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Missing derivative discontinuity of the exchange-correlation energy for attractive interactions:
The charge Kondo effect
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We show that the energy functional of ensemble density functional theory (DFT) [Perdew et al., Phys. Rev.
Lett. 49, 1691 (1982)] in systems with attractive interactions is a convex function of the fractional particle
number N and is given by a series of straight lines joining a subset of ground-state energies. As a consequence
the exchange-correlation (XC) potential is not discontinuous for all N . We highlight the importance of this exact
result in the ensemble-DFT description of the negative-U Anderson model. In the atomic limit the discontinuity
of the XC potential is missing for odd N while for finite hybridizations the discontinuity at even N is broadened.
We demonstrate that the inclusion of these properties in any approximate XC potential is crucial to reproduce
the characteristic signatures of the charge-Kondo effect in the conductance and charge susceptibility.
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Density functional theory1,2 (DFT) provides a rigorous and
computationally viable tool to calculate the electronic proper-
ties of many-particle interacting systems. In spite of the great
success in a wide range of applications, its practical use is still
problematic in systems with a fluctuating number of particles.
Popular approximations like local density approximation and
generalized gradient approximation are inadequate to predict,
for example, the band gap of solids,3,4 the correct dissociation
of heteroatomic molecules,5–7 or the electrical conductivity
of nanoscale junctions.8,9 A conceptual advance to deal with
these cases is the ensemble-DFT put forward by Perdew
et al.5 These authors extended the original DFT formulation1,2

to a fractional number N of electrons and pointed out the
nondifferentiability of the energy functional E[n] of the
density n at integers N = ∫

n. Typically the discontinuity in
∂E/∂N is the difference between the ionization energy and
the electron affinity since for any N between two consecutive
integers M and M + 1 one has

E(N ) = (M + 1 − N )EM + (N − M)EM+1; (1)

that is, E(N ) is a series of straight lines joining consecutive
ground-state energies EM of the isolated system with M

particles. Figure 1 (top panel) illustrates the typical outcome
of a ground-state calculation of E(N ). It is worth recalling
that the crucial hypothesis for the validity of Eq. (1) is the
convexity inequality

�M ≡ EM+1 + EM−1 − 2EM � 0. (2)

Indeed, in this case one can show that the density matrix which
minimizes the total energy is a linear combination of projection
operators over the ground states with M and M + 1 particles.
As discussed in Ref. 5 the hypothesis �M � 0 is certainly
reasonable in systems with repulsive interactions. In contrast,
the convexity inequality can be violated in the attractive case.
For instance in the attractive Hubbard model �M is positive
for even M and negative otherwise.10,11 What consequences
do the breakdown of Eq. (2) have in ensemble-DFT? What are
the physical implications?

In this paper we generalize Eq. (1) to arbitrary �M . In
particular we prove that E(N ) is a convex function given
by a series of straight lines joining a subset of ground-
state energies, as schematically illustrated in Fig. 1 (bottom
panel). We further study the implications of the missing
derivative discontinuity in the negative-U Anderson model.
In this prototype system the attractive interaction is at the
origin of the so-called charge-Kondo effect:12,13 At very low
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FIG. 1. (Color online) Illustrative examples of the total energy
E(N ) (solid line) as a function of the fractional number N when
the convexity inequality (2) is (top panel) and is not (bottom panel)
fulfilled. In the bottom panel the dashed line joins consecutive ground-
state energies and differs from E(N ).
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temperature the fluctuations between the empty state and the
doubly occupied state of the impurity level produce a strong
enhancement of the charge susceptibility, accompanied by a
drastic shrinkage of the conductance peak. We show that the
key features of the charge-Kondo effect can be captured within
ensemble DFT. We extend a recently proposed functional14

devised for the spin-Kondo effect to attractive interactions and
account for the broadening of the discontinuity15 due to the
finite hybridization of the impurity level. The transition from
the spin-Kondo effect to the charge-Kondo effect is caused by
the shift of the discontinuity of the exchange-correlation (XC)
potential from N = 1 at U > 016,17 to N = 0 and N = 2 at
U < 0.

Theorem. Given the ground-state energies {EI } of the
isolated system with I particles, if

EI − EM

I − M
<

EP − EM

P − M
<

EJ − EM

J − M
(3)

for every I < M and every J > M , then in the range M <

N < P it holds that

E(N ) = P − N

P − M
EM + N − M

P − M
EP . (4)

Graphically this means that for N ∈ [M,P ] the energy E(N )
lies on the straight line connecting EM to EP if and only if
the slope EP −EM

P−M
is larger than all the slopes of the lines

connecting EM to EI<M and smaller than all the slopes of
the lines connecting EM to EJ>M ; see Fig. 1 bottom panel.

Proof. We have to show that in the range M < N < P

the variational energy Evar(N ) = ∑
L ωLEL cannot be smaller

than the energy E(N ) in Eq. (4) for any {ωL} constrained to
satisfy

∑
L

ωLL = N,
∑
L

ωL = 1, (5)

and ωL � 0 for all L. Using Eq. (3) one has

Evar(N ) > ωMEM +
∑
I<M

ωI

[
EM + (EP − EM )

I − M

P − M

]

+
∑
J>M

ωJ

[
EM + (EP − EM )

J − M

P − M

]

= EM + EP − EM

P − M

∑
L

ωL(L − M) = E(N ), (6)

which proves the theorem.
Thus E(N ) in Eq. (4) is a convex function of N and reduces

to Eq. (1) provided that the convexity inequality �M � 0
is satisfied for all M since in this case P = M + 1. The
physical content of the theorem is clear. If the system is open
to a charge reservoir, the density matrix at zero temperature
is a mixture of ground states with M and P particles. For
example in Fig. 2 we show that in the attractive Hubbard ring
P = M + 2; see also Refs. 10 and 11. The value P = M + 2
is peculiar to attractive systems where the electron pairing
causes �M ≶ 0 for even/odd M . This property is consistent
with the experimental observation of the Coulomb blockade
of Cooper pairs18,19 (Cooper staircase) in superconducting
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FIG. 2. (Color online) E(N ) of Eq. (4) (solid line) for the four-site
attractive Hubbard ring with U = −5 and on-site energy εd = 3.5.
Energies are in units of the hopping integral. The dashed line joins
consecutive ground-state energies.

single-electron transistors, where a superconductive island is
connected to metallic leads. In this situation the application of
a gate voltage vg to the attractive region causes a jump of 2 in
the number of particles at the special values vg = E2M−E2M+2

2 .20

In ensemble DFT the discontinuity of ∂E/∂N is the sum of
the Kohn-Sham (KS) discontinuity, which is zero for odd N ,
and the XC discontinuity �xc(N ). Since ∂E/∂N = 0 for odd
N we conclude that

�xc(N ) = 0 for odd N. (7)

In the following, we consider a negative-U Anderson
model as an example in which XC discontinuity is missing.
The Hamiltonian describes a set of noninteracting electrons
coupled to a site at which Hubbard-type interaction occurs.12,13

This is an effective model for conduction electrons coupled
to an interacting impurity with vibrational modes. For strong
electron-phonon coupling the polaronic shift can overcome the
Coulomb charging energy and the effective electron-electron
interaction turns out to be attractive. The Hamiltonian reads,
in standard notation,

H = t
∑
α,σ

∞∑
i=1

[c†iασ ci+1ασ + H.c.] + vg

∑
σ

ndσ

+Und↑nd↓ + t ′
∑
α,σ

[c†1ασ dσ + H.c.], (8)

where t is the nearest-neighbour hopping in the leads, t ′ is
the lead-impurity hopping, U < 0 is the attractive interaction,
and vg is the gate voltage coupled to the impurity density
ndσ = d†

σ dσ . Below we focus on the half-filled system and
hence take the chemical potential μ = 0. At very low tem-
perature and gate voltage around v̄g = −U/2 = |U |/2 this
model exhibits the so-called charge-Kondo effect.12,13 This
effect consists in the formation of a “local pair” at the impurity
and is due to strong charge fluctuations between the nearly de-
generate states |0〉 and |↑↓〉 of the empty and doubly occupied
d level. As predicted by Taraphder and Coleman,13 the local
pair is “screened” by the surrounding conduction electrons
and forms an “isospin singlet.” With increasing |U | the main
features of the charge-Kondo effect are (i) the shrinkage of the
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conductance resonance at vg = v̄g and (ii) the large growth of
the charge susceptibility χd = −∂nd/∂vg .13,21 These results
can be qualitatively understood by mapping the Hamiltonian
of Eq. (8) into the positive-U Anderson model. Under a
particle-hole transformation in the spin-down sector, d↓ → d

†
↓

and ciα↓ → (−1)ic†iα↓, the original Hamiltonian is transformed
into the positive-U Anderson Hamiltonian with fixed gate
voltage −|U |/2 and effective magnetic field Beff = −|U |/2 +
vg coupled to (nd↑ − nd↓).22–24 Since the magnetic field
suppresses very efficiently the Kondo correlations21–23,25–28 the
spin-Kondo effect in the transformed Hamiltonian occurs only
in the proximity of vg = v̄g . Consequently the conductance
drops rapidly to zero as vg deviates from v̄g . At resonance the
spin fluctuations in the transformed Hamiltonian correspond to
“isospin” (i.e., charge) fluctuations in the original Hamiltonian,
thus leading to the formation of an isospin singlet (local pair).
This phenomenology explains the large growth of the charge
susceptibility χd as |U | increases (this growth is not observed
for positive U ).

Let us show how these features can be captured in ensemble
DFT. In a recent Letter14 an approximate Hartree-XC potential
for the positive-U Anderson model was proposed. The exact
energy functional of the isolated impurity reads

vθ
Hxc(nd ) = U

2
+ g(nd − 1), (9)

where

g(x) = U

2
+ 1

β
log

x +
√

x2 + e−βU (1 − x2)

1 + x
, (10)

β being the inverse temperature. For U > 0 and in the limit
β → ∞ the potential vθ

Hxc(nd ) → Uθ (nd − 1), which has a
discontinuity U at nd = 1. In the wide-band limit approxima-
tion (WBLA) t,t ′ → ∞ with constant 2t ′2/t = γ 
 U (weak
tunneling rate) one can approximate the Hartree-XC potential
on the impurity vHxc ≈ vθ

Hxc and set it to zero in the leads.14

The discontinuity forces the occupation to be unity for gate
voltages 0 < vg < U .17,29 Thus the KS potential is pinned at
the Fermi energy and the KS conductance exhibits a Kondo
plateau as a function of vg .14,30,31

The physical argument leading to Eq. (9) is independent
of the sign of U and we may argue that the functional vθ

Hxc
should predict, at least qualitatively, the correct conductance
also for negative U . In the analysis below we consider
the zero-temperature case. For U < 0 the potential vθ

Hxc
is not discontinuous at nd = 1 but instead develops two
discontinuities (of size |U |/2) at nd = 0 and nd = 2; see
Fig. 3.32 Within the WBLA we determine the occupancy
on the impurity by solving the self-consistent equation nd =
1 − 2

π
tan−1[ vg+vHxc(nd )

γ
] with vHxc = vθ

Hxc. Once nd is known
we calculate the KS conductance from

G

G0
= γ 2

[vg + vHxc(nd )]2 + γ 2
, (11)

where G0 = 1/π is the quantum of conductance. The exact
KS conductance equals the exact conductance due to the
Friedel sum rule and the WBLA.9 It can easily be seen that for
vHxc = vθ

Hxc the conductance is correctly peaked at vg = v̄g but
its width is weakly dependent on U . Indeed vθ

Hxc(nd ) = U/2
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FIG. 3. (Color online) Potential vθ
Hxc at very low temperature,

β = 400/|U |, and comparison between vθ
Hxc at β = 1/Wγ ≈ 25/|U |

and vl
Hxc at zero temperature with γ = 0.125|U |. The Lorentzian

broadening is much larger than the thermal broadening for γ 
 |U |.

everywhere except that at the occupations nd = 0,2; see Fig. 3.
Therefore the conductance as a function of vg has a constant
width γ since nd is never exactly 0 or 2. This is illustrated
in Fig. 4 where the conductance calculated using vθ

Hxc is
compared with the variational results of Ref. 21.

The potential vθ
Hxc can be substantially improved by follow-

ing the observation of Ref. 15. At temperatures T = 1/β below
the Kondo temperature the broadening of the discontinuity in
vθ

Hxc is proportional to βUe−βU/2 and approaches zero in the
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FIG. 4. (Color online) Conductance G as a function of vg for two
values of U = −2,−6 (in units of γ ) and different approximation
schemes. The data is compared to the variational results of Ref. 21,
which agree closely with the NRG data of Ref. 26, and can be,
therefore, considered as exact.
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FIG. 5. (Color online) Charge susceptibility at the impurity χd =
−∂nd/∂vg as a function of vg with potential vl

Hxc for different values
of U (in units of γ ).

limit T → 0. However, the exact Hartree-XC potential should
have an intrinsic broadening W ∼ 8γ /π |U | due to the finite
hybridization of the impurity. Therefore we here propose a
Hartree-XC potential which is the convolution of vθ

Hxc with a
Lorenzian of width W . The resulting potential for negative U

and zero temperature reads

vl
Hxc(nd ) = U

2
+ U

π

(
arctan

nd − 2

W
+ arctan

nd

W

)
. (12)

In Fig. 3 we show the comparison between vθ
Hxc at finite

temperature and vl
Hxc at zero temperature. Choosing β =

1/Wγ = π |U |/(8γ 2) we see that the thermal broadening is
much smaller than the Lorentzian broadening for γ 
 |U |.
Figure 4 clearly illustrates the crucial role of the broadening of

the discontinuity in the shrinkage of the conductance resonance
as |U | increases. The figure displays also the conductance in
the Hartree-Fock (HF) approximation, that is, with potential
vHF(nd ) = Und/2. Even though this potential reproduces the
shrinkage up to U ∼ −2, it becomes unreliable already for
U ∼ −3. At this critical value the self-consistent equation
for the density develops multiple solutions, three in our case,
as shown in the bottom panel of Fig. 4. This multistability
scenario should be contrasted with the positive-U Anderson
model where multiple solutions within the Hartree-Fock
approximation are found only out of equilibrium.33

Finally we used the Hartree-XC potential vl
Hxc to calculate

the charge susceptibility χd = −∂nd/∂vg . In Fig. 5 we show
χd as a function of vg for several values of U . Also in this
case our approximation correctly captures the growth of χd at
vg = v̄g , another typical signature of the charge-Kondo effect.
We further observe that the height of the peak in χd saturates
to values around 2 if we use the Hartree-XC potential vθ

Hxc (not
shown). Thus the broadening of the discontinutity is crucial in
this case as well.

In conclusion we generalized the variational energy func-
tional of ensemble DFT to cases where the convexity inequality
is not fulfilled. The energy E(N ) is a convex function of the
fractional particle number N , and it is given by the lowest series
of straight lines joining a subset of ground-state energies. We
discussed the relevance of this property in the description of
correlated systems with attractive interactions. As for odd N

the energy E(N ) has no cusp, the KS discontinuity is zero,
and the XC discontinuity is zero in these cases. We showed
that the missing XC discontinuity and the broadening induced
by the finite hybridization with the leads are essential features
of any approximate functional to describe the charge-Kondo
effect in the negative-U Anderson model within ensemble
DFT. The functional proposed in this work yields results in
fairly good agreement with the available numerical data. In
particular the shrinkage of the conductance peak as well as
the growth of the charge susceptibility with increasing |U | are
correctly captured.
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