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We map out the possible ordered states in bilayer graphene at the neutrality point by extending the previous
renormalization group treatment of many-body instabilities to finite temperature, trigonal warping and externally
applied perpendicular electric field. We were able to analytically determine all outcomes of the RG flow equations
for the nine four-fermion coupling constants. While the full phase diagram exhibits a rich structure, we confirm that
when forward scattering dominates, the only ordering tendency with divergent susceptibility at finite temperature
is the nematic. At finite temperature, this result is stable with respect to small back and layer imbalance scattering;
further increasing their strength leads to the layer antiferromagnet. We also determine conditions for other ordered
states to appear and compare our results to the special cases of attractive and repulsive Hubbard models where
exact results are available.
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I. INTRODUCTION

Understanding itinerant electronic systems with competing
ordering tendencies is among the most profound challenges in
today’s condensed matter theory. In one-dimensional systems,
powerful theoretical tools are available for answering some
of the questions,1 but extending the techniques to higher
dimensions has met with limited success. Often the problem is
how to treat the various ordering tendencies on equal footing
without an inherent bias toward any one of the possible ordered
states.

In this regard, bilayer graphene at, and near, the neutrality
point can be regarded as a model system. To a first approx-
imation, there is a conduction band and a valence band that
touch quadratically near two points, K and K′ = −K, in the
Brillouin zone.2,3 Even when all electron-electron interactions
are ignored, such a system would have low-temperature
susceptibilities which diverge as ∼ln T toward a number of
different ordered states. While there are no known exact
solutions, such a situation is expected to lead to instabilities
with respect to infinitesimal electron-electron interactions. The
challenge is then to identify the conditions under which any
one combination of the various possible states gets preferably
selected as the temperature is lowered.

Since a many-body ordering appears already at weak
coupling this problem is amenable to the renormalizaton
group (RG) approach, whose advantage is that it can account
for the competing tendencies in an unbiased way. Moreover,
since the few-milli-electron-volt energy scales associated with
ordering extracted from present-day experiments4–10 are much
smaller than the natural upper cutoff in the problem originating
from the split-off bands derived from the dimerized sites
(∼200–300 meV), the physical system itself is expected to
be well described by a weak coupling theory. Therefore we
expect that the competition among the number of inherently
strong-coupling phases can be accessed within such a weak
coupling approximation.

The previous RG treatments of this problem presented in
Refs. 11 and 12 consisted of first building a low-energy effec-
tive field theory, which when electron-electron interactions are
neglected, can be thought of as a Gaussian fixed point of the RG
scale transformation13 with dynamical critical exponent z = 2.

Except under some nongeneric fine-tuned initial conditions,
contact interactions have been shown to be marginally relevant
at this fixed point. Such four-fermion terms in the low-energy
effective field theory arise from microscopic electron-electron
interactions Vee(r) whose Fourier transform is nondivergent
in the small wave-vector limit. They could, for instance,
correspond to 1/r Coulomb interactions screened by proximity
to metallic gates. Within this approach, the electronic modes
with momenta in a thin shell (1 − ��)� < |k| < � near the
cutoff �, and arbitrary frequency ω, are integrated out, while
the change in the effective action is monitored as the process is
iterated.13,14 To determine the leading instability, infinitesimal
symmetry breaking source terms were introduced11,12,15 and
included in the process of renormalization. The source term
with the strongest divergence was then identified as the most
dominant ordering tendency. In the case of purely forward
scattering, or, in the notation of this paper, for gA1g

only,
the leading instability was found to be toward the electronic
nematic state. This state is gapless, with either two or four
Dirac points near each K point depending on the strength of
the order parameter. In the case of the Hubbard model, there is
additional back scattering, gEK = 1

2gA1g
, and layer imbalance

scattering gA2u
= gA1g

, and the leading instability is found to
be toward the layer antiferromagnetic state. The single-particle
(electronic) spectrum of this phase is gapped.

In a similar approach,16,17 the 1/r Coulomb interactions
among the electrons in bilayer graphene were first screened
using RPA, and then the full q- and ω-dependent effective
interaction was used as the initial condition for the subsequent
Wilson-like RG treatment. While said approach can be
criticized on the grounds that the screening of the long-range
tail of the Coulomb interaction originates from integrating
out electrons all the way down to the Fermi energy, which
are double counted when reintroduced for the RG treatment,
the results obtained using this approach are in qualitative
agreement with the results obtained previously.11,12

To this end, we present an extension of the previous RG
treatment of the problem to finite temperature18–20 and finite
externally applied perpendicular electric field. This allows
us to include the competition between broken-symmetry
phases with gaps in the electronic spectrum, which may be
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energetically favorable, and gapless states, which may be
entropically favorable. We also study the gradual suppression
of an ordered state as the externally applied electric field
is increased. Since temperature is treated explicitly, we can
obtain the transition temperature directly, without making
any of the ad hoc assumptions inherent in translating the
value of the RG scale � at which the couplings diverge into
temperature.

As has been noted early on in the context of one-
dimensional electron systems,21,22 it is very useful to compare
the results of an approximate RG approach to known exact
results.23–25 Despite the scarcity of exact results in higher
dimensions, we can compare our results to some of the
nontrivial properties of the Hubbard model at half-filling,
which can be either established exactly26–29 or can be obtained
from Monte Carlo simulations.30–32 In this regard, it was shown
in Ref. 12 that starting with a repulsive Hubbard model on a
honeycomb bilayer lattice at half-filling for U � t⊥ � t leads
to the layer antiferromagnet as the most dominant instability.
In this work, we confirm the previous finding using the
finite-temperature RG scheme. We further establish that, if
we fix the value of the nine four-fermion coupling constants
to correspond to the values derivable from the Hubbard
model, then the low-energy effective field theory possesses the
SO(4) symmetry of the microscopic Hubbard model.28 As a
consequence, for an attractive Hubbard model the result of our
(approximate) RG analysis recovers the exact result that the
s-wave superconducting order parameter can be continuously
rotated to the “CDW” order parameter.26,27 Since, for bilayer
graphene, the charge-ordered state does not break the discrete
translational symmetry of the lattice, it is not strictly a
density wave, but rather corresponds to the layer-polarized
state (LP). This can be seen in our RG equations; the LP
and s++ superconducting source terms are identical provided
that we start with the values of the four-fermion coupling
constants corresponding to the Hubbard model with U � t⊥ �
t . Moreover, since, in the weak coupling limit, we can map the
microscopic lattice interactions to the four-fermion coupling
constants in the continuum effective field theory, we can ask
what happens when we add a b1-b2 interaction V in addition
to the on-site attraction U (see Fig. 1). When V is repulsive
(attractive) we find that the exact degeneracy between the LP
and s++ SC states is lifted in favor of the LP (s++ SC) as
expected.29,33

Among the differences between our present approach and
the related weak coupling approach employed in Refs. 16 and
17 is the fact that we perform our analysis at finite temperature,
which leads to different RG equations for the couplings than
at zero temperature. In addition to the advantages mentioned
above, this allows us to systematically determine all possible
outcomes of the RG equations in the nine-dimensional space
of initial couplings. We also avoid screening the Coulomb
interaction with the bilayer graphene low-energy degrees
of freedom that enter our Wilson RG analysis. Rather, we
assume that it is screened due to either finite temperature
or the presence of external metallic gates. Finally, we do
not rely on mean-field theory to determine the phases either
directly from the bare couplings (i.e., without RG),34–39 or on
a renormalized mean-field treatment.17 The shortcomings of
other approaches34,36 have been discussed in Ref. 17.
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FIG. 1. (Color online) (a) The honeycomb bilayer lattice formed
by bilayer graphene. We represent the bottom layer, 1, with black
circles and the top layer, 2, with red squares. The ai sites are the
dimerized sites, and the bi sites are the nondimerized sites. We include
the nearest-neighbor intralayer hopping γ0, the hopping between
dimerized sites γ1, and the nearest-neighbor interlayer hopping
between nondimerized sites γ3. (b) The Brillouin zone associated
with the honeycomb bilayer with the parabolic degeneracy points
K = 4π

3
√

3a
x̂ and K′ = −K marked.

Within this formulation, as shown later in the text, the
flow equations for the nine12,16 coupling constants contain
additional thermal factors, with an effective temperature T

that grows under RG as e2�. The flow equations (19) for the
coupling constants describe two competing tendencies—the
term proportional to a product of two four-fermion coupling
constants tends to enhance their growth, while the thermal
factors suppress the flow of the coupling. For any fixed initial
couplings and at a high enough temperature, the couplings
saturate to finite values as � → ∞. As the temperature is
lowered, the coupling constants saturate at higher, but still
finite, values. At the transition temperature Tc, the coupling
constants diverge as � → ∞. Below Tc, the coupling constants
diverge at a finite value of �. The effects of trigonal warping,
parametrized by a velocity v3, can be readily included within
this formalism as well.16,17 Like temperature, trigonal warping
tends to suppress the flow of the couplings. As a result, even
at T = 0, a critical coupling strength must be exceeded for
a phase transition to occur.11,16 The strength of the critical
coupling vanishes as v3 vanishes.

The RG flow equations of the (infinitesimal) source terms
for a multitude of symmetry-breaking order parameters reveal
that, at the transition temperature, the source terms � acquire
an anomalous dimension, η�. Analysis of the free energy
correction to O(�2) further reveals that, within this approxi-
mation, the physical susceptibility for a particular � diverges
as T → Tc if η� > 1. Using this condition, we determine the
phase diagram for different initial couplings (see Fig. 5).

We find that, for purely forward electron-electron scat-
tering, gA1g

, the only order parameter with a divergent
susceptibility at finite T is the nematic. Moreover, this is stable
with respect to the presence of small, but finite, back scattering
gEK and layer imbalance scattering (i.e., the difference between
intra- and interlayer scattering) gA2u

. Performing the analysis
at finite temperature is crucial for revealing this stability. Upon
increasing the back and layer imbalance scattering, the only
other divergent susceptibility is toward a layer antiferromag-
netic (AF) state. Reversing the sign of the backscattering while
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fixing the layer imbalance scattering results in a quantum spin
Hall state (QSH). Reversing the sign of the layer imbalance
scattering while fixing the sign of the back scattering gives
us a layer-polarized state (LP). Reversing the sign of both
may lead to an s-wave superconductor. For small gA2u

/gEK

and gEK ≈ gA1g
> 0, we may find a Kekulé current state (KC).

These results are summarized in Fig. 5, which shows the phase
diagram in the space of initial gA1g

, gEK , and gA2u
.

Remarkably, the flow equations for the nine coupling
constants can be analyzed in their entirety at Tc. We find that,
if a coupling constant diverges, it grows as e2�. At the same
time, the ratios of the coupling constants may either approach
values determined by a two-parameter family of functions,
which we call the target plane, or four isolated fixed ratios
that do not belong to the fixed plane. For each of these cases,
we determine the symmetry-breaking channels with divergent
susceptibilities at Tc. The results are summarized in Fig. 9.

The rest of the paper is organized as follows. In Sec. II, we
present our model for the system. Section III is dedicated to the
thorough analysis of the RG equations and our main results.
Section IV deals with the effects of an applied perpendicular
electric field on the phase boundaries. Our conclusions are
presented in Sec. V. We give details of our derivations in the
Appendices.

II. HAMILTONIAN

We will be employing a low-energy effective theory for
the bilayer graphene lattice. This lattice and the associated
Brillouin zone are shown in Fig. 1. Our model includes
the nearest-neighbor intralayer hopping γ0 ≡ t , the hopping
between dimerized sites γ1 ≡ t⊥, and the nearest-neighbor
interlayer hopping between nondimerized sites γ3. It is
this last hopping that is responsible for trigonal warping.
Experimentally,40 γ0 ≈ 3 eV, γ1 ≈ 0.4 eV, and γ3 ≈ 0.3 eV.
Throughout this paper, we will use units in which kB = h̄ = 1.

A. Noninteracting Hamiltonian

The tight-binding model for the lattice described above is3

Htb = − γ0

∑
R,δ,σ

[a†
1σ (R)b1σ (R + δ) + a

†
2σ (R)b2σ (R − δ)

+ H.c.] − γ1

∑
R,σ

[a†
1σ (R)a2σ (R) + H.c.]

− γ3

∑
R,δ′,σ

[b†1σ (R + δ)b2σ (R + δ + δ′) + H.c.], (1)

where (a,b)mσ (r) annihilates an electron on the (a,b) sublattice
on layer m and site r with spin σ . The vectors R are the
positions of the dimerized sites within a unit cell, and δ

represents one of three vectors connecting an a1 site with
a nearest-neighbor b1 site. The possible values of δ are
−

√
3

2 ax̂ + 1
2aŷ,

√
3

2 ax̂ + 1
2aŷ, and −aŷ, where the lattice

constant a ≈ 1.4 Å. Whenever there is a sum on δ, we sum
over these three values; if δ appears without a summation over
it, on the other hand, then we choose one of these three values
for it.

We may derive our low-energy effective theory for the
above system by either projecting out the high-energy modes41

or equivalently by writing the above theory as a coherent-state
path integral, integrating out the dimerized sites,12,15 and
expanding around the K and K′ points. The resulting theory is

H = H0 + Hint, (2)

where

H0 =
∑

|k|<�

∑
σ=↑,↓

ψ
†
kσHkψkσ . (3)

In the above Hamiltonian, the Fermi spinor, which describes
the modes in the vicinity of the ±K points and concentrated
at b sites in layers 1 and 2, is

ψkσ =

⎛
⎜⎜⎜⎜⎝

ψ
(b1)
Kσ (k)

ψ
(b2)
Kσ (k)

ψ
(b1)
−Kσ (k)

ψ
(b2)
−Kσ (k)

⎞
⎟⎟⎟⎟⎠ . (4)

The first of the two matrices in Eq. (3) describes the parabolic
dispersion and the second is a linear term that results in trigonal
warping:

Hk = H
(2)
k + H

(tw)
k , (5)

H
(2)
k = 1

2m∗
[(

k2
x − k2

y

)
�x + 2kxky�y

]
, (6)

H
(tw)
k = v3

(
kx�x + ky�y

)
, (7)

where

�x = 1σ1, �y = τ3σ2, (8)

�x = τ3σ1, �y = −1σ2. (9)

In terms of the tight-binding parameters in our lattice
Hamiltonian, the effective mass m∗ is

m∗ = 2γ1

9a2γ 2
0

(10)

and the trigonal warping velocity v3 is

v3 = 3aγ3. (11)

Experimentally,6,7 m∗ ≈ 0.029me, while the value that we
obtain from the above formula and the experimental values
of the hopping parameters given above is m∗ ≈ 0.038me.
The value of the trigonal warping velocity used in fitting
the experimental data6 is v3 ≈ 1.41 × 105 m/s, while that
obtained from the above formula is v3 ≈ 1.91 × 105 m/s
(Ref. 16 assumes a value of v3 = 105 m/s). The origin of these
admittedly unimportant and small discrepancies is unclear at
this time.

B. Symmetry classification

The space group symmetry operations, which leave the
Hamiltonian invariant at the � point form a point group D3d .
Similarly, at the ±K points, the symmetry operations form a
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point group D3. The character tables42 of these two groups are
shown below.

D3d E 2C3 3C ′
2 i 2S6 3σd

A1g
1 1 1 1 1 1

A2g
1 1 −1 1 1 −1

Eg 2 −1 0 2 −1 0
A1u

1 1 1 −1 −1 −1
A2u

1 1 −1 −1 −1 1
Eu 2 −1 0 −2 1 0

D3 E 2C3 3C ′
2

A1 1 1 1
A2 1 1 −1
E 2 −1 0

The sixteen 4 × 4 matrices that operate in the layer and ±K
valley space, can be grouped based on their transformation
properties under these group operations. We find that

A1g+ : 14,

A2g− : τ3σ3,

Eg+ : (1σ1,τ3σ2),

A1u− : τ31,

A2u+ : 1σ3,

Eu− : (τ3σ1,−1σ2),

A1K+ : τ1σ1; τ2σ1,

A2K− : τ1σ2; τ2σ2,

EK+ : (τ11,−τ2σ3; −τ21,−τ1σ3).

The ± next to the name of the representation denotes whether
the particular operator is even or odd under time reversal
symmetry. An equivalent classification can be found in Ref. 17,
though the notation is different.

C. Interaction Hamiltonian

As shown previously, assuming the microscopic lattice
interactions are falling off faster than 1/r2, there are nine
marginal interaction couplings at the Gaussian fixed point
when T = 0 and v3 = 0. The interaction term in the Hamilto-
nian is therefore

Hint = 1

L2

∑
S

gS

2

∑
k,k′,q

∑
σ,σ ′

ψ
†
kσ Sψk+q,σ ψ

†
k′σ ′Sψk′−q,σ ′ .

(12)

The sum over S includes the 16 matrices belonging to the
nine representations. Since the couplings for the squares of
the operators belonging to the same representation must be the
same, we have nine independent couplings. So, for example,
for the Eg representation, the corresponding interaction term
is schematically 1

2gEg
[(ψ†

σ 1σ1ψσ )2 + (ψ†
σ τ3σ2ψσ )2].

We may think of gEK as representing backscattering, gA1g
+

gA2u
as representing intralayer scattering, and gA1g

− gA2u
as

representing interlayer scattering, as is demonstrated in our
previous work.15 If we introduce a density-density interaction
V (r) into the microscopic tight-binding Hamiltonian, then

the forms of these couplings are given by Eqs. (119)–(121)
in Ref. 15, where they are denoted by gA1 , gC1 , and gβ ,
respectively.

As we will see shortly, if we start with these three couplings,
then the other six will be generated under RG. All nine
couplings may also be thought of as interactions between local
fluctuations of different order parameters.

III. FINITE-TEMPERATURE RENORMALIZATION
GROUP

We are interested in introducing the temperature T and the
trigonal warping velocity v3 explicitly into our renormalization
group transformations. To proceed, we rewrite the partition
function as a coherent-state Grassman path integral:

Z =
∫

D(ψ∗,ψ)e−S0−Sint , (13)

where

S0 = 1

β

∞∑
n=−∞

∑
|k|<�

∑
σ=↑,↓

ψ
†
kσ (ωn) (−iωn + Hk) ψkσ (ωn),

n is an integer, and the Matsubara frequency is ωn = (2n +
1)πT . The interaction term is

Sint = 1

2

∫ β

0
dτ

∫
d2r

∑
S

gS

[∑
σ

ψ†
σ (r,τ )Sψσ (r,τ )

]2

(14)

and

ψσ (r,τ ) = 1

β

∞∑
n=−∞

1

L

∑
|k|<�

e−iωnτ eik·rψkσ (ωn). (15)

Equivalently, we may write the interaction term as

Sint = 1

2

∫ β

0
dτ

∫
d2r

9∑
j=1

gj

mj∑
m=1

[
ψ†(r,τ )�(m)

j ψ(r,τ )
]2

.

(16)

Note the absence of explicit spin subscripts on the (eight-
component) ψ = (ψ↑,ψ↓)T fields. The �

(m)
j matrices are

defined in Eqs. (C7)–(C15), and mj is the multiplicity of the
j th representation.

Our renormalization group procedure consists of splitting
the ψ fields into fast and slow modes and progressively
integrating out the fast modes with momenta restricted to the
small shell �(1 − ��) < |k| < � with no restriction on the
Matsubara frequencies ωn. After each such mode elimination,
we choose to rescale the momenta in the effective action
for the slow modes such that the new cutoff is again � and that
the H

(2)
k term is left invariant. If we also wish to keep the iωn

term invariant, and take �� to be infinitesimal, we find that the
temperature and the trigonal warping velocity flow under RG
as

dT

d�
= 2T ⇒ T (�) = e2�T , (17)

dv3

d�
= v3 ⇒ v3(�) = e�v3. (18)
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In general, these flow equations will be corrected once
interactions are taken into account, but for the couplings of
choice here, the corrections appear only at two-loop order.

To one-loop order, the RG flows of the coupling constants
have the form

dgi

d�
=

9∑
j=1

9∑
k=1

gjgk

4∑
a=1

A
(a)
ijk�a [ν3(�),t(�)] , (19)

where i, like j and k, extends over the aforementioned nine
irreducible representations of the groups of the wave vector
� and ±K; A

(a)
ijk are listed in Appendix C. The dimensionless

parameters that enter as the arguments of the � functions are

ν3(�) = v3(�)

�/2m∗ , (20)

t(�) = T (�)

�2/2m∗ . (21)

The � functions are determined by the integrals in Eqs. (A4)–
(A12). As shown in Appendix A, these integrals can be
evaluated explicitly when ν3 = 0 in terms of elementary
functions or when t = 0 in terms of complete elliptic integrals.

In the discussion that follows, we will make use of the
asymptotic behavior in the limit of � → ∞:

�a [ν3(�),t(�)] = e−2�

2t
+ · · · for a = 1,2, (22)

�a [ν3(�),t(�)] = e−6�

12t3
+ · · · for a = 3,4, (23)

where t = t(0) is the initial dimensionless temperature and
“· · · ” represent terms that are smaller than the leading terms.

A. General analysis of the RG flows

In general, the flow equations (19) describe two competing
tendencies. The term proportional to gjgk tends to cause an
increase of the absolute value of the coupling constants as �

increases, while the � functions tend to zero as � increases due
to the increase of their arguments ν3(�) and t(�). Numerical
analysis of the flow equations reveals that for fixed values of
the initial couplings and for a sufficiently large value of the
initial temperature t , there is a certain value of � where the
flow becomes stagnant and the coupling constants g tend to
finite values as � → ∞. Therefore if the initial couplings are
small, they remain small as long as the initial temperature is
sufficiently large even as all the modes are integrated out. In
this regime, weak-coupling RG is entirely justified. Lowering
the initial temperature, while keeping the initial couplings
fixed, causes an increase of the value of the RG parameter
� where the coupling constants stop flowing and an increase in
the limiting value of the coupling constants. At a critical initial
temperature tc, the coupling constants g diverge as � → ∞. For
an initial temperature t < tc, the coupling constants diverge at
finite �.

The role of trigonal warping is to cause additional sup-
pression of the increase of the absolute value of the coupling
constants. Thus, for fixed initial values of the coupling
constants and for sufficiently large initial v3, the g’s do not
diverge even at t = 0.

Therefore, as stated previously,11 for fixed initial v3, a
critical value of the initial coupling(s) must be exceeded for a
runaway flow of the coupling constant(s), which we associate
with a phase transition, to occur.

In order to understand the nature of the possible ordering
tendencies, we first analyze the asymptotic behavior of the
equations (19) when t = tc > 0 and � → ∞. Provided that at
least one coupling gr diverges, we have managed to enumerate
all possible solutions for the stable “rays” along which ratios
with the other couplings gj/gr tend to constants. The detailed
analysis of these solutions is given in Sec. III G. Along such a
stable ray, all nine differential equations “collapse” onto one,
namely,

dgr

d�
= A(r)g

2
r

e−2�

2tc
+ · · · , as � → ∞. (24)

Here and in the remainder of the paper, if an index is in
parentheses [e.g., (r)], then there is no automatic summation
over r unless explicitly stated. The coefficient A(r) depends
on the stable ray along which the couplings diverge and “· · · ”
denotes terms that vanish faster than e−2�. Combining the
asymptotic behavior of the � functions as � → ∞, given by
Eqs. (19), (22), and (23), the coefficient may be expressed as

A(r) = 2
9∑

j=1

9∑
k=1

2∑
a=1

A
(a)
rjkρ

(r)
j ρ

(r)
k , (25)

where the ρ
(r)
j = gj/gr is the ratio of two couplings along the

stable ray. The solution of differential equation (24) is

gr (�) = 4tc

A(r)
e2� + · · · , as � → ∞, (26)

where “· · · ” denotes terms that are smaller than e2� as � → ∞.

B. Susceptibilities and the nature of the symmetry breaking

To find out what symmetry-breaking tendencies dominate,
we start by introducing source terms into our action:

�S =
32∑
i=1

�
ph
i

1

β

∞∑
n=−∞

∑
k

ψ
†
k(ωn)O(i)ψk(ωn)

+ 1

2

16∑
i=1

�
pp

i

1

β

∞∑
n=−∞

∑
k

ψ
†
k(ωn)Õ(i)ψ∗

−k(−ωn) + c.c.

(27)

We may think of these terms as “forces” that couple to various
observables, which acquire nonzero averages whenever the
system enters the appropriate phase. Note that only 18 of
the 32 particle-hole source terms introduced are symmetry
inequivalent. Similarly, onlynine of the 16 particle-particle
source terms are inequivalent. The transformation properties
of the former under the various symmetry group operations are
summarized in Table I. Again, note the absence of explicit spin
subscripts on the (eight-component) ψ = (ψ↑,ψ↓)T fields.
Terms such as ψ†Õψ∗ should be understood as matrix
multiplication, i.e.,

∑8
α,β=1 ψ∗

αÕαβψ∗
β . We will see later that

only two of the particle-particle, or superconducting, orders
can appear, namely the A1g and A2u orders. These correspond
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TABLE I. Table of all particle-hole phases considered, listed according to what representation of the D3d point group they transform. The
Kekulé and density waves have a wave vector of K.

Group rep. Matrices Trans. TRS Inv. Mirror refl. (σd )

A1g charge 14 ⊗ 1 + + e e Charge instability
A2g charge τ3σ3 ⊗ 1 + − e o Anomalous quantum Hall37,43

Eg charge (1σ1,τ3σ2) ⊗ 1 + + e e/o Nematic11,16

A1u charge τ31 ⊗ 1 + − o o Loop current44

A2u charge 1σ3 ⊗ 1 + + o e Layer-polarized34,36

Eu charge (τ3σ1, −1σ2) ⊗ 1 + − o o/e Loop current II (ME2)
A1K (A1g/A1u) charge τ1σ1 ⊗ 1; τ2σ1 ⊗ 1 − + e/o e/o Kekulé45

A2K (A2u/A2g) charge τ1σ2 ⊗ 1; τ2σ2 ⊗ 1 − − o/e e/o Kekulé current
EK (Eg/Eu) charge (τ11, −τ2σ3) ⊗ 1; (−τ21, −τ1σ3) ⊗ 1 − + e/o (e/o)/(o/e) Charge density wave
A1g spin 14 ⊗ �σ + − e e Ferromagnetic
A2g spin τ3σ3 ⊗ �σ + + e o Quantum spin Hall15,17,46

Eg spin (1σ1,τ3σ2) ⊗ �σ + − e e/o Spin nematic
A1u spin τ31 ⊗ �σ + + o o Staggered spin current
A2u spin 1σ3 ⊗ �σ + − o e Layer AF3,12,47

Eu spin (τ3σ1,−1σ2) ⊗ �σ + + o o/e Loop spin current II
A1K (A1g/A1u) spin τ1σ1 ⊗ �σ ; τ2σ1 ⊗ �σ − − e/o e/o Spin Kekulé
A2K (A2u/A2g) spin τ1σ2 ⊗ �σ ; τ2σ2 ⊗ �σ − + o/e e/o Spin Kekulé current
EK (Eg/Eu) spin (τ11, −τ2σ3) ⊗ �σ ; (−τ21, −τ1σ3) ⊗ �σ − − e/o (e/o)/(o/e) Spin density wave

to s++- and s+−-wave superconducting orders, respectively.
Both are s-wave, but the s++ order parameter has the same
sign on both layers, while the s+− order has opposite signs on
each layer. To one-loop order, we find

d ln �
ph
i

d�
= 2 +

9∑
j=1

4∑
a=1

B
(a)
ij gj (�)�a [ν3(�),t(�)] , (28)

d ln �
pp
i

d�
= 2 +

9∑
j=1

4∑
a=1

B̃
(a)
ij gj (�)�a [ν3(�),t(�)] , (29)

where the (32 × 9) matrix B
(a)
ij and the (16 × 9) matrix B̃

(a)
ij

are defined by Eqs. (C29)–(C33) and (C35)–(C36). Note that
Eqs. (28) and (29) can be readily integrated, and we find that

�
ph/pp
i (�) = �

ph/pp
i (0)e2� exp

[
�

ph/pp
i (�)

]
, (30)

where

�
ph
i (�) =

9∑
j=1

4∑
a=1

B
(a)
ij

∫ �

0
d�′ gj (�′)�a[ν3(�′),t(�′)],

�
pp
i (�) =

9∑
j=1

4∑
a=1

B̃
(a)
ij

∫ �

0
d�′ gj (�′)�a[ν3(�′),t(�′)].

At t = tc > 0, as � → ∞ the e2� increase of a divergent
coupling gr exactly balances the e−2� decrease of the �

functions and the right hand sides of the above equations tend
to constants,

d ln �
ph
i

d�
= 2 + 2Bph

i(r)

A(r)
as � → ∞,

(31)
d ln �

pp
i

d�
= 2 + 2Bpp

i(r)

A(r)
as � → ∞.

In other words, the engineering dimensions of the source
terms, which are equal to 2, are corrected by the anomalous

dimensions

η
ph/pp
i = 2Bph/pp

i(r)

A(r)
(32)

due to the electron-electron interactions. Again, in the above
equation, there is no summation over r , which corresponds to
the divergent coupling gr that we divided by. The values of the
B’s are

Bph
i(r) = 2

9∑
k=1

(
B

(1)
ik + B

(2)
ik

)
ρ

(r)
k , (33)

Bpp
i(r) = 2

9∑
k=1

(
B̃

(1)
ik + B̃

(2)
ik

)
ρ

(r)
k , (34)

where B(1/2) is given by the sum of Eqs. (C30) and (C32) and
B̃(1/2) is given by Eq. (C35). Note that the expressions for A(r)

and Bph/pp
(r) depend on the choice of gr but the η

ph/pp
i ’s do not.

In order to calculate the physical susceptibility toward
various ordering tendencies, we calculate the correction to
the free energy due to the presence of the symmetry breaking
source terms.48 We find that

δf (�)

= − m∗

16π

32∑
i=1

∫ ∞

0
d� e−4�

[
�

ph
i (�)

]2
4∑

a=1

α
ph
a,i�a[ν3(�),t(�)]

− m∗

16π

16∑
i=1

∫ ∞

0
d� e−4�

∣∣�pp
i (�)

∣∣2 4∑
a=1

α
pp
a,i�a[ν3(�),t(�)],

(35)

The α coefficients are given in Appendix D by Eqs. (D1)–(D4).
The susceptibilities are then simply given by second

derivatives of the free energy with respect to the bare values
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of the appropriate source terms,

χ
ph
i = − ∂2f

∂
[
�

ph
i (� = 0)

]2 , (36)

χ
pp
i = − ∂2f

∂
[
Re �

pp
i (� = 0)

]2 = − ∂2f

∂
[
Im �

pp
i (� = 0)

]2 .

(37)

Using Eqs. (30) and (35), we find that the susceptibilities given
above may be written as

χ
ph/pp
i = m∗

8π

4∑
a=1

α
ph/pp
a,i

∫ ∞

0
d�e2�

ph/pp
i (�)�a[ν3(�),t(�)].

(38)

Note that the source terms, �
ph/pp
i (� = 0), being auxiliary

fields, do not appear.
Any divergence in the susceptibilities has to come from the

regions of large � in Eq. (35) where the asymptotic expressions
derived earlier hold. Therefore since, for t = tc > 0, the
asymptotic behavior of the � functions is e−2�, the condition
for the divergence of a susceptibility in a particle-hole or
particle-particle channel i is

η
ph/pp
i > 1. (39)

Next, we will relate the anomalous dimensions of the source
terms η

ph/pp
i to the susceptibility exponents γ

ph/pp
i .

C. Susceptibility exponents

For t > tc, sufficiently close to tc the asymptotic behavior
of the coupling constants is still approximately described by
Eq. (24). If we integrate it from �0 to �, both of which are
asymptotically large (and temperature independent), but not
infinite, then we find

1

gr (�,t)
= 1

gr (�0,t)
− A(r)

4t
(e−2�0 − e−2�). (40)

At tc, we have 1/gr (�0,tc) = A(r)e
−2�0/4tc and we can write

the above equation as

1

gr (�,t)
=

[
1

gr (�0,t)
− 1

gr (�0,tc)

]

−
(

1

t
− 1

tc

)[A(r)

4
e−2�0

]
+ A(r)

4t
e−2�. (41)

Since �0 is finite, gr (�0,t) is analytic in t at tc and can be
expanded as

gr (�0,t) ≈ gr (�0,tc) + (t − tc)
∂

∂t
gr (�0,t)

∣∣∣∣
tc

+ · · · , (42)

where “· · · ” represents terms of order (t − tc)2 and higher.
Therefore

gr (�,t) ≈ 1

cr (t − tc) + A(r)

4t
e−2�

, as � → ∞, t → t+c

(43)

where

cr = ∂

∂t

1

gr (�0,t)

∣∣∣∣
tc

+ A(r)

4t2
c

e−2�0 . (44)

Note that crA(r) > 0 since gr (�0,t) increases in magnitude as
t → t+c .

The flow of the source terms at large � at t > tc
is determined by substituting the above result into the
Eqs. (28) and (29) and taking the asymptotic limit of the �

functions at large �:

d ln �
ph
i

d�
= 2 + Bph

i(r)

2t

e−2�

cr (t − tc) + A(r)

4t
e−2�

, (45)

d ln �
pp
i

d�
= 2 + Bpp

i(r)

2t

e−2�

cr (t − tc) + A(r)

4t
e−2�

. (46)

Integrating from �0 to � and substituting to Eq. (35), we
find that the singular contribution to the susceptibility for the
symmetry breaking source term �i is

χ
ph/pp
i ≈ (t − tc)−γ

ph/pp
i , (47)

where

γ
ph/pp
i = η

ph/pp
i − 1. (48)

Clearly, the susceptibility for a particular order diverges if the
condition (39) is satisfied. Note that only if η

ph/pp
i = 2 do the

susceptibility exponents acquire their mean-field values. This
is in general not the case here, as will be elaborated on in the
next section.

It is also important to stress that these exponents are
obtained within the one-loop approximation of the fermionic
theory and are therefore not expected to be accurate. They
are also not expected to be equal to the one-loop exponents
obtained within an ε expansion of the corresponding bosonic
theory, with the Landau functional for the ordering field. The
ultimate critical behavior is determined by the universality
class of such a bosonic theory. As an example, the finite
temperature phase transition into the nematic state belongs
to the two dimensional three-state Potts model11 universality
class for which the exponent γ = 13/9 (see Ref. 49). However,
within our one-loop fermionic RG treatment, γ does not
exceed 2/3. Nevertheless, the exponents calculated within the
present approximation give us important information about the
physical character of the dominant ordering tendency, without
any a priori bias toward any given order.

Next, we will explicitly calculate the RG flows using
numerical integration of the RG equations for the couplings,
the symmetry-breaking vertex terms and the physical suscep-
tibilities. We do so for any interaction that can be written as∑

q

∑
i,j Vij (q)ni(q)nj (−q), where Vij (q) is finite for any q;

i and j run over sublattice and layer indices. To leading order
in small V , q is either near 0 or near ±2K. Such a microscopic
lattice interaction will initially lead to only three of the nine
four-fermion coupling constants in the low-energy effective
field theory being finite,15 i.e., gA1g

|�=0 �= 0, gA2u
|�=0 �= 0,

gEK
|�=0 �= 0.
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FIG. 2. (Color online) Phase boundaries for bilayer graphene with
forward scattering only. (a) At finite trigonal warping, ν3 = 2m∗v3/�

and T = 0, the bare gA1g
must exceed a critical value, given by the

red line, in order for the system to enter a broken symmetry phase.
Along the dashed line, ν3 = 0.178, which is the value used to fit
the experimental data in Ref. 6. (b) The transition temperature as a
function of the initial value of gA1g

at ν3 = 0.178. At any finite tc,
the only susceptibility that diverges corresponds to the nematic order
parameter (Eg charge), as shown in Fig. 4.

D. Forward scattering limit: nematic

For Vij (±2K) = 0 and equal inter- and intralayer inter-
actions, the only nonzero bare interaction is gA1g

. Without
scattering between the K and K′ valleys at the microscopic
level, no new scattering between them can be generated in
the RG flow, Eq. (19). In other words, gA1K , gA2K , and gEK

remain zero. The only couplings that appear in this case
are those in the g and u representations. We studied the
problem numerically and present the main results in Figs. 2
and 3.

For any fixed initial v3, we find that there is a critical
value of gA1g

below which the weak-coupling RG converges
and no phase transition occurs, even at T = 0, as shown in
Fig. 2(a). In this phase, where no symmetry is broken, there
are four Dirac points in the vicinity of each K point, three of
which are anisotropic and one, centered at K or K′, which is
isotropic.

Above the critical value of gA1g
, the only susceptibility

that diverges as t → t+c > 0 is toward an electronic nematic,
i.e., toward a spin-singlet order parameter that transforms
according to the Eg representation (see Table I). We therefore

No Broken

Symmetry

Nematic

0.0
0.1

0.2
0.3

0.4

30.0

0.1

0.2

0.3

0.4

gA1 g

4 m

0.00

0.05

0.10

tc

FIG. 3. (Color online) The phase diagram for different values
of the forward scattering coupling, gA1g

, trigonal warping velocity,
ν3 = 2m∗v3/�, and temperature t = 2m∗T/�2. At any finite tc and
at any value of ν3 the nematic susceptibility is the only one that
diverges. The lighter cyan line, also shown in Fig. 2(b), corresponds
to ν3 = 0.178, which is the value used throughout the paper.

conclude that, immediately below this temperature, the system
enters this symmetry-breaking phase. In Ref. 6, the experimen-
tal data is fitted using a value of the trigonal warping velocity
corresponding to our dimensionless parameter ν3 = 0.178.
Here and in the remainder of the paper, we use this value.
The phase boundary for that particular choice of ν3 is shown
in Fig. 2(b). In Fig. 4, we show the susceptibilities as a
function of temperature for various order parameters. This plot
corresponds to the vertical arrow in Fig. 2(b) where only the
nematic susceptibility diverges. We find that the susceptibility
toward the nematic order parameter, despite being smaller than
the others at large T , outgrows all competing susceptibilities
as the temperature is lowered toward Tc, and is the only
susceptibility to diverge at Tc.

2 4 6 8

1.5

2.0

2.5

3.0

3.5

4.0

LP

Kekulé current

AF

Spin Kekulé current

QSH

A1u triplet SC

(S + A1u) singlet PDW

s++ singlet SC

Nematic

T
Tc
− 1

log10
χ

m∗/4π

FIG. 4. (Color online) Various susceptibilities calculated from
the free energy given by Eq. (35) with forward scattering only.
Although the nematic susceptibility is lower than the others at
higher temperatures, it is the only susceptibility that diverges as the
temperature is lowered towards tc > 0. Here, ν3 = 0.178, the bare
couplings are gA1g

= 0.161 × 4π/m∗, and all others zero. In this
case, tc = 0.01.
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While our analysis of the susceptibilities reveals that at
tc > 0 only the nematic susceptibility diverges for any fixed
ν3, this susceptibility does not diverge when approaching the
critical gA1g

from below exactly at t = 0. Instead, we find
that the susceptibilities for the layer antiferromagnet (AF)
and quantum spin Hall (QSH) order parameters diverge with
equal exponents. This suggests that, for 0 < t < tc, the system
orders into a nematic state, while, at t = 0, there may be a
coexistence of this state with AF and/or QSH.50 The complete
phase diagram for different values of gA1g

, ν3, and tc is shown
in Fig. 3. For the entire range of ν3’s shown, we always find
the nematic as the leading instability at finite temperature.

In order to facilitate the comparison with the previous work,
which also deals with the forward scattering limit at T = v3 =
0, we first note that the three couplings g1, g2, and g3 in
Ref. 11 correspond to gA1g

, gA2g
, and gEg

, respectively. Because
v3 = 0, none of the other nine four fermion couplings are
generated under RG. The “susceptibilities” calculated therein
correspond to the logarithmic prefactors on the right-hand
sides of Eqs. (15) and (16) in Ref. 11, and are analogous
to the more general expressions in Eqs. (28) and (29) of
this publication. The physical susceptibilites, considered in
this paper, can be straightforwardly obtained from such
expressions by substituting the flow of the source terms into
the formula (35). At T = 0, the divergences appear at finite
� = �∗, which can be set as the upper limit on the integrals
in Eq. (35). The coupling constant ratio11 gA1g

/gEg
→ 0 as

� → �∗. The ratio gA2g
/gEg

can approach either m1 ≈ −0.525
or m3 ≈ 13.98, i.e., the minimal or the maximal root of the
cubic equation (x − 14)x2 + 4 = 0.

The analysis of the physical susceptibilities for the con-
ditions stated in Ref. 11 reveals that, as � → �∗, the only
physical susceptibility that diverges when gA2g

/gEg
→ m1 is

towards the nematic; the others remain finite at �∗. Similarly,
the only susceptibility that diverges when gA2g

/gEg
→ m3

is toward the quantum anomalous Hall state (QAH). Very
recently, Fan Zhang et al. posted a preprint51 in which
they recovered the T = v3 = 0 flow equations for the three
couplings in Ref. 11. Under equivalent conditions to those in
Ref. 11, they claim to have calculated susceptibilities and that
the “strongest divergence occurs for the flavor spin channel
broken inversion symmetry.” These results are at odds with
our findings. We believe the discrepancy to originate from their
Eq. (C24), which does not properly account for renormaliza-
tion of composite operators (see Refs. 52 and 53).

E. General density-density interaction

In the previous section, we have shown how a system
with forward scattering only at the bare level orders into the
nematic state at any finite temperature. In general, however,
other four-fermion coupling constants may be nonzero as well.
In a previous work on this subject,15 two of us showed how to
find the bare interaction strengths corresponding to a screened
interaction in the weak coupling limit. In addition to gA1g

, two
other couplings, gA2u

and gEK , appear at � = 0. Due to the
presence of these couplings, all β functions are nonzero and
all nine couplings allowed by symmetry are generated in the
RG flow.

Instead of seeking a critical temperature for a given set
of initial couplings, we invert the procedure by fixing the
transition temperature to tc = 0.01. This value is in accordance
with the experimentally observed symmetry-breaking energy
scale of ∼2 meV. We then determine what values of the
initial couplings would make the RG flow divergent at this
temperature. This set of points defines a two-dimensional sur-
face in the three-dimensional space of initial (gA1g

,gA2u
,gEK ).

For each point on this surface, we find the list of phases
for which the susceptibility divergence criterion, Eq. (39), is
satisfied. For certain initial conditions, it happens that two or
more susceptibilities diverge at tc. In such situations, we list
all the phases with diverging susceptibilities (e.g., “N + AF”
represents the region of initial couplings where both χN and
χAF diverge, although not necessarily with the same exponent).
Because our formalism is valid only for t � tc, the resulting
state may be either one of the listed phases or a coexistence
of several of these phases. In order to decide which phase(s)
is present, one needs to construct a theory valid below tc, such
as a Landau theory with multiple order parameters. This is
beyond the scope of the present paper.

The phase diagram we find is presented in Fig. 5. One
should understand the axes on this plot as follows. When the
microscopic interaction has a long range, the bare values of

FIG. 5. (Color online) The phase diagram of bilayer graphene
with trigonal warping. The transition temperature is fixed to tc = 0.01
and ν3 = 0.178. Predominantly forward scattering favors the nematic
(N) phase. When backscattering and/or the difference between inter-
and intralayer scattering is considerable at the bare level we find other
phases: the layer antiferromagnet (AF), the layer-polarized state (LP),
the quantum spin Hall state (QSH), the s++ superconducting state
(s++ SC), and the Kekulé current state (KC). In regions where two or
more susceptibilities diverge at the same tc we use “ + ” to denote a
“coexistence” of multiple possible phases. Whether the listed phases
truly coexist or one of them is preferred must be determined from the
full Landau function. Such an analysis is beyond the scope of this
paper.
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gA2u
and gEK are negligible relative to gA1g

. They become larger
for interactions with shorter range.15 For monotonically de-
creasing repulsive interaction potentials, these two couplings
do not exceed gA1g

and gA1g
/2, respectively. gA2u

and gEK reach
these values in the Hubbard limit, where the only microscopic
interaction term is on-site. We therefore restrict our phase
diagram to positive initial values of gA1g

, to |gEK |/gA1g
� 1/2,

and to |gA2u
|/gA1g

� 1.
In the given range of initial couplings, we find a rich phase

diagram with the following phases:
(a) Nematic (N): this phase is stable for predominantly

forward scattering, i.e., when both gA2u
and gEK are small at

the bare level. If one of these couplings remains small and the
other becomes comparable to gA1g

the nematic susceptibility
is still divergent, although other susceptibilities will diverge at
these initial values as well. The nematic state is gapless, but
it reconstructs the low-energy spectrum such that two out of
four Dirac cones in each valley become gapped.

(b) Layer antiferromagnet (AF): this phase occurs when
all three bare couplings are repulsive and comparable,
corresponding to a short-range repulsive interaction. In
this state, the magnetization on each undimerized site
is finite, with the magnetization within one layer point-
ing in one direction, and that in the other layer in
the opposite direction.

(c) Layer-polarized state (LP): this phase is preferred
when the interlayer repulsion is stronger than the intralayer
repulsion [gA2u

(� = 0) � 0], and the backscattering is either
repulsive or weakly attractive [gEK (� = 0) � gA2u

(� = 0)]. In
this phase, which is gapped, there is an imbalance of the
electron occupation number between the two layers. One
layer is more occupied and the opposite layer is equally
less occupied with respect to the symmetric, high-temperature
state.

(d) Quantum spin Hall state (QSH): this state is preferred
when the backscattering is attractive [gEK (� = 0) � 0], but if
gA2u

is attractive as well, it must be weaker [gEK (� = 0) �
gA2u

(� = 0)]. In this state, which is gapped, there is a spin
current around each plaquette circulating in the same direction
in both layers.

(e) s++ superconductor (s++ SC): the conditions for this
phase are similar to the previous one in that the backscattering
must be attractive, but it must also be roughly stronger than
(attractive or repulsive) |gA2u

| at � = 0. This state opens a
superconducting gap in both layers with the same sign on each
layer.

(f) Kekulé current phase (KC): this phase appears in a thin
sliver of initial couplings for which backscattering is repulsive
and comparable to gA1g

, while the inter- and intralayer
couplings are roughly the same [gA2u

(� = 0) ≈ 0]. It breaks
lattice translational symmetry and time-reversal symmetry. In
this phase a supercell, consisting of three regular unit cells, is
formed. Within the supercell, two plaquettes carry a circulating
current, both in the same direction. This phase is gapped.

For a graphical illustration of some of these phases, see
Fig. 2 in Ref. 17.

In the entire plot, the values of the bare dimensionless
couplings m∗gi/4π for which the system orders at the preset
tc = 0.01 and ν3 = 0.178 are always smaller than 0.15, which
justifies our weak-coupling approach. The situation does not

change qualitatively with variations in temperature or in
the absence of trigonal warping—we explored a range of
temperatures 0.005 � tc � 0.02 with and without trigonal
warping and found that the general structure of the phase
diagram in Fig. 5 does not change appreciably. This is not
a coincidence and, later in the paper, we will map the phases
that we may obtain by analyzing the behavior of the flow
equations in the large � limit, where trigonal warping is
irrelevant.

F. The Hubbard model—“hidden” symmetry

As an important check, we apply our RG procedure to
a special case, namely the Hubbard model, about which we
already know certain exact properties. At half-filling, this
model has a dynamical SO(4) symmetry28 on a bipartite lattice.
This symmetry is present regardless of the sign of U and the
dimensionality. When U is negative, this symmetry is partic-
ularly useful because the electrons have a tendency toward
pairing. One good variational ground state for the negative U

Hubbard model on a square lattice is a charge density wave,
where one sublattice has a higher occupation number than the
other. Another ground state that exhibits pairing is the s-wave
superconductor. The pseudospin symmetry rotates between
these states. At half-filling, the tendency towards the charge
density wave order must therefore be the same as the tendency
towards the s-wave superconducting order.

In the case of bilayer graphene, the nomenclature is
slightly different. A difference in the number of electrons
in one sublattice compared to the other corresponds to a
layer-polarized state and not to a CDW because the layer-
polarized state does not break the translational symmetry of the
lattice. Among a plethora of superconducting orders in bilayer
graphene, the one that is obtained by pseudospin rotation from
the layer-polarized state is the s++ superconductor. Following
the argument in the previous paragraph, we conclude that the
tendencies towards the layer-polarized and s++ superconduct-
ing orders are exactly the same in bilayer graphene at half
filling with an attractive Hubbard interaction.

In addition, a repulsive Hubbard model is related to its
attractive counter part with an equally strong interaction. The
mapping between the two is given by29

c↑(R) → c̃↑(R), (49)

c↓(R) → (−1)Rc̃
†
↓(R). (50)

It is easy to demonstrate that, under these transformations, the
kinetic term of a Hubbard model on a bipartite lattice at half
filling remains the same, while the interaction term changes
sign.

The pseudospin symmetry, as well as the mapping of the
repulsive Hubbard model to its attractive counterpart, are also
present in the honeycomb bilayer lattice. The question is then
whether any of these properties survive in the low-energy
effective field theory, in which the only degrees of freedom
considered are those around K and K′. In the β functions,
Eq. (19), the pseudospin symmetry is not apparent. Moreover,
once we start from a set of bare interactions corresponding
to the Hubbard interaction, all nine couplings are generated.
However, as we will now demonstrate, both the pseudospin
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symmetry and the connection between the attractive and
repulsive Hubbard models are present in the RG flow. These
manifest themselves through certain linear combinations of
the couplings that are invariant when the bare interactions
correspond to the Hubbard model.

We start by rewriting the mapping given by Eqs. (49)
and (50) for our low-energy effective theory. Fields with spin
up transform as

ψ
(b1/b2)
±K↑ (q) → ψ̃

(b1/b2)
±K↑ (q), (51)

while those with spin down transform according to

ψ
(b1)
±K↓(q) → ψ̃

(b1)∗
∓K↓ (−q), (52)

ψ
(b2)
±K↓(q) → −ψ̃

(b2)∗
∓K↓ (−q). (53)

This mapping leaves the kinetic term, Eq. (5), invariant, as it
should, but it changes the interaction term, Eq. (12),

1

2

∑
S

gS(ψ†Sψ)2 → 1

2

∑
S

g̃S(ψ̃†Sψ̃)2, (54)

where each coupling constant g̃S is a linear combination of
the coupling constants gS before the transformation. We find
that four of the nine coupling constants, gA2g

, gEg
, gA1u

, and
gA1K , do not change sign, i.e., gi → g̃i , under this mapping.
We call these coupling constants “even.” In addition, there are
two linear combinations:

ga = gA1g
+ gA2u

+ 1
2gEK , (55)

gb = gA1g
− gA2u

+ gEu
+ gA2K, (56)

which change sign under the mapping, i.e., ga/b → −g̃a/b. We
will refer to these as “odd.” Finally, there are three remaining
linearly independent combinations of the coupling constants:

δg1 = gA1g
− gA2u

− 2gEu
, (57)

δg2 = gA1g
− gA2u

− 2gA2K , (58)

δg3 = gA1g
+ gA2u

− 4gEK , (59)

which are neither “even” nor “odd,” as they generate terms
proportional to themselves as well as terms proportional to
“even” and “odd” coupling constants in the RG flow. Clearly,
a nonzero value of any δgi would spoil the connection between
the two models.

In the Hubbard limit, we notice that all three δgi’s are zero at
� = 0. We also see that, initially, all other couplings are exactly
zero except for ga ∼ 9U/4 �= 0. Therefore Eqs. (51)–(53),
when applied to a repulsive Hubbard model with interaction
strength U , changes the sign of the only nonzero coupling
g̃a = −ga and leaves all the other couplings zero. This is
precisely the bare interaction of an attractive Hubbard model
with the same interaction strength.

So far, we have shown that the low-energy effective field
theories for the repulsive and attractive Hubbard models in
bilayer graphene map onto each other, but only at the bare level.
To show the equivalence at any �, we look at the flow of the
coupling constants, i.e., their linear combinations, Eqs. (55)–

(59). For the three couplings, Eqs. (57)–(59), we find that

dδgi

d�
= βδgi

(δg1,δg2,δg3)
δgj →0−−−→ 0. (60)

The last arrow means that all three β functions vanish when all
three δgi’s are simultaneously zero. Since this is true at � = 0
in the Hubbard limit, it follows that no δgi’s can be generated
in the RG flow.

On the other hand, the “even” and “odd” coupling constants
do flow under RG, but there is a special structure to their β

functions. The four “even” couplings flow according to

dg
(e)
i

d�
=

4∑
a=1

⎡
⎣ 4∑

j,k=1

g
(e)
j g

(e)
k Ā

(e/e)(a)
ijk

+
2∑

j,k=1

g
(o)
j g

(o)
k Ā

(o/o)(a)
ijk

⎤
⎦�a. (61)

The flows of the two “odd” couplings are given by

dg
(o)
i

d�
= 2

4∑
a=1

2∑
j=1

4∑
k=1

g
(o)
j g

(e)
k Ā

(o/e)(a)
ijk �a. (62)

The fact that all δgi’s are zero for any � has already been in-
corporated, and thus there are only six independent couplings.
The structure of Eqs. (61) and (62) makes them manifestly
invariant under the transformation (51)–(53). Therefore an
RG flow obtained within the continuum low-energy effective
field theory corresponding to an attractive Hubbard model
is described by the same set of differential equations as its
repulsive counterpart. The flows of the “even” couplings are
identical for the two cases, while those for the “odd” couplings
differ only by a sign. The three couplings δgi are all zero at
any � for both cases. Had the flow started from a point where
at least one of the δgi’s were finite, this correspondence would
have been spoiled because additional terms appear in Eqs. (61)
and (62).

An immediate consequence of the mapping described here
is that physical quantities obtained in our one-loop RG method
for a repulsive Hubbard model are related to those obtained
from its attractive counterpart. For example, the “critical
temperatures” tc for the two models are the same. Of course,
the layer antiferromagnetic phase for the repulsive Hubbard
model and the layer-polarized and s++ superconducting phases
for the attractive Hubbard model both have the zero transition
temperature because a continuous O(3) symmetry cannot
be broken at any finite temperature in two dimensions. The
finite tc that we obtain within this approximate technique
corresponds to a gap scale that must be the same for both
models.

Having demonstrated these special properties of the RG
flow in the Hubbard limit, we now compare the susceptibilities
for the layer-polarized and s++ superconducting states. The
α coefficients for the corresponding source terms in the
free energy, Eq. (35), are equal. Therefore it is sufficient to
look at the difference of the right-hand sides of Eqs. (28)
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FIG. 6. (Color online) Susceptibilities for the repulsive Hubbard
model on the honeycomb bilayer. The AF susceptibility is the most
dominant at all temperatures. The dominance of the AF susceptibility
over the others is a sign of growing AF correlations. Here, ν3 = 0.178,
the bare couplings are gA1g

= gA2u
= gEK = 0.0560 × 4π/m∗, and

all others zero. In this case, tc = 0.01.

and (29):

d ln �LP

d�
− d ln �SC

s++

d�

= 2
(
gA1g

− 3gA2u
− 2gEu

− 2gA2K + 4gEK

)
(�1 + �4)

= 2 (δg1 + δg2 − δg3) (�1 + �4)
δgj →0−−−→ 0. (63)

Since none of the δgi’s are generated in the RG flow in the
Hubbard limit, the source terms for the layer-polarized and
s++ superconducting states flow in exactly the same way, their
susceptibilities must diverge with the same exponent. This
proves that our one-loop RG treatment respects the pseudospin
symmetry of the Hubbard model at half-filling. This argument
remains valid for any value of the trigonal warping, which does
not break particle-hole symmetry, since no assumptions were
made about � functions.

Notice that the Hubbard limit is not the only case in
which the mapping and consequent pseudospin symmetry
are realized. Any model in which the bare values of all
three δgi’s are simultaneously zero will exhibit the above
correspondence as well. However, if we restrict ourselves
to microscopic density-density interaction Hamiltonians, in
which case only three of the four-fermion coupling constants
are initially nonzero, the pseudospin symmetry is present only
if gA1g

= gA2u
= 2gEK .

At the end of this section we present numerically obtained
susceptibilities for various orders in the case when gA1g

=
gA2u

= 2gEK . In Fig. 6, susceptibilities to various orders in
the repulsive Hubbard model are shown as functions of
temperature. The AF susceptibility dominates and is the only
one to diverge at Tc. Reiterating what was stated before, this
divergence is an artifact of our one-loop RG approximation.
Nevertheless, one-loop RG correctly singles out the state
that is known to be the ground state at T = 0. The tc
that we find should be thought of as a gap scale for the
AF order. Figures 7 and 8 compare the layer-polarized and
s++ superconducting susceptibilities. In Fig. 7, an attractive
Hubbard model is studied. In Fig. 8, we consider the same
model with an additional small b1-b2 repulsion (left) or
attraction (right). This additional term violates the pseudospin
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FIG. 7. Susceptibilities toward the layer-polarized and s++ super-
conducting orders in the attractive Hubbard model. In this case, both
susceptibilities are equal. The bare coupling constants used here are
gA1g

= gA2u
= 2gEK = −0.0560 × 4π/m∗, with all others zero. The

transition temperature in this case is tc = 0.01.

symmetry of the Hubbard Hamiltonian. In this case, the
coupling constants are the same as in the Hubbard model,
except that now gA2u

= 1−ε
1+ε

gA1g
, where ε = V/U and V is the

microscopic b1-b2 interaction strength. When this interaction
is repulsive, the system favors the layer-polarized state over the
superconducting state analogous to, for example, the findings
of Ref. 33. Conversely, when this interaction is attractive, it
favors delocalization of the electron pairs and the concomitant
superconducting ground state. Our numerical results are in the
agreement this.

G. Fixed ratios and broken symmetry phases

The list of phases found numerically in the previous
section shows ordering trends for bilayer graphene only for
a certain kind of microscopic interaction that we believe is
relevant in a realistic system. The question is whether there
are other possible ordered states in bilayer graphene when
all nine symmetry-allowed couplings are included at � = 0.
One way to answer this question is to numerically explore the
entire nine-dimensional space of bare couplings for various
trigonal warping parameters. Such an approach, although
straightforward, would require immense computational power
and might even miss certain phases that are realized only
for specific bare interactions. Fortunately, there is another
approach to the problem that we discuss in this section. Instead
of concentrating on the bare interactions, we look at what
happens to the couplings and susceptibilities at large �. This
allows us to enumerate all the possible phases regardless of
the initial interactions.

Previously, we discussed the asymptotic behavior of the RG
equations at t = tc > 0. We know that at least one coupling
will diverge as gr (�) ∼ e2�. We divide all the other couplings
by that particular coupling and find the β functions for the
ratios, ρ

(r)
j = gj/gr , to be

dρ
(r)
j

d�
= ġj gr − ġrgj

g2
r

= gr (�)
∑
k,l

ρ
(r)
k ρ

(r)
l

×
4∑

a=1

[
A

(a)
jkl − A

(a)
rklρ

(r)
j

]
�a[ν3(�),t(�)]. (64)
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FIG. 8. (Color online) Comparison of the susceptibilities for the layer-polarized and s++ superconducting orders in the attractive Hubbard
model with an additional small b1-b2 interaction. In this case, gA2u

= 1−ε

1+ε
gA1g

, where ε = V/U and V is the microscopic b1-b2 interaction
strength. In both cases, the bare gA1g

= 2gEK = −0.0560 × 4π/m∗. (Left) When a small b1-b2 repulsion is added, the layer-polarized state is
preferred. Its susceptibility diverges at tc, while that of the superconducting state, as well as all other order parameters considered, reaches a
finite value. Here, we take ε = 0.1, in which case tc = 5.18 × 10−3. (Right) In the case of a small b1-b2 attraction, the opposite is true—the
susceptibility for the s++ superconducting state diverges, while that for the layer-polarized state remains finite at tc. Here, ε = −0.1 in which
case tc = 0.0288.

Here, a dot over a coupling constant represents a derivative
with respect to �. In the large � limit, these equations become

ρ̇
(r)
j = 8tc

A(r)

∑
k,l

ρ
(r)
k ρ

(r)
l

2∑
a=1

[
A

(a)
jkl − A

(a)
rklρj

]
. (65)

We now ask if these equations have any fixed points, or, in our
terminology, “fixed rays.” These are obtained by demanding
that the right hand sides of all eight equations (65) are
simultaneously equal to zero. After finding the fixed rays,
we need to determine whether each ray is stable, unstable,
or mixed by analyzing eigenvalues of the stability matrix
Sjk = ∂ρ̇

(r)
j /∂ρ

(r)
k . Since A(r) is already defined in Eq. (25) in

terms of the ratios, the entire stability matrix has well-defined
eigenvalues for each “fixed ray” solution. In addition, the sign
of A(r) determines the sign of the diverging coupling that we
divide the others by; see Eq. (24).

If we find that a ray is stable, then, if we start with the
coupling constants sufficiently close to the fixed ray, then the
ratios of the couplings approach the given set of values as
� → ∞. Such a flow leads to a divergent susceptibility in at
least one channel. If a ray is mixed or unstable, then, in the
absence of fine-tuning, the RG flow cannot take the couplings
toward such a ratio; even if the flow starts in such a direction
for small �, it will be redirected toward some other ray that
is stable. We therefore conclude that all the solutions that
have even one positive eigenvalue in their stability matrix are
physically irrelevant. It is possible that some rays are marginal
in certain directions, meaning that some of the eigenvalues of
the stability matrix are zero, and stable in others. We do, in
fact, find such physically relevant solutions.

Following the procedure described above for all possible
choices of the divergent coupling, we find that the stable solu-
tions of the RG flow are situated either on a manifold that we
call the “target plane” or on one of four isolated fixed rays. The
“target plane” represents a set of stable rays that are marginal in
two directions and stable in six others. The target plane and the
phases corresponding to each point within are shown in Fig. 9.

We parametrize the plane in the following way. We choose as
our parameters the following two coupling constant ratios:

x = lim
�→∞

gEu

gEg

∣∣∣∣
t=tc

, (66)

y = lim
�→∞

gEK

gEg

∣∣∣∣
t=tc

. (67)

Since, for certain fixed rays, gEu
and/or gEK diverge,

while gEg
does not, these parameters take values in the

interval (−∞,∞), including infinite values. With the chosen
parametrization, we express each coupling at large � as

gA1g

G(�)

∣∣∣∣
t=tc

= 0, gA2g

∣∣
t=tc

= (1 + x + 2y)2

C(x,y)
G(�),

gEg
|t=tc = −2(1 + x + 2y)

C(x,y)
G(�), (68)

gA1u
|t=tc = 4y2

C(x,y)
G(�), gA2u

|t=tc = 4x

C(x,y)
G(�),

gEu
|t=tc = −2x(1 + x + 2y)

C(x,y)
G(�), (69)

gA1K |t=tc = 4xy

C(x,y)
G(�), gA2K |t=tc = 4y

C(x,y)
G(�),

gEK |t=tc = −2y(1 + x + 2y)

C(x,y)
G(�), (70)

where C(x,y) is a square root of a quartic polynomial and the
“overall” coupling G(�) = [

∑9
j=1 g2

j ]1/2 is a positive definite
function of � that diverges as � → ∞. The expression for
C(x,y) can be readily obtained from the definition of G(�),
but is unwieldy, and thus we do not include it here. The ratios
of any two couplings at large � depend only on x and y,
although sometimes these ratios may be infinite.

In the special situation in which the parameters x and y are
infinite, but their ratio is finite, we may reparameterize x and y

as x = R cos η and y = R sin η and take the limit as R → ∞.
The only diverging couplings in this case are gA2g

, gA1u
, gEu

,
gA1K , and gEK . Note that, for each η, we obtain the same stable
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FIG. 9. (Color online) A plot of all of the phases found in the fixed plane described by Eqs. (68)–(70). We find nematic (N, Eg charge),
Kekulé (K, A1K charge), spontaneous current, or magnetoelectric (ME2, Eu charge), layer-polarized (LP, A2u charge), Kekulé current (KC, A2K

charge), staggered spin current (SSC, A1u spin), antiferromagnetic (AF, A2u spin), quantum spin Hall (QSH, A2g spin), s++ superconductor
(s++ SC, A1g singlet), and s+− superconductor (s+− SC, A2u singlet) states. In addition to this fixed plane, we also find four isolated fixed
points, which are described in the text.

ray at η + π . Due to the fact that any two opposite points
at infinity on the target plane are identical, we conclude that
the target plane is homeomorphic to a projective plane RP 2.
In Fig. 9, some of the phases, such as QSH, have hyperbolic
phase boundaries and appear to exist in two disconnected parts
of the phase diagram. However, due to the fact that the opposite
points in the target plane are identical, these may be regarded
as single and simply connected regions.

The values of ρ
(r)
j = gj/gr are readily obtained from

Eqs. (68)–(70). Without loss of generality we now set gr = gEg

in Eq. (26). We obtain

A(Eg) = −6
3 + 2x + 3x2 + 4y + 4xy + 8y2

1 + x + 2y

m∗

4π
. (71)

We may obtain Bi,(Eg ) from Eqs. (33) and (34). We can
now determine the anomalous dimensions of the symmetry-
breaking source terms defined in Eq. (32). Remarkably, we see
that the anomalous dimensions are continuous functions of the
two parameters x and y. For each point in the target plane,
we determine the phases for which ηi > 1, i.e., the inequality

Eq. (39) holds. If more than one phase satisfies this inequality,
then we list all such phases regardless of the value of ηi .
As discussed before, whenever two or more susceptibilities
diverge, we cannot decide within our RG framework if the
system chooses only one of these phases or if there is a
coexistence. The resulting list of phases is shown in Fig. 9.
In addition to the phases we found earlier in Sec. III E, namely
the nematic (N), layer antiferromagnetic (AF), quantum spin
Hall (QSH), layer-polarized (LP), Kekulé current (KC), and
s++ superconducting (s++ SC) states, a few other phases are
predicted as possible outcomes of the RG flow if it ends on the
target plane. These are

(a) Magnetoelectric phase (ME2): the order parameter for
this phase transforms according to the Eu charge representa-
tion. In this phase, currents forming a bow-tie pattern within a
plaquette appear. Like the nematic phase, this phase is gapless,
but it reconstructs the low-lying spectrum by lifting two of the
four Dirac cones.

(b) Kekulé state (K): in this phase, a supercell made of
three unit cells is formed, much like the Kekulé current phase.
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The difference is that, in this phase, there are no currents.
Instead, there is a modification of the hopping integrals such
that the hoppings in one unit cell are unchanged, while, in
the two other unit cells, the hoppings on alternating bonds are
changed.45 The phase is gapped.

(c) Staggered spin current state (SSC): this phase is
characterized by circulating spin currents in each plaquette
flowing in opposite directions in each layer. This phase is
not gapped, corresponds to a compensated semimetal, and the
order parameter belongs to the A1u spin representation.

(d) s+− superconducting state (s+− SC): since a particle-
particle susceptibility diverges in this case, a superconducting
gap opens on both layers. The gaps are, however, not
independent; they have opposite signs. The order parameter
of this phase is a (charge 2) A2u spin singlet.

Strictly speaking, when either x or y becomes infinite or
they satisfy 1 + x + 2y = 0, we are not allowed to divide
by gEg

as this coupling is not divergent. It shows up in
Eq. (71) as a divergent A(Eg). Instead, these cases are explored
by dividing by some other coupling. We follow the same
procedure as described above in the case where we divided
by gEg

. Interestingly, since both A(Eg) and Bi,(Eg) diverge in
the same way, the ηi’s are independent of the choice of the
coupling that we divide by.

In addition to the target plane, we also find the following
four isolated stable fixed points.

R1:

lim
�→∞

gA1g

gEg

∣∣∣∣
t=tc

= 3,

(72)

lim
�→∞

gj

gEg

∣∣∣∣
t=tc

= 1 ∀ j �= A1g,

with gEg
(� → ∞) > 0. In this case, only the ferromagnetic

(A1g spin) susceptibility diverges.
R2:

lim
�→∞

gj

gA2g

∣∣∣∣
t=tc

= 0 ∀ j �= A2g, (73)

and gA2g
(� → ∞) < 0. The only divergent susceptibility in

this case is toward the anomalous quantum Hall state43 (A2g

charge). Here, charge currents circulate in each layer,37 and in
the same direction in both layers.

R3:

lim
�→∞

gj

gA1u

∣∣∣∣
t=tc

= 0 ∀ j �= A1u, (74)

and gA1u
(� → ∞) < 0. This yields a loop current order,44 or

“orbital antiferromagnet” (A1u charge). Like the above phase,
there are charge currents circulating in each layer, but in
opposite directions. Note that the order parameter, τ31, can
be thought of as a chemical potential shift with opposite
signs in each valley. Therefore, at weak coupling, this phase
corresponds to a compensated semimetal with electron and
hole pockets.

R4:

lim
�→∞

gj

gA1g

∣∣∣∣
t=tc

= 0 ∀ j �= A1g, (75)

with gA1g
(� → ∞) < 0. Although we would intuitively expect

this fixed point to favor a superconducting state, we find no
particle-particle susceptibilites diverging. Only the A1g charge
susceptibility, or equivalently the electronic compressibility,
diverges. Therefore we conclude that the system enters a phase
segregated state.

We can now make a connection between the results obtained
in previous sections and the analytic results obtained here.
For the set of initial couplings and parameters analyzed in
Secs. III D–III F, the flow at tc always converges to the target
plane, and never to any of the isolated points Rj . In the case
of forward scattering only at � = 0, and in the absence of
trigonal warping, none of the couplings from the u and K rep-
resentations are generated. The flow always ends at the point,
(x,y) = (0,0), in the target plane, which corresponds to a pure
nematic state. With trigonal warping included, u representation
couplings are generated, even when we start with forward
scattering only. However, we still do not generate any of the
K representation couplings. This means that the end point of
the flow at tc is restricted to the y = 0 line in the target plane.
Decreasing the initial coupling strength gA1g

, while holding
the bare v3 fixed, causes tc to decrease. At the same time, x

increases. We always find that x < 1. As seen from Fig. 9,
these points correspond to a pure nematic order. However, as
tc is lowered, the point in the target plane moves closer to
x = 1, which is the intersection of the AF and QSH regions in
the target plane. Upon reaching tc = 0 exactly, we find that the
nematic order parameter is absent while the AF and QSH sus-
ceptibilities become divergent. This is illustrated in Fig. 2(b).
Note that there is no point at which the only two diverging
susceptibilities are AF and QSH, either in the target plane or as
one of the four isolated points. This is because the asymptotic
behavior of the � functions is different at t = 0 and our anal-
ysis, in which we assumed that tc > 0, does not apply there.

When the RG flow begins with a finite backscattering, i.e.,
gEK �= 0, all nine couplings are generated. We find that our
numerical results correspond to points in the target plane where
y �= 0. With the physical constraints we impose on the initial
couplings, |gA2u

| � gA1g
, |gEK | � gA1g

/2 and gA1g
positive,

only the central region of the target plane is approached. With
these constraints, we do not find any set of initial couplings
for which K, SSC, or ME2 phases appear.

In the previous sections, the flows never reach any of
the isolated points Rj . However, one can expect that the
flow will tend to one of these points if one starts with
bare couplings sufficiently close to the associated ray
and with a large initial value of �. To confirm this, we
analyzed the flow equations with no trigonal warping and
gA1g

(� = 0) < 0. For sufficiently large initial values of the
interaction m∗

4π
gA1g

(� = 0) < m∗
4π

gc
A1g

≈ −0.13, the flow takes
the couplings towards the R4 fixed ray. As stated before,
this represents a compressibility instability. However, when
gA1g

(� = 0) > gc
A1g

the couplings diverge toward the nematic
fixed ratio, i.e., our flows end up on the target plane.

The symmetry properties of the Hubbard limit have conse-
quences for the asymptotic behavior of the RG flows studied
in this section. When all three couplings, δgi , Eqs. (57)–(59)
are absent at the bare level, we have shown that they remain
zero throughout the entire flow. As argued above, the ratios of
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couplings at tc must lie either on the target plane or at one of
the four isolated points Rj . In the target plane, the condition,
δgi = 0, is satisfied only when x = −2y. This defines a line
of fixed points (strictly speaking a circle, since two points
at infinity are equivalent). As shown in Sec. III F, because
δgi = 0, the susceptibilities towards the layer-polarized and
s++ superconducting states are identical. Therefore this holds
along the entire line x = −2y. For the repulsive Hubbard
model, a wide range of initial conditions, 10−8 < tc < 1,
maps onto the segment of this fixed line that lies within the
AF-only region. These results were also used in studying the
attractive Hubbard model due to the U → −U correspondence
presented in Sec. III F. The only difference is that both x

and y change their sign under this mapping. The resulting
fixed points are therefore situated in the region where the
layer-polarized and s++ superconducting orders overlap.

In addition to the fixed line that is part of the target plane,
the condition that all three δgi’s are zero is satisfied at the
isolated fixed point R1. However, we never find a flow toward
that point for any set of bare couplings studied here.

IV. EFFECT OF A PERPENDICULAR ELECTRIC FIELD
ON THE PHASE BOUNDARIES

We now consider the effect that applying a perpendicular
electric field has on the phase boundaries of our system. This
field creates an energy difference between the two layers of
the sample, thus introducing a new term into the Hamiltonian,

HE⊥ = V⊥
∑

|k|<�

∑
σ=↑,↓

ψ
†
kσ 1σ3ψkσ . (76)

We state the effects that this has on the Green’s function and
on the associated identities that we use in Appendix B, and
simply quote the main results here. The RG flow equations for
the coupling constants become

dgi

d�
=

∑
j,k

gjgk

6∑
a=1

A
(a)
ijk�a[ν3(�),v(�),t(�)], (77)

where, in addition to the dimensionless parameters for the �

functions that were defined before, we have one new parameter,

v(�) = V⊥(�)

�2/2m∗ . (78)

The � functions are given by Eqs. (B3)–(B15).
In addition, the energy difference V⊥ has a nontrivial

behavior under rescaling; it obeys the flow equation

dv

d�
= 2v

[
1 + F (ν3,v,t)

∑
i

bigi

]
, (79)

where the coefficients bi are given in Appendix C, and the
function F is given by Eq. (B17).

We studied the behavior of the critical temperature as a
function of v in a case where we know that the system enters
the nematic phase when v = 0, namely, when all coupling
constants are zero except for gA1g

> 0. We assume that the

energy scale �2

2m∗ = 200 meV, and that the critical temperature
at zero field is Tc = 2 meV, i.e., tc = 0.01. To determine tc for
a given initial gA1g

, we start with a high value of t and integrate

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Tc(V⊥)/Tc(0)

V⊥
V⊥,c

FIG. 10. Plot of the critical temperature Tc as a function
of the layer energy difference V⊥, under such conditions that
Tc(0) = 0.01�2/2m∗. The critical temperature becomes zero when
V⊥ = V⊥,c = 4.93 × 10−3�2/2m∗, which corresponds to an applied
electric field of ∼16 mV/nm.

our RG flow equations numerically up to a large value of �,
say 10. If we do not encounter any divergences in the flows,
we lower t and integrate again. We continue until we find
the highest temperature at which we encounter a divergence.
Under the stated conditions, the behavior of tc as a function of
v is as shown in Fig. 10.

We find that, at v = 4.93 × 10−3, tc becomes zero. Convert-
ing this into an electric field using the stated energy scale and
the formula relating the applied electric field to the size of the
gap in the spectrum, � = dE

k
, where d is the distance between

the two graphene layers and k ≈ 3 is a factor accounting for
imperfect screening,4,5 we find that the electric field required
to drive tc to zero is ∼16 mV/nm.

We have also determined which phase the system enters at
all points on the curve in Fig. 10 at which Tc �= 0. We did this
by deriving the RG flow equations for the source terms and the
formula for the free energy per unit area using the same proce-
dures as before, but with properly modified Green’s functions,
whose forms are given in Appendix B. We then numerically
integrate the RG flow equations, and, from these solutions,
determine the susceptibilities to the phases corresponding to
each source term just above the critical temperature; the phase
with the highest susceptibility is considered to be the phase
that is present. Using this procedure, we determined that, for
all V⊥ < V⊥,c, the system enters the nematic phase.

V. DISCUSSION

The key result of this work is the identification of the
conditions on the electron-electron interactions under which
various electronic ordering tendencies, if any, dominate in half-
filled bilayer graphene. Our results for the ordered states are
summarized in Figs. 5 and 9. Aside from our use of one-loop
RG, no further approximations are made. Therefore our results
can be stated rigorously at the level of mathematical theorems.
While a large number of phases is, in principle, possible in
the entire nine-dimensional space of couplings, as one can see
from Fig. 9, our assertion is that the electronic nematic appears
to be the unique dominant instability when forward scattering
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dominates. Similarly, the layer antiferromagnet appears upon
inclusion of sufficiently strong back and layer imbalance
scattering.

A similar approach in one spatial dimension22 results in
divergences in the scattering amplitudes at finite temperature,
naively suggesting a finite temperature phase transition,
which we know cannot happen. Nevertheless, among many
possibilities, the method does identify the correct channels
for which long, but finite, correlation lengths develop. For
example, the low-energy effective field theory for the course-
grained half-filled Hubbard model does correctly determine
that the dominant correlations appear in either the pairing
(attractive U ) or AF (repulsive U ) channel.54 Away from any
special filling, a metallic state is also correctly predicted.21

We view our RG results for the half-filled Hubbard model
similarly. While the method correctly determines the dominant
ordering tendency, there can be no finite temperature phase
transition in 2D to either the AF state or the SC/LP state.
A continuous spin SU(2) symmetry in the former case, or
a continuous pseudospin symmetry in the latter case, would
have to be broken at finite temperature, which we know cannot
happen. Therefore, if the RG procedure had been performed
exactly, none of these susceptibilities would have diverged
as long as the temperature was finite. Interestingly, in this
regard, the nematic state is different. This is because, when
trigonal warping is included, as it is in our model, the broken
rotational symmetry is discrete and thus it is possible to
have a finite-temperature transition into this phase in 2D. As
argued previously,11 this transition is continuous and belongs
to the 3-state Potts model universality class.49 Nevertheless,
the non-mean-field exponents determined approximately from
our fermionic model at one loop should not be expected to be
accurate. It would be very interesting to see whether going to

higher order either improves the accuracy of the exponents
in the case of the nematic state or eliminates the finite-
temperature phase transition altogether for the case of O(3)
order parameters. The effects of (weak) disorder have not been
addressed here either. These considerations may be important
in fully understanding the current experimental results.4–10

Even if the RG method used here is not without its limita-
tions, it is unbiased and capable of systematically treating the
leading instabilities in both particle-hole and pairing channels.
In fact, for a large range of temperatures above the transition
temperature, the couplings saturate to small finite values as all
modes are eliminated, giving full justification to our method.
In the special case in which our continuum field theory cor-
responds to the weak-coupling honeycomb bilayer Hubbard
model, we recover some of its nontrivial, exactly known, prop-
erties. This gives further support for the validity of our results.

ACKNOWLEDGMENTS

This work was supported by the NSF CAREER award under
Grant No. DMR-0955561, NSF Cooperative Agreement No.
DMR-0654118, and the State of Florida. The authors would
also like to thank the KITP-UCSB Research Program, “The
Physics of Graphene,” where part of this work was completed,
for hospitality. The work at KITP was supported in part by
NSF Grant No. PHY-0551164.

APPENDIX A: ASYMPTOTIC BEHAVIOR
OF THE � FUNCTIONS

The finite-temperature Green’s function that is used to
calculate the RG flows for infinitesimal symmetry breaking
source terms is

Gk(iωn) =
[
−iωn18 + 1

2m∗
(
k2
x − k2

y

)
1σ11 + v3kxτ3σ11 + 1

m∗ kxkyτ3σ21 − v3ky1σ21

]−1

(A1)

= 1

2

∑
s=±

(1 + sτ3)
iωn1 + (

1
2m∗k2 cos 2θk + sv3k cos θk

)
σ1 + (

s 1
2m∗ k

2 sin 2θk − v3k sin θk
)
σ2

ω2
n + 1

4m∗2 k4 + v2
3k

2 + s 1
m∗ v3k3 cos 3θk

1. (A2)

Throughout the Appendix, we will use the notation, τiσj sk , for the (8 × 8) matrices that appear in our expressions; the Pauli
matrices operate in valley, layer, and spin space, respectively. We find the following identity useful when calculating the flow
equations:∫ �

�(1−d�)

dkk

2π

1

β

∞∑
n=−∞

∫ π

−π

dθk

2π
Gk(iωn) ⊗ G±k(±iωn)

= d�
m∗

8π

{
∓18 ⊗ 18 [�1 (ν3,t) + �2 (ν3,t)] + 1

2
(1σ11 ⊗ 1σ11 + τ3σ21 ⊗ τ3σ21) [�3 (ν3,t) + �4 (ν3,t)]

}

+ d�
m∗

8π

{
−τ314 ⊗ τ314 [�1 (ν3,t) − �2 (ν3,t)] ± 1

2
(τ3σ11 ⊗ τ3σ11 + 1σ21 ⊗ 1σ21) [�4 (ν3,t) − �3 (ν3,t)]

}
. (A3)

The � functions are defined as

�1(ν3,t) = 1

2π

1

t

∫ 1

−1

dx√
1 − x2

ϒ1(x,ν3,t), (A4)

�2(ν3,t) = 1

π

1

ν3

∫ 1

0

dx√
1 − x2

1

x
ϒ2(x,ν3,t), (A5)
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�3(ν3,t) = 1

π

1 − ν2
3

ν3

∫ 1

0

dx√
1 − x2

1

x
ϒ3(x,ν3,t), (A6)

�4(ν3,t) = 1

2π

1

t

∫ 1

−1

dx√
1 − x2

ϒ4(x,ν3,t), (A7)

where

ϒ1(x,ν3,t) = 1

cosh2
(

Q+
2t

) + 2t

Q+
tanh

(
Q+
2t

)
, (A8)

ϒ2(x,ν3,t) =
∑
λ=±

λQλ tanh

(
Qλ

2t

)
, (A9)

ϒ3(x,ν3,t) = −
∑
λ=±

λ

Qλ

tanh

(
Qλ

2t

)
, (A10)

ϒ4(x,ν3,t) = −1

cosh2
(

Q+
2t

) + 2t

Q+
tanh

(
Q+
2t

)
, (A11)

and

Q± =
√

1 + ν2
3 ± 2xν3. (A12)

In the limit of v3 = 0, we have

�1(0,t) = �2(0,t) = tanh
1

2t
+ 1

2t

1

cosh2 1
2t

, (A13)

�3(0,t) = �4(0,t) = tanh
1

2t
− 1

2t

1

cosh2 1
2t

. (A14)

In the limit of T = 0, we have

�1(ν3,0) = �4(ν3,0) = 2

π

1

1 + ν3
K

[
4ν3

(1 + ν3)2

]
, (A15)

�2(ν3,0) = 2

π

1

ν3

(1 − ν3)2

1 + ν3

{
�

[
2ν3

1 + ν2
3

,
4ν3

(1 + ν3)2

]

−K

[
4ν3

(1 + ν3)2

]}
, (A16)

�3(ν3,0) = 2

π

1 − ν3

ν3

{
K

[
4ν3

(1 + ν3)2

]

− (1 − ν3)2

1 + ν2
3

�

[
2ν3

1 + ν2
3

,
4ν3

(1 + ν3)2

]}
. (A17)

Here, the complete elliptic integrals of the first, K(x), and the
third, �(x,y), kind are defined as

K(x) =
∫ π

2

0

dφ√
1 − x sin2 φ

, (A18)

�(x,y) =
∫ π

2

0

dφ

(1 − x sin2 φ)
√

1 − y sin2 φ
. (A19)

Physically, the logarithmic singularity associated with K(x)
has its origin in the logarithmic divergence of the density of
states at the van Hove point, where the lines of constant energy
near each K point change from single to four closed contours.
These log singularities appear only at t = 0, for t > 0 they
are smeared out. Because the divergences are integrable, they
aren’t the cause of divergence of g′

i s in Eq. (19). Instead, the
coupling constants receive a “boost” at �, where ν3(�) = 1.

APPENDIX B: GREEN’S FUNCTIONS IN THE
PRESENCE OF AN APPLIED PERPENDICULAR

ELECTRIC FIELD

In the presence of an applied electric field, the Green’s
function becomes

Gk(iωn) = (−iωn18 + dx
k 1σ11 + v3kxτ3σ11 + d

y

k τ3σ21 − v3ky1σ21 + V⊥1σ31
)−1

= 1

2

∑
s=±

(1 + sτ3)
iωn1 + (

1
2m∗k2 cos 2θ + sv3k cos θ

)
σ1 + (

s 1
2m∗ k

2 sin 2θ − v3k sin θ
)
σ2 + V⊥1σ3

ω2
n + 1

4m∗2 k4 + v2
3k

2 + s 1
m∗ v3k3 cos 3θ + V 2

⊥
1. (B1)

The generalization of Eq. (A3) for this case is∫ �

�(1−d�)

k dk

2π

1

β

∞∑
n=−∞

∫ 2π

0

dθk

2π
Gk(iωn) ⊗ G±k(±iωn)

= m∗

8π
d�

[
(∓18 ⊗ 18 − τ314 ⊗ τ314)�1(ν3,v,t) + (∓18 ⊗ 18 + τ314 ⊗ τ314)�2(ν3,v,t)

+ 1

2
(1σ11 ⊗ 1σ11 ∓ τ3σ11 ⊗ τ3σ11 ∓ 1σ21 ⊗ 1σ21 + τ3σ21 ⊗ τ3σ21)�3(ν3,v,t)

+ 1

2
(1σ11 ⊗ 1σ11 ± τ3σ11 ⊗ τ3σ11 ± 1σ21 ⊗ 1σ21 + τ3σ21 ⊗ τ3σ21)�4(ν3,v,t)

+ (1σ31 ⊗ 1σ31 + τ3σ31 ⊗ τ3σ31)�5(ν3,v,t) + (1σ31 ⊗ 1σ31 − τ3σ31 ⊗ τ3σ31)�6(ν3,v,t)

]
, (B2)

where the � functions are

�1(ν3,v,t) = 1

2π

1

t

∫ 1

−1

dx√
1 − x2

ϒ1(x,ν3,v,t), (B3)
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�2(ν3,v,t) = 1

π

1

ν3

∫ 1

0

dx√
1 − x2

1

x
ϒ2(x,ν3,v,t), (B4)

�3(ν3,v,t) = 1

π

1 − ν2
3

ν3

∫ 1

0

dx√
1 − x2

1

x
ϒ3(x,ν3,v,t), (B5)

�4(ν3,v,t) = 1

2π

1

t

∫ 1

−1

dx√
1 − x2

ϒ4(x,ν3,v,t), (B6)

�5(ν3,v,t) = 1

2π

v2

t

∫ 1

−1

dx√
1 − x2

ϒ5(x,ν3,v,t), (B7)

�6(ν3,v,t) = v2

1 − ν2
3

�3(ν3,v,t). (B8)

The ϒ functions are

ϒ1(x,ν3,v,t) = 2t

Q+
tanh

(
Q+
2t

)
+ 1

cosh2
(

Q+
2t

) , (B9)

ϒ2(x,ν3,v,t) =
∑
λ=±

λQλ tanh

(
Qλ

2t

)
, (B10)

ϒ3(x,ν3,v,t) = −
∑
λ=±

λ

Qλ

tanh

(
Qλ

2t

)
, (B11)

ϒ4(x,ν3,v,t) =
(

Q
(0)
+

Q+

)2[ 2t

Q+
tanh

(
Q+
2t

)
− 1

cosh2
(

Q+
2t

)],

(B12)

ϒ5(x,ν3,v,t) = 1

(Q(0)
+ )2

ϒ4(x,ν3,v,t), (B13)

where

Q± =
√

1 + ν2
3 + v2 ± 2xν3, (B14)

Q
(0)
± =

√
1 + ν2

3 ± 2xν3. (B15)
One other identity that we will find useful is∫ �

�(1−d�)

k dk

2π

1

β

∞∑
n=−∞

∫ 2π

0

dθk

2π
Gk(iωn)

= m∗V⊥
2π

1σ31F (ν3,v,t) d�, (B16)

where F (ν3,v,t) is

F (ν3,v,t) = 1

π

∫ 1

−1

dx√
1 − x2

1

Q+
tanh

(
Q+
2t

)
. (B17)

In arriving at this result, we will, in the intermediate steps,
also find a term proportional to τ3σ31. However, we can use
the periodicity of the integrand to show that this term will
be zero at the end. We can also see that this must happen
due to the symmetries of our system. Imagine that we tried
calculating the expectation value of an observable, which
would be represented by a matrix τiσj sk . This expectation
value will only be nonzero if the matrix is proportional to
one of the matrices appearing in the above identity, since said
expectation value involves a trace of the product of the Green’s
function with the associated matrix. If a term proportional to
τ3σ31 were present, then this means that we can have a finite
expectation value of the associated observable, which would,

in this case, correspond to the gap opened by an anomalous
quantum Hall order parameter. This order parameter breaks
time reversal symmetry. However, we should not be able to
develop a finite expectation value of this observable because
our Hamiltonian is time reversal invariant.

APPENDIX C: DETERMINATION OF RG FLOW
EQUATIONS

We now show how to derive the flow equations for the four-
fermion coupling constants g and the source term constants �.
We start by performing a cumulant expansion of the partition
function to second order in the “perturbation” Sint + �S:

Z ≈ exp
[−〈Sint + �S〉0 + 1

2 〈(Sint + �S)2〉0,C

]
, (C1)

where, in the subscripts on the averages 〈· · · 〉, “0” means to
average with respect to the bare action S0, and “C” means that
the average is “connected,” that is, it can be represented with
connected Feynman diagrams. We now integrate out modes in
thin shells; by doing so, we generate terms that renormalize
different constants in our theory. We will first discuss the terms
that renormalize the four-fermion coupling constants, since the
general procedure is the same. There are five different types
of terms that appear; these are represented by the diagrams
shown in Fig. 11.

The first diagram gives the following correction:

δS1 = 1

2

∑
S,U

gSgU

∫
1,2,3,4

{∫
k>,ω

Tr[S1Gk(iω)U1Gk(iω)]

}

×
∑
σ,σ ′

ψ†
σ (1)Sψσ (2)ψ†

σ ′(3)Uψσ ′(4), (C2)

where the numbers 1–4 are shorthand for the momentum
and frequency dependencies of the Grassman fields, and∫

1,2,3,4 represents the integrals and sums over these variables
along with the proper momentum- and frequency-conserving δ

functions, and similarly for
∫

k>,ω
. We may evaluate the integral

and sum over k and ω, respectively, using Eq. (A3) in the
absence of an external electric field or Eq. (B2) when said field
is present. In both cases, this term is only nonzero if S = U ,
so that we generate a correction to gS that is proportional to
g2

S . The nonzero contributions to the coefficients

A
(a)
ijk = A

(a)
ijk(1) + A

(a)
ijk(2 + 3) + A

(a)
ijk(4) + A

(a)
ijk(5) (C3)

in Eq. (19) are

A
(1/2)
iii (1) = −1

2

{
8 ± Tr

[(
�

(1)
i τ314

)2]}m∗

4π
, (C4)

S U S U S U

S

U

S

U

FIG. 11. (Color online) Diagrams representing contributions to
the renormalization of the four-fermion coupling constants gi . The
dashed lines represent 8 × 8 matrices, the black lines represent slow
modes, and the red lines represent fast modes.
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A
(3/4)
iii (1) = 1

4

{
Tr
[(

�
(1)
i 1σ11

)2] ∓ Tr
[(

�
(1)
i τ3σ11

)2]
∓ Tr

[(
�

(1)
i 1σ21

)2] + Tr
[(

�
(1)
i τ3σ21

)2]}m∗

4π
, (C5)

A
(5/6)
iii (1) = 1

2

{
Tr
[(

�
(1)
i 1σ31

)2] ± Tr
[(

�
(1)
i τ3σ31

)2]}m∗

4π
.

(C6)

In these expressions, the top signs correspond to the first
number in the superscript on the left-hand side, while the
bottom corresponds to the second. The A

(5/6)
ijk coefficients only

enter into our analysis when a finite electric field is present.
The 8 × 8 matrices �

(m)
i are defined as follows:

�
(1)
1 = 18, (C7)

�
(1)
2 = τ3σ31, (C8)

�
(1)
3 = 1σ11, �

(2)
3 = τ3σ21, (C9)

�
(1)
4 = τ314, (C10)

�
(1)
5 = 1σ31, (C11)

�
(1)
6 = τ3σ11, �

(2)
6 = −1σ21, (C12)

�
(1)
7 = τ1σ11, �

(2)
7 = τ2σ11, (C13)

�
(1)
8 = τ1σ21, �

(2)
8 = τ2σ21, (C14)

�
(1)
9 = τ114, �

(2)
9 = −τ2σ31,

(C15)
�

(3)
9 = −τ214, �

(4)
9 = −τ1σ31.

The superscripts (m) refer to the multiplicity of a given
representation. Here, and throughout this appendix, A

(a)
ijk(n)

represents the contribution to A
(a)
ijk from the nth diagram in

Fig. 11.
The second and third diagrams together give the following

correction:

δS2+3 = −
∑
S,U

gSgU

∫
1,2,3,4

ψ†
σ (1)Sψσ (2)ψ†(3)

×
[∫

k>,ω

U1Gk(iω)S1Gk(iω)U1

]
ψ(4). (C16)

Note that the first two ψ fields carry an explicit spin index.
The second two do not; for notational simplicity, these two
are extended to be eight-component spinors in valley, layer,
and spin space. In both cases that we consider, the second
matrix U1Gk(iω)S1Gk(iω)U1 appearing in this expression
is proportional to S1. Therefore this term also represents a
correction to gS , but now it generates terms involving the
products, gSgU . We may extract the contributions to the
A

(a)
ijk coefficients by noting that, since the second matrix is

proportional to S1. Using Tr(�(m)
i �

(n)
j ) = 8δij δmn, we find that

the nonzero contributions to the A
(a)
ijk coefficients are

A
(1/2)
iij (2 + 3) = 1

8

mj∑
m=1

{
Tr
[(

�
(1)
i �

(m)
j

)2] ± Tr
(
�

(1)
i �

(m)
j τ314�

(1)
i τ314�

(m)
j

)}m∗

4π
, (C17)

A
(3/4)
iij (2 + 3) = − 1

16

mj∑
m=1

[
Tr
(
�

(1)
i �

(m)
j 1σ11�

(1)
i 1σ11�

(m)
j

) ∓ Tr
(
�

(1)
i �

(m)
j τ3σ11�

(1)
i τ3σ11�

(m)
j

)

∓ Tr
(
�

(1)
i �

(m)
j 1σ21�

(1)
i 1σ21�

(m)
j

) + Tr
(
�

(1)
i �

(m)
j τ3σ21�

(1)
i τ3σ21�

(m)
j

)]m∗

4π
, (C18)

A
(5/6)
iij (2 + 3) = −1

8

mj∑
m=1

[
Tr
(
�

(1)
i �

(m)
j 1σ31�

(1)
i 1σ31�

(m)
j

) ± Tr
(
�

(1)
i �

(m)
j τ3σ31�

(1)
i τ3σ31�

(m)
j

)]m∗

4π
. (C19)

Here, the sum on m is taken over the multiplicity of the j th representation, and the “2 + 3” in the “arguments” means that the
given contribution is the total contribution from the second and third diagrams.

Finally, the fourth and fifth diagrams give the following:

δS4 = −1

2

∑
S,U

gSgU

∫
1,2,3,4

∫
k>,ω

ψ†(1)SGk(iω)Uψ(2)ψ†(3)UGk(iω)Sψ(4), (C20)

δS5 = −1

2

∑
S,U

gSgU

∫
1,2,3,4

∫
k>,ω

ψ†(1)SGk(iω)Uψ(2)ψ†(3)SG−k(−iω)Uψ(4). (C21)

Both matrices occurring in each expression are proportional to each other, but will in general not be proportional to either S or
U . These terms therefore represent corrections to a coupling gV that are proportional to gSgU . Using the same observation as
before, we can find the contributions to the A

(a)
ijk coefficients. Denoting V = �k , these are

A
(1/2)
kij (4) = 1

128

mi∑
m=1

mj∑
n=1

[
Tr
(
�

(1)
k �

(m)
i �

(n)
j

)
Tr
(
�

(1)
k �

(n)
j �

(m)
i

) ± Tr
(
�

(1)
k �

(m)
i τ314�

(n)
j

)
Tr
(
�

(1)
k �

(n)
j τ314�

(m)
i

)]m∗

4π
, (C22)
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S

FIG. 12. (Color online) (a) Diagrams representing contributions to the renormalization of the particle-hole source terms. All lines are
as in Fig. 11. In addition, the wavy lines represent the source terms. (b) Diagram representing contributions to the renormalization of the
particle-particle source terms.
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)
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, (C23)

A
(5/6)
kij (4) = −1
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[
Tr
(
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(C24)

and

A
(1/2)
kij (5) = − 1
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mi∑
m=1

mj∑
n=1

{[
Tr
(
�

(1)
k �

(m)
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Tr
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i τ314�
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j

)]2}m∗

4π
, (C25)
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±[
Tr
(
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j
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Tr
(
�

(1)
k �

(m)
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(n)
j
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4π
, (C26)

A
(5/6)
kij (5) = − 1

128

mi∑
m=1

mj∑
n=1

{[
Tr
(
�

(1)
k �

(m)
i 1σ31�

(n)
j

)]2 ± [
Tr
(
�

(1)
k �

(m)
i τ3σ31�

(n)
j

)]2}m∗

4π
. (C27)

We now turn our attention to the symmetry-breaking source terms. In this case, we have different procedures for the case
without an applied electric field and the case with one. We will consider the former case first. The corrections to the particle-hole
and particle-particle source terms are represented by the diagrams in Fig. 12.

The particle-hole source term corrections give us

δSph =
∑

i

∑
S

�
ph
i gS

∫
k′

<,ω′

∫
k>,ω

Tr[Gk(iω)O(i)Gk(iω)S1]ψ†
k′ (ω′)S1ψk′ (ω′)

−
∑

i

∑
S

�
ph
i gS

∫
k′

<,ω′

∫
k>,ω

ψ
†
k′(ω′)S1Gk(iω)O(i)Gk(iω)S1ψk′ (ω′). (C28)

In the first term, the trace will only be nonzero if S1 = O(i), and, in the second term, the matrix appearing in the expression
is proportional to O(i). Therefore we see that different source terms are not mixed to this order. Note that the first term is only
nonzero if O(i) represents a charge order, and vanishes for spin orders. The contributions to the coefficients

B
(a)
ij = B

(a)
ij (1) + B

(a)
ij (2) (C29)

in Eq. (28) are

B
(1/2)
ij (1) = −1

2

mj∑
n=1

[
Tr
(
O(i)�

(n)
j

) ± Tr
(
τ314O

(i)τ314�
(n)
j

)]m∗

4π
, (C30)
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B
(3/4)
ij (1) = 1

4
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) ∓ Tr
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(C31)
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. (C33)

Here, the “arguments” have the same meaning as before, but with respect to Fig. 12.

The correction to the particle-particle source term is

δSpp = −1

2

16∑
i=1

∑
S

�
pp
i gS

∫
k′

<,ω′

∫
k>,ω

ψ
†
k′(ω′)S1Gk(iω)Õ(i)

× [G−k(−iω)]T (S1)T ψ∗
−k′(−ω′) + c.c. (C34)

For similar reasons as above, the product of five matrices
appearing in this expression is proportional to Õ(i), and
therefore different source terms are not mixed to this order.
Also note that the 8 × 8 matrix Õ(i) must be completely
antisymmetric. The values of the coefficients B̃

(a)
ij in Eq. (29)

are therefore

B̃
(1/2)
ij = − 1

16

mj∑
n=1

{
Tr
[
Õ(i)�
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(n)
j

)T ]}m∗

4π
, (C35)

B̃
(3/4)
ij = − 1
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mj∑
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Tr
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(n)
j 1σ11Õ(i)1σ11

(
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±Tr
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(
�

(n)
j
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[
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(n)
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(
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(n)
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)T ]
− Tr

[
Õ(i)�

(n)
j τ3σ21Õ(i)τ3σ21

(
�

(n)
j

)T ]}m∗

4π
. (C36)

Now we consider corrections to the finite applied electric
field; see Eq. (79). In this case, we find that the lowest-order
corrections come from the first-order term in the cumulant
expansion; these first-order corrections would be zero in the
absence of the electric field. They are represented by “tadpole”
and “sunrise” diagrams, as shown in Fig. 13. The contribution
from the “tadpole” diagrams is

δSt = −
∑

S

gS

∫
k′

<,ω′

∫
k>,ω

Tr[S1Gk(iω)]ψ†
k′(ω′)S1ψk′ (ω′).

(C37)
The integral over k and sum over ω can be evaluated using
Eq. (B16). The trace occurring in this expression is only
nonzero if S = 1σ3. Therefore we only generate a correction
to the applied electric field. Since 1σ31 = �

(1)
5 , we see that the

only nonzero contribution from this term to the coefficients
bi in Eq. (79) is to b5, and this contribution is b5(tadpole) =
8 × m∗

4π
.

The “sunrise” diagrams give us

δSs =
∑

S

gS

∫
k′

<,ω′

∫
k>,ω

ψ
†
k′(ω′)S1Gk(iω)S1ψk′ (ω′).

(C38)
The matrix occurring in this expression is proportional to
1σ31, and thus we, once again, only generate corrections to
the applied electric field. This will contribute to all of the bi .
These contributions are given by

bi(sunrise) = 1

8

∑
m

Tr
(
1σ31�

(m)
i 1σ31�

(m)
i

)m∗

4π
. (C39)

The total value of bi is simply the sum of the above two
contributions, i.e., bi = bi(tadpole) + bi(sunrise).

APPENDIX D: COEFFICIENTS IN THE FREE ENERGY

The coefficients α
ph
a,i appearing in the free energy, Eq. (35),

are

α
ph
1/2,i = 8 ± Tr[(O(i)τ314)2], (D1)

α
ph
3/4,i = −1

2
{Tr[(O(i)1σ11)2] ∓ Tr[(O(i)τ3σ11)2]

∓ Tr[(O(i)1σ21)2] + Tr[(O(i)τ3σ21)2]}. (D2)

S

S

FIG. 13. (Color online) Diagrams representing contributions to
the renormalization of the applied electric field term. All lines are as
in Fig. 12.
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The α
pp
a,i coefficients are

α
pp
1/2,i = 8 ∓ Tr[(Õ(i)τ314)2], (D3)

α
pp
3/4,i = 1

2 {Tr[(Õ(i)1σ11)2] ± Tr[(Õ(i)τ3σ11)2]

∓ Tr[(Õ (i)1σ21)2] − Tr[(Õ(i)τ3σ21)2]}. (D4)

APPENDIX E: ANALYTIC DETERMINATION OF THE
PHASE BOUNDARIES IN THE FIXED RATIO PLANE

We will now describe how we determined the phase
boundaries in the target plane. These boundaries are defined by
the sign of the susceptibility exponent γi , as given by Eq. (48),

for a given phase; whenever it is positive, we say that the
associated phase is present. The value of A(Eg) is given by
Eq. (71). We may obtain Bi,(Eg) from Eqs. (33) and (34) and

from the coupling constant ratios ρ
(Eg )
i given in Eqs. (68)–(70).

Because of this, all of the γi will have the form

γi = Qi(x,y)

3 + 2x + 3x2 + 4y + 4xy + 8y2
, (E1)

where Qi(x,y) is an inhomogeneous quadratic function of x

and y. The denominator of this expression is positive definite,
so that the sign of the exponent is determined entirely by
Qi(x,y). Our condition that γi be positive thus requires that
Qi(x,y) > 0. We therefore see that the phase boundaries, given
by Qi(x,y) = 0, are all conic sections.
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