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Edge state transport through disordered graphene nanoribbons in the quantum Hall regime
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The presence of strong disorder in graphene nanoribbons yields low-mobility diffusive transport at high charge
densities, whereas a transport gap occurs at low densities. Here, we investigate the longitudinal and transverse
magnetoresistance of a narrow (∼60 nm) nanoribbon in a six-terminal Hall bar geometry. At B = 11 T, quantum
Hall plateaus appear at σxy = ±2e2/h, ±6e2/h, and ±10e2/h, for which the Landau-level spacing is larger than
the Landau-level broadening. Interestingly, the transport gap does not disappear in the quantum Hall regime, when
the zero-energy Landau level is present at the charge neutrality point, implying that it cannot originate from a lateral
confinement gap. At high charge densities, the longitudinal and Hall resistance exhibit reproducible fluctuations,
which are most pronounced at the transition regions between Hall plateaus. Bias-dependent measurements
strongly indicate that these fluctuations can be attributed to phase-coherent scattering in the disordered ribbon.
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Since the discovery of graphene,1 the investigation of trans-
port through low-dimensional graphene structures, such as
nanoribbons and quantum dots, has obtained much attention.2

Whereas graphene is a gapless material system, size quan-
tization effects in narrow structures are expected to open a
band gap.3 Moreover, depending on the precise edge structure
and interaction effects, peculiar edge states are predicted to
appear.3,4 Transport measurements on ribbons have shown,
however, that the presence of bulk and edge disorder obscures
the observability of band gap and edge state related transport
properties.2

Strong edge disorder gives rise to enhanced intervalley
scattering in narrow ribbons.5 This results in a suppression
of the carrier mobility in the high-density regime, and the
occurrence of a transport gap in the low-density regime. A
transport gap appears due to the confinement of charges,
for which different origins have been proposed, e.g., the
occurrence of a strong localization regime6 or the presence
of disorder-induced electron and hole puddles which are
separated by a band gap.7 At high density, the charge carriers
are delocalized and propagate diffusively through a disordered
ribbon. Although transport through magnetoelectric subbands
has been predicted in narrow ribbons with well-defined edges,8

experiments have shown that the presence of strong disorder
impedes the occurrence of conductance quantization at zero
magnetic field9 and the development of quantum Hall edge
states at high field.10 Profound knowledge of disorder effects
on transport is therefore needed to get a better understanding
of the electronic properties of low-dimensional graphene
structures.

Here we present a systematic study of electronic transport
through a 60-nm-wide graphene nanoribbon in a six-terminal
Hall bar geometry. Our transport measurements show that the
transport gap at low charge density does not disappear in
the quantum Hall regime, and therefore, shows that a band
gap due to lateral confinement does not play a crucial role
in the formation of the transport gap at high magnetic field.
Outside the transport gap, the measurements at the highest
applied magnetic field (B = 11 T) only reveal the quantum
Hall plateaus at σxy = ±2e2/h, ±6e2/h, and ±10e2/h, for
which the corresponding Landau-level spacing is larger than

the estimated Landau-level broadening. Moreover, the longitu-
dinal and Hall resistance exhibit aperiodic fluctuations, which
are most pronounced in the transition regions between the
quantum Hall plateaus. Since these reproducible fluctuations
are strongly suppressed when the bias and thermal energy are
larger than the estimated Thouless energy, they can be mainly
attributed to quantum interference effects in the disordered
ribbon.

Exfoliated single-layer graphene flakes are transferred to
a highly p-doped Si substrate containing a 285-nm SiO2 top
layer. After deposition of Ti/Au electrodes onto the graphene,
the flakes are etched in an Ar/O2 plasma to obtain narrow
nanoribbons (width �100 nm) in a six-terminal Hall bar
geometry [Fig. 1(a)]. The etched structures are cleaned at
200 ◦C in forming gas to reduce the amount of contamination
at the graphene surface. The transport experiments are carried
out in an Oxford dilution refrigerator at temperatures of
30 mK and 4.2 K. The longitudinal and transverse resistances
are measured as functions of current bias (Ibias), gate voltage
(Vg), and magnetic field (B) by using standard lock-in
detection techniques. We discuss the data of a device consisting
of a ribbon with length L = 250 nm and width W = 60 nm
(these data are representative for the other measured devices
of similar dimensions).

First we discuss the transport characteristics of the device
at T = 4.2 K. The differential conductance (G = dI/dVxx)
versus gate voltage [Fig. 1(b)] clearly shows a suppressed
conductance at low density in the vicinity of the Dirac point
(V D

g ≈ 7.5 V), as is characteristic for graphene nanoribbon
devices.2 At high electron (Vg > 10 V) and hole density (Vg <

5 V), we observe reproducible conductance fluctuations. In
this regime, the field-effect mobility of the charge carriers is
μ = L

WCg

dG
dVg

≈ 1500 cm2/V s, where Cg ≈ 210 μF/m2 is the

effective gate capacitance.11 This corresponds to a diffusion
constant of D = L

W
G
νe2 ≈ 0.01 m2/s and a mean free path

of lm = 2D/vf ≈ 20 nm (where ν is the density of states
and vf ≈ 106 m/s is the Fermi velocity). Such small values
of the mobility, diffusion constant, and mean free path are
typical for plasma-etched graphene nanoribbon devices, and
are a consequence of the high amount of disorder in these
systems.2,6,7
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FIG. 1. (Color online) (a) Scanning electron micrograph of a six-
terminal graphene nanoribbon device. (b) dI/dVxx versus Vg at B =
0 T. (c) Ensemble average of dI/dVxx versus B, determined at high
hole densities in the range of n ≈ (4–6)×1012 cm−2. The dashed line
is a fit of the weak localization theory [Eq. (12) of Ref. 14] to the data
with the phase coherence length as the only fitting parameter, yielding
lφ ≈ 100 nm. (d) σxx and σxy versus Vg at B = 11 T. The gate-voltage
dependence of the LL filling factor is ν = h

e2B
Cg(Vg − V D

g ). All data
are measured at T = 4.2 K.

To investigate the occurrence of weak localization in
the diffusive transport regime, we measure the low-field
magnetoconductance at different gate voltages corresponding
to high hole densities. Since each individual measurement
at constant charge density exhibits reproducible conduc-
tance fluctuations, we determine the ensemble average of
measurements at different charge densities [Fig. 1(c)]. The
averaged magnetoconductance versus magnetic field clearly
shows a weak localization correction of ∼e2/h, indicating
the occurrence of strong intervalley scattering, as expected in
disordered ribbons with short-range disorder at the edges.12 A
fit of the weak localization theory for graphene nanoribbons
[i.e., Eq. (12) of Ref. 14] to our low-field magnetoconductance
data yields a phase coherence length of lφ ≈ 100 nm [see
dashed line in Fig. 1(c)]. This shows that electronic transport at
high carrier densities is in the diffusive phase coherent regime
(i.e., lm < L,W ∼ lφ).

Recent experiments on two-terminal graphene nanoribbon
devices10 have shown that edge state transport occurs at very
high magnetic fields (B � 10 T). In order to study edge
state transport in graphene nanoribbons more profoundly,
we measure the longitudinal (Rxx = dVxx/dI ) and Hall
resistance (Rxy = dVxy/dI ) of our six-terminal device at high
magnetic fields up to B = ±11 T, from which we determine
the longitudinal (σxx) and Hall conductivity (σxy).13 We find
that the quantum Hall effect is observable at magnetic fields
larger than B ≈ 6 T, as expected if μB � 1. Figure 1(d) shows
Shubnikov–de Haas (SdH) oscillations of σxx and quantization
steps of σxy as functions of Vg at B = ±11 T. The Hall plateaus
occur at σxy = νe2/h with ν = ±2, ±6, and ±10, which
correspond to the characteristic quantization series of Dirac
fermions in single-layer graphene.1

FIG. 2. (Color online) (a) dI/dVxx versus Vg at B = 0 T. Inset:
dI/dVxx versus Vg in a small Vg range in the transport gap,
showing regions of suppressed dI/dVxx and conductance peaks.
(b) dI/dVxx versus Vg and B. The black regions correspond to
suppressed dI/dVxx and the gray/white regions correspond to regions
where dI/dVxx is not suppressed (conductance peaks). All data are
measured at T = 30 mK.

The measurement data show that the ν = ±2 plateaus of
σxy are most pronounced. These plateaus occur when the SdH
oscillations of σxx exhibit a minimum value. However, σxx

does not vanish completely, indicating that scattering between
states at opposite edges is not fully suppressed. Figure 1(d)
shows that the ν = ±6 and ν = ±10 plateaus are less well
developed and do not coincide with the minimum values of the
SdH oscillations of σxx . This is probably a consequence of the
strong disorder-induced potential fluctuations in the device.2

The minimum values of σxx increase with |ν|, indicating
an enhancement of scattering between opposite edges for
increasing |ν|. In general, σxy plateaus are well developed if the
energy spacing between the corresponding Landau levels (LL)
is much larger than the LL broadening (�). In graphene, the LL
spacing decreases with increasing |ν|, whereas the broadening
of the LLs does not vary: � ≈ h̄vf / lm ≈ 30 meV for each LL.
This explains why only the |ν| = 2, 6, and 10 plateaus are
visible up to B = 11 T with the ν = ±2 plateaus as the most
pronounced ones.15

Let us continue the analysis by considering the transport
measurements at lower temperature (T = 30 mK). In the

FIG. 3. (Color online) (a) σxy and (b) σxx versus Vg at B = 11 T
and Ibias = 0 nA (black), 86 nA (red), and 344 nA (blue). The red and
blue curves are shifted with respect to the black curve for clarity. All
data are measured at T = 30 mK.
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FIG. 4. (Color online) (a) Rxx and (b) Rxy versus Vg at B =
11 T and Ibias = 0 nA (black), 17 nA (red), and 86 nA (blue). The Vg

ranges correspond to the regions of the ν = ±2 plateaus [see dotted
line in (b)]. (c) The average fluctuations �Rxx and �Rxy versus Ibias,
determined in the Vg range shown in (a) and (b). All data are measured
at T = 30 mK.

vicinity of the Dirac point, the conductance measurement
versus Vg at zero magnetic field clearly shows a transport gap
in a gate range of �Vg ≈ 8 V [Fig. 2(a)]. This corresponds
to an energy scale of �E = h̄vf

√
2πCg�Vg/e ≈ 160 meV,

which can be attributed to the disorder-induced potential
fluctuations in the ribbon,6 possibly in conjunction with
a lateral confinement gap.7 Earlier transport experiments
have shown that, in this low-density regime, electrons are
confined in small areas of the ribbon.2 In our conductance
measurements, we clearly observe conductance peaks in the
transport gap [inset of Fig. 2(a)], showing that electron states
are indeed localized in the low-density regime and transport is
dominated by charging effects. By measuring the conductance
as a function of magnetic field in a small gate-voltage range
of the transport gap [Fig. 2(b)], we observe conductance
peaks in the full magnetic field range, including the quantum
Hall regime (B � 6 T). This result shows that electrons
are confined at low densities, even when the zero-energy
LL appears at the Dirac point. This rules out that a band
gap due to lateral confinement plays a crucial role in the
physical mechanism underlying the occurrence of the transport
gap at high magnetic field (consistent with Refs. 5 and 6),
because the zero-energy LL closes such a size quantization
gap.16

At T = 30 mK, we observe large reproducible fluctuations
of σxx and σxy at high charge densities in the quantum Hall
regime [Figs. 3(a) and 3(b)], which obscure the visibility of
SdH oscillations of σxx and quantization plateaus of σxy . The
transport gap gives rise to a strongly suppressed conductivity
tensor in the low-density regime (σxx,σxy → 0 if Rxx → ∞;

see Ref. 13). Figures 3(a) and 3(b) show that the transport gap
disappears when we apply a sufficiently high bias, leading to
nonvanishing values of σxx and σxy in the vicinity of the Dirac
point. Moreover, in the high-density regime, the fluctuations
of σxx and σxy are suppressed at high bias, and the SdH
oscillations of σxx and the quantization plateaus of σxy are
more visible.

In order to investigate the origin of the reproducible
fluctuations at low temperature, we analyze the fluctuations of
Rxx and Rxy in the region of the ν = ±2 Hall plateaus (since
these are the best developed plateaus in our measurements).
Figures 4(a) and 4(b) show that the fluctuations (�Rxx ,�Rxy)
are smallest in the center region of the plateaus, whereas
they increase strongly farther from the center region (i.e., in
the transition regions between adjacent plateaus). The bias
dependence of �Rxx and �Rxy [Figs. 4(a)–4(c)] shows that the
fluctuations in the transition regions are strongly suppressed
at Ibias � 10 nA [this corresponds to Vbias � 100 μV, because
Rxx ∼ 10 k� in the transition regions; see the dotted line in
Fig. 4(a)].

Resistance fluctuations in the quantum Hall regime have
been studied extensively in mesoscopic devices based on Si and
GaAs heterostructures.17 When the device dimensions are of
the order of lφ , phase coherent scattering mechanisms give rise
to resistance fluctuations in the quantum Hall regime, similar to
universal conductance fluctuations in the zero-field regime.18

Since our nanoribbon dimensions are of the order of lφ , the
observed resistance fluctuations may originate from quantum
interference. Figure 4(c) shows indeed that the fluctuations
are suppressed on an energy scale of ∼100 μeV, which is of
the same order as the Thouless energy of the ribbon (ETh =
h̄D/L2 ≈ 100 μeV). This also explains why these fluctuations
are suppressed at 4.2 K, when kT > ET h. Thus, our results
indicate that the observed fluctuations in the quantum Hall
regime can be mainly attributed to phase coherent scattering
mechanisms in the disordered graphene nanoribbon.

In conclusion, we have measured the quantum Hall effect
in a 60-nm-wide graphene nanoribbon, which results in the
observation of SdH oscillations of σxx and quantized plateaus
of σxy for ν = ±2, ±6, and ±10. At T = 30 mK, we observe
large fluctuations of σxx and σxy at high charge densities, which
may be attributed to phase coherent scattering mechanisms in
the ribbon. At low charge densities, the electrons are confined
in the ribbon yielding a transport gap, in which transport is
dominated by charging effects. Since the transport gap does
not disappear in the quantum Hall regime, a band gap due to
lateral confinement cannot play a crucial role in the occurrence
of the transport gap at high magnetic field (which confirms
what has been reported before5,6).
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