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Intersubband resistance oscillations in crossed electric and magnetic fields
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Quantum oscillations of nonlinear resistance are investigated in response to electric current and magnetic
field applied perpendicular to single GaAs quantum wells with two populated subbands. At small magnetic
fields current-induced oscillations appear as Landau-Zener transitions between Landau levels inside the lowest
subband. The period of these oscillations is proportional to the magnetic field. At high magnetic fields, a different
kind of quantum oscillations emerges with a period that is independent of the magnetic field. At a fixed current the
oscillations are periodic in inverse magnetic field with a period that is independent of the dc bias. The proposed
model considers these oscillations as a result of spatial variations of the energy separation between two subbands
induced by the electric current.
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I. INTRODUCTION

The magnetotransport phenomena in high-mobility,
modulation-doped semiconductor structures are commonly
studied with only one populated subband (E1), because the
electron mobility decreases with filling the second subband
(E2) due to intersubband scattering.1 The latter also gives
rise to magneto-intersubband oscillations (MISOs) of the
dissipative resistance.2 In electron systems with two populated
subbands MISOs have maxima in magnetic fields B satisfying
the relation3–5 �12 = l · h̄ωc, where �12 = E2 − E1 is the
energy separation of the bottoms of the subbands, ωc =
eB/m∗ is cyclotron frequency, m∗ is effective electron mass,
and l is a positive integer. In contrast to Shubnikov de Haas
(SdH) oscillations the MISOs exist at high temperature kT >

h̄ωc. An interference of these oscillations with phonon-induced
oscillations has been reported.6

At small quantizing magnetic fields a finite electric current
induces several additional nonlinear phenomena. At low tem-
peratures small currents considerably decrease the resistance.
The dominant mechanism inducing the resistance drop is a
peculiar Joule heating (quantal heating), which produces a
nonuniform spectral diffusion of electrons over the quantized
spectrum. The spectral diffusion is stabilized by inelastic
processes (“inelastic” mechanism).7 The heating has been
recently observed and studied.8–11 At higher currents electron
transitions between Landau levels occur due to an elastic
electron scattering on impurities in the presence of an electric
field.12,13 The transitions increase the resistance, which was
observed in electron systems with both a single occupied
subband14–16 and a multisubband occupation.17–20 In the latter
case, an interference of the MISOs with the current induced
interlevel scattering was reported.

Recent investigations of the nonlinear transport in stronger
magnetic fields reveal another kind of current-induced re-
sistance oscillations in electron systems with a single band
occupation.21 These oscillations occur in electric fields that
are significantly smaller than the one required for the current-
induced Landau-Zener transitions between Landau levels.12

The period of these current-induced oscillations is found to

be independent of the magnetic field. The oscillations are
considered to be a result of spatial variations of the electron
filling factor (electron density δn) with the applied electric
field.

In this paper we report an observation of current-induced
resistance oscillations of the dissipative resistance in electron
systems with two populated subbands. Two kinds of oscil-
lations are detected. At small magnetic fields we observed
resistance oscillations with a period proportional to the
magnetic field. We found that these oscillations are related to
the current-induced Landau-Zener transitions between Landau
levels.12,17,19 At higher magnetic fields another type of the re-
sistance oscillations emerges with a period that is independent
of the magnetic field. In the paper these oscillations are studied
at high temperatures at which only MISOs are present.

Despite a similarity between the current-induced oscil-
lations with the B-independent period, which are found in
single-subband systems21 and the oscillations reported in this
paper, there is at least one distinct feature to distinguish the two.
Namely, the oscillations in the two-subband systems occur at
high temperatures kT � h̄ωc and, therefore, the total number
of the electron states carrying the electric current (inside the
energy interval kT) does not oscillate with the Fermi energy
(in other words, with the total electron density n). In this
regime the SdH oscillations are damped and in single-subband
systems the current-induced oscillations are absent.21 Thus,
even if both kinds of observed oscillations have a common
origin, the oscillations reported in this paper are not directly
(simply) related to the spatial variations of the electron density
δn induced by the electric current. Another interesting feature
is the phase of these oscillations. The oscillations appear to
be quasiperiodic with respect to the applied current but with
an apparent π -phase shift with respect to the zero bias. Below
we present our findings and provide an interpretation of the
obtained results.

II. EXPERIMENTAL SETUP

Our samples are high-mobility GaAs quantum wells grown
by molecular beam epitaxy on semi-insulating (001) GaAs
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substrates. The width of the GaAs quantum well is 13 nm.
Two AlAs/GaAs type II superlattices grown on both sides of
the well served as barriers, providing a high mobility of two-
dimensional (2D) electrons inside the well at a high electron
density.22 Two samples were studied with electron density
n1,2 = 8.09 × 1015 m−2 and mobility μ1 = 121 m2/Vs and
μ2 = 73 m2/Vs

The studied 2D electron systems are etched in the shape of
a Hall bar. The width and the length of the measured part of
the samples are d = 50 μm and L = 450 μm. To measure
the resistance we use the four-point probe method. Direct
electric current Idc (dc bias) is applied simultaneously with
12 Hz ac excitation Iac through the same current contacts
(x direction). The longitudinal ac (dc) voltage V ac

xx (V dc
xx ) is

measured between potential contacts displaced 450 μm along
each side of the sample. The Hall voltage VH is measured
between potential contacts displaced 50 μm across the electric
current in the y direction.

The current contacts are separated from the measured
area by a distance of 500 μm, which is much greater than
the inelastic relaxation length of the 2D electrons Lin =
(Dτin)1/2 ∼ 1–5 μm. The longitudinal and Hall voltages were
measured simultaneously, using two lock-in amplifiers with
10-M� input impedances. The potential contacts provided
insignificant contribution to the overall response due to small
values of the contact resistance (about 1 k�) and negligibly
small electric current flowing through the contacts.

Measurements were taken at different temperatures and
magnetic fields in a He-3 insert inside a superconducting
solenoid. Samples and a calibrated thermometer were mounted
on a cold copper finger in a vacuum. The magnetic field was
applied perpendicular to the 2D electron layers.

III. RESULTS

Figure 1 presents the dependence of the dissipative resis-
tance on the magnetic field at temperature T = 4.35 K. At this
temperature kT > h̄ωc and SdH oscillations are suppressed at
B < 0.5 T. The maxima of the observed MISOs are due to
the enhancement of elastic electron scattering, which occurs

FIG. 1. Dependence of the resistance Rxx on magnetic field with
no dc bias applied. Sample N1.

FIG. 2. (a) Dependence of differential resistance Rxx on a mag-
netic field and averaged density of electric current J . (b) Dependence
of the resistance on the current density J at fixed magnetic field as
labeled. Index j = ±1, ± 2, . . . numerates Landau-Zener transitions
inside lowest subband, which obey Eq. (1). T = 5.1 K. Sample N1.

when the Landau levels in two subbands are lined up with
each other (state P in Fig. 1). At this condition elastic electron
transitions occur between the subbands, increasing the total
electron scattering rate and, thus, the resistance. Minima of
the oscillations occur when the Landau levels in one subband
are between the levels of another subband. In this condition
the elastic electron scattering between subbands is suppressed
(state M in Fig. 1).5

Figure 2(a) presents differential resistance Rxx at different
averaged density of the electric current J = Idc/(d = 50μ)
and small magnetic fields. The differential resistance oscillates
with the dc bias. An example of the oscillations is shown in
Fig. 2(b) at fixed magnetic field B = 0.12 T. The dependence
is a horizontal cut of the 2D plot and is shown by the dashed
line in Fig. 2(a). The position of a resistance maximum j is
proportional to the magnetic field and satisfies the following
relation:

2eEjR
(1)
c = j · h̄ωc, (1)

where Ej is the electric field (mostly the Hall electric field
in the sample) corresponding to the maximum j , R(1)

c is
the cyclotron radius of electrons in the first subband (the
lowest subband) and j = 0,1,2, . . . is an integer. Equation
(1) describes Landau-Zener transitions between Landau levels
in the first subband.12

At a higher resolution the data shows oscillations of the
magnitude of the maxima j = ±1 with the magnetic field at
B > 0.1 (T). The oscillations are periodic in inverse magnetic
field and are in-phase with the intersubband oscillations at
zero dc bias (j = 0). Similar oscillations are observed for the
minimum between j = 0 and j = ±1 maxima. These oscil-
lations are shifted by phase π with respect to the oscillations
of the maxima j = 0, ± 1. The observed oscillations appear
as an interplay between the dc-bias-induced Landau-Zener
transitions between Landau levels inside the lowest subband
and the intersubband transitions, which are periodic in inverse
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FIG. 3. Dependence of resistance Rxx on magnetic field and
current density J . Labels + A, + B and + C indicate different
maxima induced by dc bias. T = 2.1 K. Sample N1.

magnetic field 1/B. At higher dc biases (|j | > 1) the amplitude
modulation with the 1/B periodicity disappears. In particular,
no amplitude modulation is found for j = ±2,3 maxima.

Figure 3 presents a typical nonlinear response at a high
magnetic field. The response is symmetric with respect to
applied dc bias and is shown for the positive bias. There are
several distinct features, which appear with the dc bias. The
features are labeled in the figure. First, we discuss the evolution
of the resistance with the dc bias at the minimum of a MISO
(state M in Fig. 1). When the dc bias is applied, the resistance
falls down and then develops a shoulder labeled by symbol
+ A. The initial drop of the resistance is mostly due to the
quantal heating. Further increase of the dc current leads to
formation of a maximum labeled by symbol + C.

When the dc bias is applied to state P (see Fig. 1),
corresponding to the maximum of a MISO, the resistance drops
much more abruptly and significantly in comparison with the
previous case. At low temperatures the resistance drop reaches
zero and forms zero resistance state (ZDRS).18,23–25 Further
increase of the dc bias leads to the formation of a maximum
labeled by symbol + B.

An evolution of the discussed features with the magnetic
field is shown in Fig. 4(a). The figure demonstrates that
the positions of all features (±A, ±B, ±C) are essentially
independent of the magnetic field. Figure 4(b) presents
horizontal cuts of the 2D plot through a maximum (B =
0.418 T) and a minimum (B = 0.408 T) of the intersubband
quantum oscillations.

Figure 5 presents an overall behavior of the quantum
oscillations in a broad range of magnetic fields and dc biases.
The data were obtained from sample N2. The figure shows the
crossover of the intraband Landau-Zener transitions, obeying
Eq. (1), and the oscillations marked as ±A, ±B, ±C, which
have the MISO periodicity. The apparent crossover occurs
near the Landau-Zener transition corresponding to j = ±1.
Namely, the oscillations with 1/B MISO periodicity occurs at

FIG. 4. (a) Dependence of resistance Rxx on magnetic field and
current density J , indicating strong correlation of features ±A and
±C with MISO minima and features ±B with MISO maxima. (b) De-
pendence of Rxx on current density J at magnetic field B = 0.418 T
corresponding to MISO maximum and at magnetic field B = 0.408 T
corresponding to MISO minimum. T = 4.7 K. Sample N1.

magnetic fields Bc corresponding to

h̄ωc � 2eE1R
(1)
c . (2)

At smaller magnetic fields (B < Bc) the oscillations are
significantly reduced. Two vertical cuts of the 2D plot taken
at different currents are shown in the right panel of Fig. 5.
The curve taken at J = 3.03 A/m shows the strong reduction
of the oscillations at B < Bc in a comparison with the MISO
at J = 0A. Thus, the main intraband Landau-Zener transition
(j = ±1) forms a boundary below which the current-induced
oscillations with 1/B intersubband periodicity are strongly
damped.

The top panel of Fig. 5 shows two horizontal cuts of the
2D plot. The black solid line presents the dependence of the
resistance Rxx on dc bias taken at B = 0.532 T corresponding
to a minimum of MISO. The gray line presents the dependence
taken at B = 0.548 T corresponding to a MISO maximum. The
two curves intersect at eight points. These intersections mark
the regions at which the oscillations with MISO periodicity
change their phase by π . At the intersections the oscillations
are nearly vanished. Sign “ + ” indicates the region between
two intersections in which the oscillations are in phase with
the MISO, whereas sign “−” indicates the regions in which the
oscillations are shifted by phase π with respect to the MISO.

Figure 6 presents an accurate position of the resistance
maxima with 1/B periodicity at different currents and mag-
netic fields for sample N1. The figure indicates clearly that
at B = Bc (j = ±1) the resistance maxima follow the main
Landau-Zener transition j = ±1, whereas at B > Bc the
maxima are nearly independent of magnetic field (features
±A, ±B, ±C). The solid lines j = ±1 mark the boundary
between the two kinds of oscillations. The lines obey Eq. (1)
at j = ±1 with the cyclotron radius R1

c corresponding to the
lowest subband. The complete theory of the current-induced
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FIG. 5. Evolution of differential resistance with magnetic field
and current density in broad range of magnetic fields. White straight
lines indicate Landau-Zener transitions which obey Eq. (1). The top
panel presents a horizontal cut through MISO maximum at B =
0.548 T (gray line) and cut through MISO minimum at B = 0.532 T
(black line). Sign + (−) indicates regions of current density J , inside
which the current-induced oscillations have 0◦ (180◦) phase shift with
respect to MISOs at J = 0 A/m. The right panel presents two vertical
cuts of the 2D plot taken at current densities as labeled. Magnetic
field dependence at J = 3.03 A/m indicates strong reduction of the
resistance oscillations at B < Bc inside the region corresponding to
Landau-Zener transitions. T = 5 K. Sample N2.

oscillations of the resistance of 2D electron system with two
populated subbands is not available for a general case. The
case of a bilayer electron system with two closely spaced and
almost equally populated electronic subbands has been studied

FIG. 6. Positions of resistance maxima and different magnetic
fields and current density. Two kinds of oscillations are observed: In
magnetic fields at and below Bc, which satisfy Eq. (2), the maxima
correspond to Landau-Zener transitions in the lowest subband that
obey Eq. (1). Solid straight lines at j = ±1, 2, and 3 represent the
equation. At B > Bc the resistance maxima follow the vertical solid
lines representing features ±A, ±B, and ±C shown on Fig. 3, 4, 5.
The crossover between two kind of oscillations occurs at B = Bc

presented by line j = ±1. Sample N1.

FIG. 7. Dependence of resistance on inverse magnetic field at
different dc biases as labeled. T = 5 K. Sample N2.

recently.17,19 These results are in qualitative agreement with
the present data at small magnetic fields B < Bc.

At high magnetic fields B > Bc Figs. 5 and 6 present a
new kind of current-induced quantum oscillations. A striking
feature of these oscillations is the independence of the position
of these oscillations on magnetic field. An interesting property
of these oscillations is the region in which the oscillations
occur. Figures 5 and 6 show that these oscillations start at the
line corresponding to Landau-Zener transitions at j = ±1 in
the lowest subband and propagate to higher magnetic fields.
Another interesting property is an apparent quasiperiodicity of
the oscillations with applied current. Namely, the features ±A,
±B, ±C are displaced by about the same value of the electric
current density from each other: δJ ∼ 1.27 A/m. The phase
of the oscillations is shifted by π with respect to zero dc bias.
It seems strange that the MISOs (J = 0 A/m) are not a part
of this periodic set.

Figure 7 demonstrates the 1/B periodicity and the phase
of the current-induced oscillations at different dc biases as
labeled. The figure indicates that oscillations at J = 1.97 A/m
(B + feature) are in phase with MISO, whereas oscillations at
J = 0.575 A/m (A + feature) are shifted by π with respect
to MISO. Figure 7 shows also the strong reduction of the
oscillations at J = 0.971 A/m. At this current the oscillations
change phase by π . The current corresponds to the intersection
of two curves shown in top panel of Fig. 5.

The 1/B periodicity of the oscillations and the magnetic
field independence of the electric current Idc, inducing the
oscillations at B > Bc, indicate a similarity of these quantum
oscillations with the current-induced quantum oscillations
reported recently in Ref. 21. Below we consider a model, which
is, in many respects, analogous to one described in Ref. 21.
The model reproduces the main properties of the observed
quantum oscillations.

IV. MODEL AND DISCUSSION

Current-induced quantum oscillations with 1/B periodicity
were recently observed in 2D electron systems with a sin-
gle occupied subband.21 The oscillations occur in a strong
magnetic field at which SdH oscillations are well developed.26
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With respect to the electric current, the oscillations are periodic
with a period that is independent of the magnetic field. The
proposed model considers the oscillations as the result of
a variation of the electron filling factor with the dc bias.
In contrast to SdH oscillations, the variation appears across
the sample and is related to a spatial change of the electron
density δn. If the change δn is comparable with the number of
electron states in a Landau level n0 = m/(πh̄2) · h̄ωc, then one
should expect a variation of the electron resistivity. The spatial
variation of the resistivity leads to oscillations of the sample
resistance.21

MISOs are due to a periodic enhancement of the inter-
subband scattering, when Landau levels in two subbands
are lined up as shown in Fig. 1. MISOs have maxima in
magnetic fields B satisfying the relation3–5: �12 = l · h̄ωc,
where �12 = E2 − E1 is the energy separation of the bottoms
of the subbands and l is an integer. In contrast to SdH
oscillations, the MISOs exist at high temperature kT > h̄ωc

and are insensitive to variations of the Fermi energy and/or
electron density n for noninteracting 2D carriers.

For interacting electron systems the situation is different.
Recent direct experiment indicates that gap E0 between
conducting and valence bands of 2D electron systems formed
in GaAs quantum wells depends considerably on the electron
density n (Ref. 27). This observation opens a way to consider
the dependence of the energy separation between two subbands
�12 on the electron density as a mechanism leading to
the current-induced quantum oscillations in magnetic fields
B > Bc. Indeed, the experiment Ref. 27 demonstrated about
1% change of the gap E0 at a Hall voltage VH = 75 mV in
magnetic field B = 0.3 T. The Hall voltage is comparable
with the one observed in our experiment: VH ≈ 50 mV at
B = 0.35 T and J = 4 A/m. At B = 0.35 T the phase of
the MISO 2π�12/h̄ωc ≈ 2π · 30 requires about 3% change of
the intersubband energy separation �12 to make an additional
MISO cycle. The comparison indicates the feasibility of the
proposed mechanism, taking into account that in our samples
the GaAs quantum well is sandwiched between conducting
layers, which enhance significantly the electron screening and,
therefore, the variations of the electron density δn with the dc
bias.21

In the model described below we assume that the dc-
bias-induced variation of the electron density δn(r) changes
the energy separation �12(n) between two subbands across
samples. Since relative variations of the electron density are
small δn/n � 1, we consider only the linear term of the
dependence �12(n):

�12(n) = �0 + γ δn(r), (3)

where �0 is the energy separation at zero dc bias and the
parameter γ is a constant. The following consideration is
qualitatively similar to the model described in detail in Ref. 21.
Below we describe the main parts of the model, omitting some
details.

The conducting 2D electron system in the GaAs quantum
well is sandwiched between two layers of AlAs/GaAs superlat-
tices (SLs) of the second kind.22 The parameters of the SLs are
adjusted to set the system close to a metal-insulator transition.
At this condition, the barely conducting SL layers efficiently
screen electric charges but do not contribute considerably to the

FIG. 8. Dependence of the electric potential on position y in the
direction perpendicular to the electric current in strong magnetic field.
Line V 2D

H describes the potential in a GaAs quantum well, in which
a strong Hall effect is developed. Line V SL

H describes the potential in
the highly resistive SL layer, in which the Hall voltage is negligibly
small due to the negligibly small current in the layer.

overall conductivity of the structure. Electric contacts connect
the GaAs and the SL layers. Thus, the system is considered
as a set of parallel conductors. At zero magnetic field the
distribution of the electric potential driving the current is the
same in all layers due to the same shape of the conductors. That
is to say at B = 0 the potential difference between different
layers is absent. In the poorly conducting SL layers the electric
current is several order of magnitude smaller than the one in
the highly conducting GaAs quantum well.

The layers have a different distribution of the electric
potential in a strong magnetic field, at which ωcτ

2D
tr � 1 and

ωcτ
SL
tr � 1, where τ 2D

tr and τSL
tr are transport times in the GaAs

and in the SL layers. At ωτ 2D
tr � 1 the electric field in the GaAs

layer is almost perpendicular to the current due to the strong
Hall effect. In contrast, the very small electric current in the
SL layer induces a negligible Hall voltage. The Hall voltages
are shown in Fig. 8(a) for small currents (linear response).
Figure 8(b) presents the distribution of electric charges in
the structure. Electric charges are accumulated near the edges
of the 2D highly conducting GaAs layer, inducing the Hall
electric field EH . The charges are partially screened by charges
accumulated in the conducting SL layers.

Due to the small Hall voltage V SL
H and the absence of the

electric current across the system the change of the electric
potential φSL(y) in the SL layer is negligibly small. Below,
we consider the potential φSL as a constant. Due to a finite
screening length λs in the SL layer the charge accumulation
occurs at a distance d ∼ λs . Below we approximate the charge
distribution by a charged capacitor with an effective distance
deff between conducting plates.

The proposed model considers a long 2D Hall bar with
a width Ly (Refs. 28 and 29). Electric current is in the x

direction and the Hall electric field is in the y direction. In a
long conductor the electric field �E = (Ex,Ey) is independent
of x, due to the uniformity of the system in the x direction:

∂Ex

∂x
= ∂Ey

∂x
= 0. (4)
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For a steady current Maxwell equations yield

∂Ex

∂y
= ∂Ey

∂x
. (5)

Equations (4) and (5) indicate that the x component of the
electric field is the same at any location: Ex = E = const.

Boundary conditions and the continuity equation require
that the density of the electric current in y direction is zero:
Jy = 0 and, therefore,

Ex = ρxxJx, Ey = ρyxJx, (6)

where ρxx and ρyx are longitudinal and Hall components of the
resistivity tensor, respectively.30 We approximate the MISOs
of the resistivity by a simple expression5:

ρxx(n(y)) = ρD

[
1 + Amis · cos

(
2π�12

h̄ωc

)]
, (7)

where ρD is Drude resistivity, and Amis describes the amplitude
of the intersubband quantum oscillations. The amplitude is
different from the amplitude of SdH oscillations, since the two
phenomena have a different origin.5

An electrostatic evaluation of the voltage between conduct-
ing layers, shown in Fig. 8(b), yields:

φ2D(y) = φSL + eδn(y)deff

2εε0
, (8)

where φ2D and φSL are electric potentials of the GaAs (2DEG)
and SL layers, and ε is permittivity of the SL layer. Expressing
the electron density δn in terms of electric potential φ2D from
Eq. (8) and substituting the relation into Eq. (3) and then into
Eq. (7) one can find dependence of the resistitivity on the
electric potential: ρxx(φ2D).

The relation Ey = −dφ2D/dy together with Eq. (6) yields

−dφ2D

dy
ρxx(φ2D) = ρyxE. (9)

Separation of the variables φ2D and y and subsequent
integration of Eq. (9) between two sides of the 2D conductor
(y direction) with corresponding electric potentials φ1 and φ2

yield the following result:

ρD

(
φ2 − φ1 + 2Amis

β

[
sin

[
β

2
(φ2 − φ1)]

× cos

[
β

2
(φ2 + φ1) + θ0

]])
= ρxyELy,

(10)
β = 4πε0εγ /(edeffh̄ωc),

θ0 = 2π�0/h̄ωc − βφSL,

where Ly is the width of the sample. Taking into account that
longitudinal voltage is Vxx = ELx , where Lx is a distance
between the potential contacts, and the Hall voltage VH =
φ2 − φ1 = − ∫

Eydy = −ρyxI [see Eq. (6)], the following
relation is obtained:

Vxx = RD

(
I − 2Amis

βρxy

{
sin

(
βρxyI

2

)

· cos

[
β

2
(φ2 + φ1) + θ0

]})
, (11)

where RD = LxρD/Ly is the Drude resistance.

Equation (11) is simplified further for two cases cor-
responding to a minimum and a maximum of MISOs. In
these cases the voltage φ2D(δy) − φSL is expected to be an
asymmetric function of the relative position δy = y − y0 with
respect to the center of the sample y0 (as shown in Fig. 8) and,
thus, φ1 − φSL = −(φ2 − φSL) and the argument of the cosine
in Eq. (11) becomes to be independent on the electric current.
In these cases the differential resistance rxx = dVxx/dI is
found to be

rxx = RD

[
1 + Amis · cos

(
2π

I

Imis

)
· cos

(
2π�0

h̄ωc

)]
, (12)

where the electric current Imis = e3h̄deffn/εε0mγ determines
the period of the dc-bias-induced oscillations. The current is
proportional to the effective screening length deff and inversely
proportional to the parameter γ relating variations of the
subband energy separation �12 with variations of the electron
density n in Eq. (3).

Equation (12) demonstrates oscillations of the differential
resistance with the electric current. The period of the oscilla-
tions Imis does not depend on the magnetic field in accordance
with the experiment. A similar periodicity of the resistance is
found in electron systems with a single populated subband.21 In
this case the period of the oscillations I0 = (e3deffn)/(πh̄εε0)
is also independent of the magnetic field and proportional
to the screening length deff [see Eq. (9) in Ref. 21]. In both
cases the observed dependence on the screening length deff

follows from the fact that an electron system with an effective
screening (small deff) requires strong variations of the electron
density δn in the conducting layer to produce the same electric
field (current). Thus, a smaller electric current is required to
depopulate a Landau level or to change the interband energy
separation �12 in the systems with stronger screening.

The independence of the characteristic currents Imis and
I0 on the magnetic field is a direct consequence of the origin
of the observed phenomena. In the case of electron systems
with a single band populated the resistance oscillations are
induced by a variation of electron density δNSdH , which
is on the order of the total number of electron states in
a Landau level n0: δNSdH ≈ n0 = eB/πh̄ ∼ B and thus is
proportional to the magnetic field. The variation of electron
density δNSdH produces Hall voltage VH , which, due to
the principle of the linear superposition of electric fields, is
proportional to the density variation: VH = F [δNSdH ], where
F [x] is a linear functional (A · F (x) = F [Ax]). Characteristic
electric current I0 obeys I0 = VH/ρxy = 1/ρxy · F [δNSdH ] =
F [δNSdH /ρxy]. Due to the independence of the argument
(δNSdH ∼ B)/(ρxy ∼ B) on the magnetic field B the current
I0 does not depend on the magnetic field either.

In electron systems with two populated subbands the resis-
tance oscillations are induced by variations of the intersubband
separation �12 on the order of h̄ωc: γ δNmis = h̄ωc ∼ B. We
note that in this case the characteristic scale of the electron
density variations is also proportional to the magnetic field.
Arguments, which are similar to one used above, yield Imis =
F [h̄ωc/(γ · ρxy)] and, as in the previous case, the characteristic
electric current does not depend on the magnetic field.

Equation (12) indicates that the amplitude of the MISOs is
strongly modulated by the dc bias. In particular, at I = Imis/4
the amplitude is zero. At this node the 1/B periodic oscillations
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change phase by π . The strong amplitude modulation with
the dc bias and the π phase shift at a node agree with the
experiment.

Following from Eq. (12) the positions of the nodes and
antinodes of the oscillations with respect to the electric current
I do not agree with the experiment. In accordance with Eq. (12)
the nodes occur at the averaged density of the electric current
(J = I/Ly),

Jk = Imis

4Ly

· k, k = 2i − 1; i = 1,2,3, . . . , (13)

where k is a node index. The top panel of Fig. 5 shows nodes at
0.22, 0.93, 2.41, and 3.91 A/m. Thus, the relative positions of
the nodes observed in the experiment do not follow the node
positions (or index k) in Eq. (13). Below we show that the
disagreement is reduced significantly taking into account the
Joule heating.

The model discussed above does not take into account the
dc heating of the 2D electrons. The Joule heating in systems
with a discrete spectrum (quantal heating) has a peculiar form
providing strong impact on the electron transport.9 In electron
systems with two subbands occupied, the quantal heating
inverts the MISOs.10,11 A quantitative account of the heating is
given in this paper in a simplified form, taking into account an
analytical approximation of the heating which is valid for two
subbands with equal electron population. As shown below, the
approach yields the positions of the nodes which agree with
the experiment.

The expression for the resistivity of 2D electron systems
with two equally populated subbands in crossed electric and
quantizing magnetic field reads11

ρxx = ρD

[
1 + exp

(
− 2π

ωcτq

)
1 − 3Q

1 + Q

(
1 + cos

(
2π�12

h̄ωc

)]
,

Q = 2π3J 2

e2nω2
c

· τin

τtr

, (14)

where τq is quantum scattering time and τin and τtr are inelastic
and transport scattering times, respectively. To account for the
heating we replace Eq. (7) with Eq. (14) and evaluate differen-
tial Eq. (9) numerically with fitting parameters approximating
the experimental data. Due to a quite rough approximation of
the heating, the fitting parameters may deviate significantly
from actual physical values. To find the fitting parameter
corresponding to the inelastic scattering time we use the
fact that the second term of Eq. (14) is zero at Q = 1/3.11

Assuming that at a small dc bias and low temperatures the
quantal heating dominates,9,11 we related the first node shown
in Fig. 5 at J = 0.22 A/m to the condition Q = 1/3. This
yields τin = 1.8 ns at B = 0.53 T. Using this value we solved
Eq. (9) numerically. The result is shown in Fig. 9(a). At small
dc bias J ≈ 0.17 A/m the figure demonstrates the oscillation
node, induced by the heating with a small contribution from
the variation of the band separation �12. Other nodes occur
at considerably higher dc biases and are shifted with respect
to the nodes shown in Fig. 9(b), which are obtained by the
numerical evaluation, ignoring the quantal heating (Q = 0).

At Q > 1/3 the heating not only shifts the nodes but also
inverts the oscillations induced by the variation of the band
separation. Namely, shown in Fig. 9(a) the maximum at J =

FIG. 9. (a) Numerical simulation of the dependence of differential
resistance on a dc bias at B = 0.53 T. Fitting parameters used in the
numerical simulation: τin = 1.8 ns, τq = 2.5 ps, and τtr = 45 ps;
electron density n = 8.09 × 1015 1/m2; effective screening length
deff = 30 nm; parameter γ = 1 × 10−37 Jm2 [see Eq. (3)]. (b)
Numerical simulation of the dependence of differential resistance
on dc bias with the same fitting parameters as in (a) but without dc
heating: τin = 0 ns (Q = 0). Solid (open) circles present evolution of
a MISO maximum (minimum) with the dc bias.

1.75 A/m is a result of the dc-bias-induced evolution of the
MISO maximum at J = 0 A/m. Without the heating the MISO
maximum evolves into a minimum at J = 1.65 A/m shown
in Fig. 9(b). Thus, the heating inverts minima to maxima and
vice versa. The inversion is directly related to the sign change
of the second term in Eq. (14) at Q = 1/3.

The heating and the variation of the band separation affect
differently the maxima and minima of MISOs. Conversely,
quantal heating decreases the resistance at any magnetic field.
A variation of the resistance, induced by the change of the band
separation, depends on the magnetic field. At a maximum
(state P in Fig. 1), a variation of �12 destroys the level
alignment decreasing the interband scattering and thus the
resistance. At a minimum (state M in Fig. 1), a variation of
�12 improves the level alignment and increases the inter-band
scattering and the resistance. Thus, at a MISO maximum both
the heating and the variations of the band separation decrease
the resistance, whereas at a MISO minimum two mechanisms
work against each other. As a result, the drop of the resistance
at a MISO maximum is considerably stronger than the one
at a MISO minimum. In fact, the shoulder (feature + A in
Fig. 3) is a result of the competition between two mechanisms
at a MISO minimum, whereas ZDRS states, developed from
MISO maxima, are strong indications of the joint decrease
of the resistance due to both mechanisms. The behavior is
reproduced in the proposed model. Indeed, Fig. 9(a) shows
that the initial drop of the MISO maximum is considerably
stronger than the decrease of the MISO minimum with the dc
bias.

Figure 10 presents a comparison of the positions of
oscillation nodes, obtained in the model, with those in the
experiment. For the purpose of a comparison, the node
positions are plotted versus the index k, which is defined
in Eq. (13). Without the heating, nodes of oscillations obey
Eq. (13). Solid triangles demonstrate this behavior. When the
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FIG. 10. Position of nodes of dc-bias-induced oscillations shown
in Fig. 9 and Fig. 5 at different node index k. Solid triangles present
nodes, which are obtained numerically without heating and obey
Eq. (13) (solid line). Account of the heating (solid squares) improves
significantly agreement with the experiment (open circles). Dashed
line is a shift of the solid line to the right by two units (see text for
detail).

heating is on (solid squares), the first node (k = 1) is due
mostly to the heating. The following nodes (k = 3, 5, and 7)
are due mostly to the variation of the band separation. As
shown in the figure the positions of the nodes correlate well
with the experimental values (open circles) taken from the top
panel of Fig. 5.

The quantal heating produces an additional node of the dc-
bias-induced oscillations. It changes the systematic placement
of the node positions described by Eq. (13). In the case of a
strong quantal heating (as in Fig. 9) the additional node occurs
at the very beginning of the resistance evolution. Expected

from Eq. (13) node counting can be largely restored by a
reduction of the node index by two, which is the difference
between consecutive indexes k in Eq. (13). The corresponding
transformation is shown in Fig. 10: The dashed line is the shift
by two units to the right of the solid line representing index k

in Eq. (13).

V. CONCLUSION

Quantum oscillations of nonlinear resistance, which occur
in response to electric current and magnetic field applied
perpendicular to GaAs quantum wells with two populated
subbands, are investigated. At small magnetic fields, the
current-induced oscillations are found to be related to Landau-
Zener transitions between Landau levels inside the lowest
subband. The period of these oscillations is proportional to
the magnetic field. At high magnetic fields, different kinds
of quantum oscillation are observed. With respect to the dc
bias, these resistance oscillations are quasiperiodic with a
period that is independent of the magnetic field. At a fixed
electric current, the oscillations are periodic in an inverse
magnetic field. The period is independent of the dc bias.
The proposed model considers these oscillations as a result
of a joint effect between the Joule heating in the systems
with discrete spectrum and the spatial variations of the energy
separation between two subbands, which is induced by the
electric current. The obtained results indicate the feasibility of
considerable modification of the electron spectrum by applied
electric current in 2D electron systems.
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