-0121/2012/86(8)/085101(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.085101


S. HENNING, P. HERRMANN, AND W. NOLTING PHYSICAL REVIEW B 86, 085101 (2012)

where σ = ±, z± = ±1 and S±
i = Sx

i ± iS
y

i , describing free
electrons hopping through the lattice and undergoing a local
(contact) interaction with immobile local moments formed by
the inner shells of the underlying atoms. The ciσ

+ (ciσ ) denote
the creation (annihilation) operator of an electron with spin σ

at lattice site Ri .
The above Hamiltonian constitutes a highly involved many-

body problem not solvable for the general case. It has long
been known, however, that there exists a nontrivial solution
in the limiting case of one electron in the otherwise empty
conduction band moving in a lattice of fully ferromagnetically
ordered background spins (T = 0K).

The Hamiltonian (1) does not distinguish energetically
between different configurations of the localized spins in the
case of an empty band. One could enforce a fully aligned
ground state by introducing an additional direct exchange term
of Heisenberg type between the localized spins as was done
in some works.12 This additional term would lead to a true
magnon dispersion of the localized moments (which is flat in
our case) and to energy corrections of the eigenstates where
a magnon is present. Since these energy corrections are small
(typical magnon energies are two to three orders of magnitude
smaller than the electronic energies) and the additional term
would complicate the already involved calculations we omit
this term and choose the fully aligned state out of the highly
degenerate ground-state manifold “by hand.’ One has to keep
in mind, however, that the dynamics of the localized spins are
mediated only by the electron.

If not stated otherwise we will use the following model
parameters for the concrete evaluation of our theory. We
choose a magnetic moment S = 7

2 for the local spin system
which reflects the magnetic moment of the prototypical rare-
earth compounds EuO and EuS. The underlying lattice will be
the three-dimensional (3D) simple cubic (SC) lattice and the
hopping Tij is chosen to give the tight-binding dispersion:

εk = −W

6
[cos(kx) + cos(ky) + cos(kz)] (2)

with bandwidth W = 1.

III. ONE-ELECTRON GREEN’S FUNCTION

The limiting case of the “magnetic polaron” is usually
discussed in terms of the retarded one-electron Green’s
function (GF). For the derivation of the latter one transforms
(1) into reciprocal k space and writes down the equation
of motion (EQM) of the GF. Under the above assumptions
(ferromagnetic saturated local moment system, empty band)
this EQM can be simplified in the case of an up electron
(parallel to local moments) to give

Gk↑(E) = G
(0)
k

(
E + JS

2

)
= 1

E + i0+ − εk + JS
2

. (3)

An up electron behaves essentially like a free electron with
a shifted energy equal to the mean-field value due to the
ferromagnetic background. It has an infinite lifetime because
it will not find a partner to flip its spin in the already saturated
local moment system.

The situation is quite different for a down electron. In the
EQM appears a higher spin-flip GF (SF-GF) and one has to

go one step further in the EQM hierarchy to get a closed set of
equations. This results in

Gk↓(E) = 1

E + i0+ − εk − �↓(E)
, (4)

with the electronic self-energy12:

�↓(E) = JS

2

(
1 + JG(0)

(
E + JS

2

)
1 − J

2 G(0)
(
E + JS

2

)
)

, (5)

where G(0)(E) = 1
N

∑
k G

(0)
k (E) denotes the k-summed free

electronic GF. The center of gravity of the down-spectral
density is given by the first spectral moment:27

M
(1)
k↓ = εk + JS

2
, (6)

which is the mean-field energy of the down electron. Despite
this one expects significant changes in the down-spectral
density compared to the mean-field result due to correlation
effects. Especially possible spin flips of the down electron
should result in a finite lifetime of quasiparticles as is indicated
by the complex-valued self-energy. Inspecting (5) reveals that
states with finite lifetime can be expected exactly in the energy
range of the up spectrum because the self-energy has a finite
imaginary part there. These states are commonly called the
scattering states. In order to fulfill (6) for the center of gravity
one then should find additional states (of infinite lifetime)
above (J > 0) or below (J < 0) the scattering states as real
roots of the denominator of (4) at least for sufficiently large
J .28 In the next section we will show that there is exactly one
such additional state called the bound state or polaron state.

To illustrate our findings we have plotted the down-spectral
density and the quasiparticle density of states (QDOS) in
Fig. 1 for two different values of J . For large enough J

(J = 0.3 eV, upper figure) the bound states are completely
separated from the scattering states and form a polaron band.
It can be shown10,11 that in the limit of large J (|J | � W/S)
this polaron band has its center of gravity at E

p
c = J

2 (S + 1)
and the bandwidth is reduced by a factor of 2S

2S+1 compared to
W .

FIG. 1. (Color online) Down electron spectral density along lines
of high symmetry in k space and quasiparticle density of states for
two different coupling strengths J . Parameters: S = 3.5, W = 1.0 eV.
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When J is smaller (J = 0.1 eV, lower figure) parts of
the polaron band dip into the scattering states. There is still
a visible polaron dispersion in the scattering region, but
now in the form of a peak with finite linewidth implying
a finite lifetime of the quasiparticle. We will show in a
later section (Sec. VI), that each quasiparticle peak in the
scattering states is associated with a pole in the suitably
analytically continued propagator leading to an exponential
contribution in the decay dynamics. The polaron dispersion is
strongly disturbed at the positions of the Van Hove singularities
(horizontal dashed lines) of the scattering spectrum. The
special role of the Van Hove singularities as limit/branch
points for analytic continuation will also become clear in that
section.

IV. FINITE SYSTEM: EIGENSTATES

In this section we derive the complete eigensystem for
a finite lattice (N lattice sites) with periodic boundary
conditions. Although parts of this derivation can be found in
the literature,1,12 to our knowledge, the complete spectrum was
never calculated. Especially the appearance of pure up-electron
states with one magnon emitted is not recognized.

We use the following notation. The state of one electron
with wave vector k, spin σ , and all local moments aligned
(magnon vacuum) will be denoted by

c+
kσ |0; 0〉 = |kσ ; 0〉. (7)

An up electron with wave vector k plus a magnon of wave
vector q is written as

1√
2S

S−
q c+

k↑|0; 0〉 = |k ↑; q〉. (8)

These states span the Hilbert subspace we are interested in.
The Hamiltonian (1) commutes with the z component of the
total spin operator Ŝz

tot = ∑
i(S

z
i + 1

2

∑
σ zσ n̂iσ ). Therefore we

can classify the eigenstates by Sz
tot and by their (outer) wave

vector k due to translational invariance.
In the subspace of Sz

tot = NS + 1
2 the eigenstates are simply

the up-electron states with magnon vacuum:

H |k ↑; 0〉 =
(

εk − JS

2

)
|k ↑; 0〉. (9)

The subspace Sz
tot = NS − 1

2 is more interesting. It will be
spanned by the states of one down electron in magnon vacuum
and an up electron plus one magnon emitted. By using the
following ansatz for the wave function,

∣∣�n
k

〉 = A

{
αk|k ↓; 0〉 +

∑
q

βk,q|k − q ↑; q〉
}

, (10)

we get a system of equations for the coefficients from
Schrödinger’s equation:

0 =
(

E − εk − JS

2

)
αk + J

√
S

2N

∑
q

βk,q,

(11)

0 =
(

E − εk−q + JS

2

)
βk,q + J

√
S

2N
αk − J

2N

∑
q

βk,q.

These are N + 1 equations for the same number of coefficients
and we expect N + 1 eigenvalues per k value [N (N + 1)
eigenvalues in total]. The characteristic polynomial of (11)
turns out to be of the simple form:

0 =
(

N∏
i=1

Ei

)⎛
⎝E0 − J

2
(E0 + JS)

1

N

N∑
j

1

Ej

⎞
⎠ (12)

with

E0 = E − εk − JS

2
, (13)

En	=0 = E − εk−qn + JS

2
. (14)

Not all εk−qn will be different by symmetry arguments.
Therefore we collect all equal εk−qn in groups, where the
numeric value of the group members is denoted by ε

(n)
k with the

convention that ε
(1)
k = εk. Let us assume that NG such groups

with respective degree of degeneracy gn exist. The q belonging
to one group are denoted by q(n)

l with l ∈ 0 · · · gn − 1. With
the definition Fn = E − ε

(n)
k + JS

2 we can recast (12) to
give

0 =
(

NG∏
i=1

F
gi

i

)⎛
⎝E0 − F1

J

2N

NG∑
j=1

gj

Fj

⎞
⎠ . (15)

The first product contributes NG differing eigenvalues:

E
(n)
k = ε

(n)
k − JS

2
. (16)

The respective multiplicity of these eigenvalues will be gn − 1,
since we divide by Fj (for j > 1) in the second factor of (15).
Only E

(1)
k has the full multiplicity g1. For the construction of

the eigenvectors we notice first that the eigenenergies (16) are
equal to the pure up-electron energies (9) found in the Sz

tot =
NS + 1

2 sector of the Hilbert space. It is therefore reasonable
to assume the sought-after states to be up states as well. We
try αk = 0 and βk,q 	= 0 only for q ∈ {q(n)

l } in our ansatz (10).
From (11) we then get the condition∑

q∈{q(n)
l }

βk,q = 0. (17)

This condition can be nontrivial fulfilled when the βk,q are
chosen to be suitable normalized powers of the primitive gnth
roots of unity. With this we find for the eigenstates

∣∣�n,m
k

〉 = 1√
gn

gn−1∑
l=0

ei(2π/gn)ml
∣∣k − q(n)

l ↑; q(n)
l

〉
(18)

where m ∈ 1 · · · gn − 1 is numerating the eigenstates of the
subspace with energy E

(n)
k .

One eigenstate is missing so far, since the degeneracy
of E

(1)
k is g1. The states, which have only an up-electron

(plus magnon) component, are exhausted by Eq. (18). By
substituting E

(1)
k into Eq. (11) a simple calculation shows that
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-0.4  0  0.4 -0.4  0  0.4

FIG. 2. (Color online) Plot of eigenvalue equation (20) with
positive (left figure) and negative (right figure) J . Parameters: |J | =
0.1, S = 3.5, εk = 0, ε(1)

k = −0.2, ε(2)
k = −0.1, ε(3)

k = 0.1, ε(4)
k = 0.2,

gn = 1.

the last eigenstate is given by

∣∣�1,0
k

〉 =
|k ↓; 0〉 +

√
2NS
g1

∑g1−1
l=0

∣∣k − q(1)
l ↑; q(1)

l

〉
√

1 + 2NS
g1

. (19)

It has a finite down-electron component.
Until now we have found 1 + ∑NG

i=1(gi − 1) = 1 + N −
NG eigenvalues and corresponding eigenvectors from the first
factor of Eq. (15). The remaining NG eigenvalues come from
the second factor,

0 = E0 − F1
J

2N

NG∑
j=1

gj

Fj

= E − εk − J

2

(
S + 1 + 1

N

NG∑
n=2

gn

(
ε

(n)
k − εk

)
E − ε

(n)
k + JS

2

)
. (20)

The function on the right-hand side of Eq. (20) has NG − 1
zero crossings between the up-state energies (16) and one
above (J > 0) or below (J < 0) the scattering states near Ec ≈
εk + J

2 (S + 1).
The situation is depicted in Fig. 2. Rewriting (20) we get

an implicit equation for the (polaron) eigenenergies:

E
p,(n)
k = εk + J

2

[
S + 1 + 	k

(
E

p,(n)
k + JS

2

)]
(21)

with

	k(z) = 1

N

∑
q

εk−q − εk

z − εk−q
. (22)

The corresponding eigenstates are again obtained from
Eq. (11) to yield∣∣�p,(n)

k

〉 = N |k ↓; 0〉

− N

∑
q(1 + εk−q−εk

E
p,(n)
k −εk−q+ JS

2

)|k − q ↑; q〉
√

2NS
(23)

with the obvious normalization factor

N =
⎛
⎝1 + 1

2NS

∑
q

∣∣∣∣∣1 + εk−q − εk

E
p,(n)
k − εk−q + JS

2

∣∣∣∣∣
2
⎞
⎠−1/2

.

(24)

V. INFINITE SYSTEM

In the limit of an infinite lattice (N → ∞) the free
electronic band energies εk become continuous functions of
the wave vector. All summations will therefore be replaced by
integrations:

1

N

∑
k

→ 1

VBZ

∫
dk. (25)

In this limit all eigenstates with a down-electron part
whose energies lie in the scattering region (εmin

k − JS
2 � E �

εmax
k − JS

2 ) lose their norm as becomes clear immediately
by inspecting (19) and (24). Only the bound (polaron)
state above (J > 0) or below (J < 0) the scattering region
will survive provided that J is sufficiently large so that
the state is energetically well separated from the scattering
states.

The question then becomes what are the eigenstates in
this limit? We will construct scattering states and show that
these states (+ polaron state) form a complete basis in the
continuum limit. Thereafter we solve the time-dependent
Schrödinger equation, which does not suffer from such
difficulties for arbitrary initial conditions, and show the
connection to Green’s-function theory and the scattering
states.

A. Scattering states

In this section we ask for the result of a scattering process
of an up electron with a magnon, that is, we want to solve the
Lippmann-Schwinger equation,29

|k − q ↑; q〉± = |k − q ↑; q〉 + R±H1|k − q ↑; q〉±, (26)

with the free propagator R± = (E0 − H0 ± i0+)−1. First we
divide the Hamiltonian (1) into a free part H0 and an interaction
part H1:

H0 =
∑
kσ

(
εk − zσ

JS

2

)
n̂kσ ,

H1 = − J

2
√

N

∑
kqσ

(zσSz
qc

+
k−q−σ ckσ + Sσ

q c+
k−q−σ ckσ )

+
∑
kσ

zσ

JS

2
n̂kσ . (27)

With this division one can derive

R±H1|k − q ↑ ,q〉 = |Z1〉 + |Z2〉
R±H1|Z1〉 = A1|Z2〉,
R±H1|Z2〉 = A2(|Z1〉 + |Z2〉), (28)
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where the Ai and |Zi〉 are given in Appendix (A1). Defining
the matrix,

Â =
(

0 A1

A2 A2

)
= ÛD̂Û−1, (29)

we can iterate (26) and get

|k − q ↑〉± = |k − q ↑〉 +
(

1
1

)( ∞∑
l=0

Âl

)( |Z1〉
|Z2〉

)

= |k − q ↑〉 +
(

1
1

)
Û

( ∞∑
l=0

D̂l

)
Û−1

( |Z1〉
|Z2〉

)

= |k − q ↑〉 + |Z1〉
1 − A2(1 + A1)

+ |Z2〉
1

1+A1
− A2

= αk
q |k ↓; 0〉 +

∑
q′

βk
q,q′ |k − q′ ↑; q′〉 (30)

for the ingoing and outgoing scattering states. The diagonal
matrix D̂ and the matrix of the eigenvectors Û are given in
Appendix A as Eq. (A3), and the coefficients αk

q and βk
q,q′ as

Eq. (A4).
It remains to show that the so-constructed scattering states

form a basis set in the limit of an infinite lattice. Applying the
Hamiltonian results in

H |k − q ↑; q〉± =
(

εk−q − JS

2

)
|k − q ↑; q〉±

+
∑

q′
Rk

q,q′ |k − q′ ↑; q′〉. (31)

The residue term Rk
q,q′ that is given in Appendix (A5) goes

to zero as O(1/N ). Therefore the scattering states (30) indeed
become the correct eigenstates in the infinite lattice limit with
densely lying eigenenergies in the expected region.

B. Time-dependent Schrödinger equation

Choosing the ansatz

|�k(t)〉 = αk(t)|k ↓; 0〉 +
∑

q

βk,q(t)|k − q ↑; q〉 (32)

for the wave function one gets the following system of
differential equations from the time-dependent Schrödinger
equation (h̄ = 1):

iα̇k(t) =
(

εk + JS

2

)
αk(t) − J

√
S

2N

∑
q

βk,q(t),

iβ̇k,q(t) =
(

εk−q − JS

2

)
βk,q(t) − J

√
S

2N
αk(t)

+ J

2N

∑
q

βk,q(t). (33)

This can be transformed into a system of algebraic equations
by the Laplace transform,

f̄ (s) =
∫ ∞

0
e−stf (t) dt ; Re(s) > 0, (34)

and one obtains the solution for the coefficients in the s domain,

ᾱk(s) = iαk(0)

is − εk − JS
2

(
1 + JG(0)(is+ JS

2 )

1− J
2 G(0)(is+ JS

2 )

)
− iJS√

2NS

∑
q

βk,q(0)(
is − εk−q + JS

2

)
h1(is)

, (35)

β̄k,q(s) =
iβk,q(0) + iαk(0)−(is−εk+ JS

2 )ᾱk(s)√
2NS

is − εk−q + JS
2

, (36)

with

h1(z) = z − εk − J

2

[
S + 1 + 	k

(
z + JS

2

)]
. (37)

For the back transformation into the time domain one has to
solve the Bromwich integral,

f (t) = 1

2πi

∫ γ+i∞

γ−i∞
est f̄ (s)ds, (38)

where γ is a real constant, that is, larger than the real part
of any singularity of f̄ (s). In our case all singularities/branch
cuts of ᾱk(s) and β̄k,q(s) lie in a finite domain on the imaginary
axis. Therefore γ can take any value γ > 0.

The integration path is shown in Fig. 3 and denoted by
C1. The contour can be closed at infinity since the integrand
vanishes there (dashed black line). Performing the variable
substitution s → −iz and a contour deformation one can
change the integration path to become C2 (red line). The
singularities/branch cuts now lie on the real axis.

We will give the solutions for two special boundary
conditions here. The choice

(a) αk(t = 0) = 1; βk,q(t = 0) = 0, ∀q (39)

results in

αk(t) = −1

2πi

∫
C2

dz
e−izt

z − εk − JS
2

(
1 + JG(0)(z+ JS

2 )

1− J
2 G(0)(z+ JS

2 )

)
= −1

2πi

∫ ∞

−∞
dx e−ixt [Gk↓(x + i0+) − Gk↓(x − i0+)]

=
∫ ∞

−∞
dx e−ixtSk↓(x), (40)

that is, αk(t) is the Fourier transform of the spectral density
obtained from the down-electron Green’s function derived
earlier (4).

FIG. 3. (Color online) Integration contour in complex plane.
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Choosing

(b) βk,qn (0) = 1; αk(0) = βk,qm (0) = 0, ∀m 	= n (41)

one gets

αk(t) = JS√
2NS

1

2πi

∫
C2

dz
e−izt(

z − εk−qn + JS
2

)
h1(z)

. (42)

It is to be expected that this will become the αk
qn

of the scattering
states (30) for large times. We will test this conjecture in
the next section, when we have built up the machinery to
investigate different time domains of αk(t).

VI. DYNAMICS OF DECAY

The absolute square of the coefficient αk(t) in Eq. (32) can
be interpreted as the probability to find a down electron in
the system at time t . In Fig. 4 we show P (t) = |αk(t)|2 of
a system subjected to the boundary conditions (39) for two
different couplings J = 0.1/0.3 eV.

For large J (upper panel in Fig. 1 shows the corresponding
spectral density) there is always a finite probability to find
a down electron in the system. P (t) shows characteristic
oscillations over time. These oscillations will be damped with
increasing t and P (t) becomes static in the long-run limit.
When J is smaller, parts of the polaron band dip into the
scattering states (lower panel in Fig. 1). For wave vectors
k where εk lies below a certain threshold P (t) decreases

FIG. 4. (Color online) Probability to find a down electron P (t) =
|αk(t)|2 as a function of time and the free-electron dispersion εk for
two different values of J . The time is given in units of ≈ 6.582 12 ×
10−16 s. Parameters: S = 3.5, W = 1.0 eV.

exponentially and becomes zero in the long-run limit. The
down electron decays inevitably. However, it is clearly visible
in the figure that there are deviations from an exponential decay
law in the short- and the long-time regime. We will now give
a more detailed analysis of the different time domains.

A. Short-time behavior

For small times a Taylor expansion of the exponential
function in (40) gives

αk(t) =
∫ ∞

−∞
dxSk↓(x)

[
1 + ixt − (xt)2

2
− i

(xt)3

6
+ · · ·

]

= 1 + iM
(1)
k↓ t − M

(2)
k↓
2

t2 − i
M

(3)
k↓
6

t3 + O(t4). (43)

The spectral moments M
(i)
k↓ can be calculated exactly in our

case and we give the first four in Appendix C. From this we
get the short-time expansion of P (t):

|αk(t)|2 = 1 − C1t
2 + O(t4) (44)

with

C1 = M
(2)
k↓ − (

M
(1)
k↓

)2 = J 2S

2
. (45)

Since C1 � 0, P (t) will always decrease (or stay constant)
for small times as it should be for normalization reasons. The
change of P (t) has a zero slope at t = 0 since dP (t)/dt |0 =
0. This leads to the famous quantum Zeno effect22—a
down electron whose existence is monitored continuously by
measurement30 will never decay.

B. Intermediate and long-time behavior

For times t > 0 we can omit the part of the integration
contour C2 in Eq. (40) that lies below the real axis because it
does not contribute to the integral. The remaining integration
path is shown in Fig. 5 as C1. To study the long-time behavior
we pull the contour into the lower complex plane. For this aim
we mention first that the down-electron GF has a branch cut in
the energy region of the scattering states. To pull the contour
below the real axis we have to find the analytic continuation
of the GF over the cut from above to below the axis. This is
equivalent to finding the analytic continuation of the free GF,
G(0)(z), as becomes clear by inspecting (40). To be specific
we choose here the free GF of the simple cubic lattice with
the dispersion given in Eq. (2). The analytic continuation
of this function is discussed in detail in Appendix B. The

FIG. 5. (Color online) Deformation of the integration contour in
the complex plane to study the intermediate and long-time behavior.
Green dots: Van Hove singularities of the scattering states. Yellow
dot: separated polaron pole. Black dot: complex pole of decaying
state.
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important point is that the Van Hove singularities are branch
points and one reaches different Riemann sheets depending
on the position relative to the singularity (left/right) where the
continuation is performed.

The situation is depicted in Fig. 5. The green dots mark
the positions of the Van Hove singularities. The deformed
contour C2 (red) cannot overcome these points analytically.
The contributions to the integral (40) from the path left and
right of the singularities will not cancel each other because they
lie on different sheets of the Riemann surface. We exemplify
the (approximate) analysis of the integral by giving a concrete
expression for the path around the lower band edge at x

I/II
s =

−( JS
2 + W

2 ),

α
I/II
k (t) = −1

2π

∫ 0

−∞
dx e−i(xI/II

s +ix)t

× [
GI

k↓
(
xI/II

s + ix
) − GII

k↓
(
xI/II

s + ix
)]

(46)

= −1

2π

∫ 0

−∞
dx e−i(xI/II

s +ix)t[CI/II
s

√
x + O(x3/2)

]
= −i

2
√

π
e−ix

I/II
s t

(
1

2
CI/II

s t−3/2 + O(t−5/2)

)
. (47)

The other Van Hove singularities give rise to similar terms
and we have summarized the explicit expressions for the
coefficients Cs in Appendix D. From (47) we see that the
Van Hove singularities contribute an oscillatory term with a
frequency equal to the energetic position to αk(t). This term is
damped in time with a decay rate given by a power law. The
exponent of this power law depends only on the nature of the
Van Hove singularity, that is, a square-root singularity in our
case.20

For large enough J there is a separated pole of the down-
electron GF on the real axis shown as a yellow dot in Fig. 5.
If we denote the position of this pole by xpol the contribution
to αk(t) is given as the residue of the integrand in (40) at this
point:

α
pol
k (t) = e−ixt

1 − JS∂x

(
1

1− J
2 G(0)(x+ JS

2 )

) ∣∣∣∣
x=xpol

= Cpole
−ixpolt .

(48)

The characteristic oscillations of P (t) visible in the upper panel
of Fig. 4 are superpositions of the oscillatory terms in Eq. (47)
and (48). They are damped in time as (∼ t−3/2) at least. For
large times only the contribution from Eq. (48) will survive
and we get

lim
t→∞ |αk(t)|2 = |Cpol|2. (49)

For large coupling strength |J | � 1 the pole position becomes
approximately xpol ≈ J

2 (S + 1). Using the high-energy expan-
sion of the free GF in Eq. (48) we can derive an explicit result
for P (t) in this limit:

lim
t→∞ |αk(t)|2 |J |�1≈

(
2S

2S + 1

)2

. (50)

The electron polarization can be calculated from P (t),

〈σz〉 (t) =
∑

q |βk,q(t)|2 − |αk(t)|2
2

= 1

2
− |αk(t)|2, (51)
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 0
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II III IV I
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FIG. 6. (Color online) Lower figure: Pole lines (parametrized by
εk) in the different Riemann sheets. The colors of the lines denote
the sheet where the poles can be found: red, II; green, III; blue, IV.
When a pole lies in its window of visibility (dashed area with the
same color) it gives an exponentially declining contribution to αk(t).
The yellow line shows the positions of the polaron peak, when it lies
outside the scattering region. Upper figure: Free-electron dispersion
εk and the windows of visibility for the different poles. Parameters:
S = 3.5, J = 0.1 eV, and W = 1.0 eV.

where in the last step the normalization condition∑
q |βk,q(t)|2 + |αk(t)|2 = 1 is used.
We come now to the case of small |J |, when parts of the

polaron band lie inside the scattering states. For those k values
the initial down electron will decay over time and vanish
completely in the long-time limit. One therefore expects an
exponential decaying contribution to αk(t). As soon as the
polaron peak runs into the scattering states, poles appear
in regions II, III, or IV of the analytic continuation of the
down-electron GF that account for such an exponential term.
This is depicted in Fig. 5 by the black dot in region IV. These
poles contribute a term to αk(t) that equals (48) but now with
a complex pole energy xpol = xr − iγ .

There is one pole in each sheet of the different analytic
continuations. In Fig. 6 (lower panel) the pole lines in the
complex plane (parametrized by εk) are shown for J = 0.1 eV.
Whenever a pole has a real part xr that lies inside the energy
region where the analytic continuation of the corresponding
sheet has been performed (II, III, or IV) it will add a term (48)
to αk(t). The upper panel of Fig. 6 shows the free dispersion εk
for a path along the high-symmetry lines in the first Brillouin
zone.

The εk for which the corresponding pole is inside its
region of visibility can be read off from the horizontal colored
lines. Whenever this is the case, a pronounced (quasiparticle)
peak is visible in the down-electron spectral density, that lies
approximately at the position of the real part of the pole xr .
We demonstrate this in Fig. 7 for two different values of εk.

For εk = −0.5 eV there is only a pole in region II (endpoint
of the red pole line). One finds a distinctive quasiparticle peak
in the spectral density (red line) at approximately the real
part of the pole position (vertical dotted line). An interesting
constellation arises for εk = −0.23 eV. From Fig. 6 one can
read off that two poles are now in their respective regions (III,
IV). Consequently two quasiparticle peaks can be found in
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εk = -0.23 eV

εk = -0.5 eV

FIG. 7. (Color online) Down-electron spectral density for two
different values of εk. Vertical black, dashed lines: position of the
Van Hove singularities. Vertical dotted lines: real part of the pole
positions. Parameters: S = 3.5, J = 0.1 eV, and W = 1.0 eV.

the SD (black line). The negative imaginary part of the pole
position can be interpreted as (half of) the inverse lifetime: τ ∼
2
γ

. This is reflected directly by the width of the quasiparticle
peaks, the smaller τ the broader the corresponding peak in the
SD.

We had seen that there are deviations from an exponential
decay law at small times. The same is true for the long-time
limit. When t � 2

γ
the exponentially decaying term (48) is

damped away and only the contribution from the Van Hove
singularities (47) remain, which leads to a power-law decay
rate [|αk(t)|2 ∼ t−3]. It was first shown by Khalfin,21 that this
deviation from exponential decay at large times is a general
property of a system with a spectrum, that is, bounded from
below.

At the end of this section we want to discuss the long-
time behavior of a system where we have chosen the initial
conditions (41). If we deform the integration contour C2 in
(42) as shown in Fig. 5 and choose J sufficiently small, so that
h1(z) has no real root outside the scattering spectrum, we get
for large times

lim
t→∞ αk(t)

= e−i(εk−qn −JS/2)t 1√
2NS

× −JS

εk−q − εk − J
2 (2S + 1) − J

2 	k(εk−q + i0+)
. (52)

This is indeed identical to the αk
q coefficient found earlier for

the scattering states (30) up to a trivial time-dependent factor.
For larger J there will be additional terms coming from the real
root of h1(z) which are not contained in the result of scattering
theory. The reason for this is the persistent self-energy effects
(cloud effects) already mentioned by Van Hove.17

VII. SUMMARY AND CONCLUSIONS

In this work we have revised the theory of the magnetic
polaron to get a deeper understanding of one of the few exactly
solvable limiting cases of the KLM. First we have derived
the complete eigenvalue spectrum of the finite lattice and the
corresponding eigenstates are constructed.

In the limit of an infinite lattice parts of these eigenstates
lose their norm and the eigenvalues of these states degenerate
with the eigenvalues of the pure up states. We then calculate
the scattering states and show that these states become the new
eigenstates in this limit.

By solving the time-dependent Schrödinger equation for
arbitrary initial conditions we are able to give a detailed
analysis of the decay dynamics of the system. This is done
for a down electron with wave vector k prepared at t = 0.
For large exchange coupling J the probability P (t) to find a
down electron at time t > 0 shows characteristic oscillations
which are damped as ∼ t−3/2. We find the reason for these
oscillations to be interference of different oscillatory terms
with frequencies equal to the energetic positions of the Van
Hove singularities and the separated pole (polaron peak). For
large times P (t) becomes static with a value P (t) < 1 and for
|J | � 1 an explicit value can be derived.

For small coupling J and εk below a certain threshold
P (t) goes to zero over time—the down-electron decays. The
main contribution to the decay dynamics stems from poles
in the analytic continuation of the propagator giving rise to
an exponential decay law. The imaginary part of the poles
determines the lifetime of the down electron.

We find deviations from an exponential decay law for small
and large times. At t = 0 the slope of P (t) is zero. This leads to
the quantum Zeno effect. At large times the exponential term
is damped away and the decay behavior is solely determined
by the contributions from the Van Hove singularities. We get
a power-law decay [P (t) ∼ t−3] in this regime and there are
also oscillations caused by interference effects.

The connection between certain initial conditions for the
solution of the time-dependent Schrödinger equation and the
retarded Green’s-function approach as well as scattering theory
is worked out. When a pure down-electron state is prepared at
t = 0 the time development of the down-state coefficient of the
wave function is given by the time-dependent down-electron
spectral density that can be obtained from the retarded Green’s
function. Preparing an up electron and a magnon at t = 0 and
taking the t → ∞ limit the result of scattering theory (for the
down-electron coefficient) can be reproduced for small J . For
large J however a new quasiparticle with infinite lifetime is
created. Scattering theory is not able to describe this formation
of a new quasiparticle.

The limiting case of the magnetic polaron is believed to
describe the essential physics of the magnetic semiconductors
EuO and EuS. For a realistic description of the quasiparticle
density of states of these materials one has to replace the model
band structure (2) used in this work by a material specific
one that can be obtained from an ab initio band-structure
calculation. Such a calculation was done by Nolting et al.31

for EuO and Borstel et al.32 for EuS. From the experimental
side the natural way of measuring the unoccupied states
would be an inverse photoemission experiment. An alternative
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method is the two-photon photoemission spectroscopy.33 This
experimental technique can be used to get time and spin
resolved spectral information with time resolutions down to
the femtosecond and even attosecond regime.34–36 These new
experimental methods could open up a possible road to a direct
measurement of the decay dynamics of an (down) electron in
the above-mentioned prototypical compounds.

APPENDIX A: DEFINITIONS SCATTERING SECTION

A1 = JS

εk−q − εk − JS ± i0+ ,

A2 = J

2N

∑
q′

1

εk−q − εk−q′ ± i0+ ,

(A1)

|Z1〉 = −J

2

√
2S

N

|k ↓; 0〉
εk−q − εk − JS ± i0+ ,

|Z2〉 = J

2N

∑
q′

|k − q′ ↑; q′〉
εk−q − εk−q′ ± i0+ ,

D̂ = A2
2

⎛
⎝ 1 −

√
4A1

A2
+ 1 0

0 1 +
√

4A1
A2

+ 1

⎞
⎠, (A2)

Û =
(

− 1
2 −

√
A1
A2

+ 1
4 − 1

2 +
√

A1
A2

+ 1
4

1 1

)
, (A3)

αk
q = 1√

2NS

−JS

εk−q − εk − J
2 (2S + 1) − J

2 	k(εk−q ± i0+)
,

βk
q,q′ = δq,q′ − 1√

2NS

(
1 + εk−q′ − εk

εk−q − εk−q′ ± i0+

)
αk

q, (A4)

Rk
q,q′ = αk

q√
2NS

{
2(εk−q − εk−q′)(εk−q − εk)

εk−q − εk−q′ ± i0+

± i0+ 2εk−q − εk−q′ − εk

εk−q − εk−q′ ± i0+

}
. (A5)

APPENDIX B: ANALYTIC CONTINUATION OF G(0)(z)

The simple cubic lattice Green’s function can be expressed
in terms of the Gauss hypergeometric function,37

G(0)(z) = μ1(z)

[
2F1

(
1

3
,
2

3
; 1; η1(z)

)]2

(B1)

with

μ1(z) = 1

2z

(
3

√
1 − 1

z2
−

√
1 − 9

z2

)
,

η1(z) = 1

8z2

(
4z2 + (9 − 4z2)

√
1 − 9

z2
− 27

√
1 − 1

z2

)
.

(B2)

This function is analytic in the complete complex plane with
the exception of a branch cut on the real axis in the region EB ∈
−3 . . . 3 (bandwidth: W = 6). When the real axis is crossed in
this region, the imaginary part of (B1) shows a discontinuity
of �(x) = ±2πρ(x) where ρ(x) denotes the free density of
states at point x. In Fig. 8 G(0)(x + i0+) is plotted slightly
above the real axis. The clearly visible Van Hove singularities

-4 -2 0 2 4-1

-0.5

0

0.5

I VII III IV

FIG. 8. (Color online) Free GF slightly above the real axis.
Vertical dashed lines: position of the Van Hove singularities that
form the boundaries for a possible analytic continuation below the
real axis. Parameters: W = 1.0 eV.

at the band edges (−3,3) and at (−1,1) are limiting points for
a possible analytic continuation over the branch cut. Therefore
one reaches different Riemann sheets, depending on the section
(II, III, or IV) where the analytic continuation is performed.

To find these continuations we discuss first the analytic
properties of the constituting functions. The square-root
function has branch points (of first order) at 0, − ∞ and
a branch cut connecting them on the negative real axis.
Whenever one crosses this cut, one has to change the sign
of the square-root function to get an analytic continuation.

The hypergeometric function

Hyp1(z) = 2F1

(
1

3
,
2

3
; 1; x

)
(B3)

has a branch point of second order at the points 1,∞ and a
branch cut on the real axis connecting them. Using formulas
given in Ref. 38 one finds for the continuation from above to
below the real axis

Hyp2(z) = (−z)−1/3 �
(

1
3

)
e−i(4π/3)[

�
(

2
3

)]2 2F1

(
1

3
,
1

3
;

2

3
;

1

z

)

+ (−z)−2/3 �
(− 1

3

)
e−i(8π/3)[

�
(

1
3

)]2 2F1

(
2

3
,
2

3
;

4

3
;

1

z

)
,

(B4)

and from below to above the real axis:

Hyp3(z) = (−z)−1/3 �
(

1
3

)
e−i(2π/3)[

�
(

2
3

)]2 2F1

(
1

3
,
1

3
;

2

3
;

1

z

)

+ (−z)−2/3 �
(− 1

3

)
e−i(4π/3)[

�
(

1
3

)]2 2F1

(
2

3
,
2

3
;

4

3
;

1

z

)
.

(B5)

With this analysis it is now easy to find the analytic continua-
tion of (B1) from above to below the branch cut. To exemplify
this, we discuss the continuation in region II. By crossing the
real axis one also crosses the branch cut of the square-root
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FIG. 9. Analytic continuations of the free GF from above to below
the real axis over the different branch cuts. Parameters: W = 1.0 eV.

function
√

1 + 3
x

. Defining new functions,

μ2(z) = 1

2z

(
3

√
1 − 1

z2
+

√
1 − 9

z2

)
,

η2(z) = 1

8z2

(
4z2 − (9 − 4z2)

√
1 − 9

z2
− 27

√
1 − 1

z2

)
,

(B6)

one then finds

G
(0)
II (z) = μ2(z){Hyp1[η2(z)]}2 (B7)

for the analytic continuation.

Similar results can be obtained for the other regions. They
are summarized in Fig. 9. The two missing definitions are

μ3(z) = − 1

2z

(
3

√
1 − 1

z2
−

√
1 − 9

z2

)
,

η3(z) = 1

8z2

(
4z2 − (9 − 4z2)

√
1 − 9

z2
+ 27

√
1 − 1

z2

)
.

(B8)

APPENDIX C: SPECTRAL MOMENTS

The moments of the down-electron spectral density are
defined by

M
(n)
k↓ =

∫ ∞

−∞
dEEnSk↓(E). (C1)

They can be calculated algebraically by the following rule:14

M
(n)
k↓ =

〈
[ [. . . [[ck↓,H ]−,H ]− . . . ,H ]−︸ ︷︷ ︸

n times

,c+
k↓]+

〉
. (C2)

We give the first four moments for the limiting case of the
magnetic polaron:

M
(0)
k↓ = 1, (C3)

M
(1)
k↓ = εk + JS

2
, (C4)

M
(2)
k↓ =

(
εk + JS

2

)2

+ J 2S

2
, (C5)

M
(3)
k↓ =

(
εk + JS

2

)3

+ J 2S[εk + J (S + 1)/4]. (C6)

APPENDIX D: COEFFICIENTS LONG-TIME EXPANSION

xI/II
s = −

(
JS

2
+ 1

2

)
:

CI/II
s = −4(−1)3/4Hyp1

[
1
4 (2 − √

2)
]
J 2S

{
3
√

2Hyp1′[ 1
4

(
2 − √

2
)] + 2Hyp1

[
1
4 (2 − √

2)
]}

[
(2εk + 1)

(√
2Hyp1

[
1
4 (2 − √

2)
]2

J + 1
) + 2JS

]2 ; (D1)

xII/III
s = −

(
JS

2
+ 1

6

)
:

CII/III
s = − (324 − 324i)

√
3Hyp1

[
1
4 (2 + 5i

√
2)
]
J 2S

{
9iHyp1′[ 1

4 (2 + 5i
√

2)
] + √

2Hyp1
[

1
4 (2 + 5i

√
2)
]}

[
6JS + (6εk + 1)

(
1 − 3i

√
2Hyp1

[
1
4 (2 + 5i

√
2)
]2

J
)]2 ; (D2)

xIII/IV
s = −

(
JS

2
− 1

6

)
:

CIII/IV
s = (324 + 324i)

√
3Hyp1

[
1
4 (2 − 5i

√
2)
]
J 2S

{√
2Hyp1

[
1
4 (2 − 5i

√
2)
] − 9iHyp1′[ 1

4 (2 − 5i
√

2)
]}

[
6JS + (6εk − 1)

(
1 − 3i

√
2Hyp1

[
1
4 (2 − 5i

√
2)
]2

J
)]2 ; (D3)

xIV/I
s = −

(
JS

2
− 1

2

)
:

CIV/I
s = 4 4

√−1Hyp1
[

1
4 (2 − √

2)
]
J 2S

{
3
√

2Hyp1′[ 1
4 (2 − √

2)
] + 2Hyp1

[
1
4 (2 − √

2)
]}

[
(2εk − 1)

(√
2Hyp1

[
1
4 (2 − √

2)
]2

J − 1
) − 2JS

]2 . (D4)
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