
PHYSICAL REVIEW B 86, 075462 (2012)

k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings
and split-ring resonators
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The response of matter on an electromagnetic wave at a certain point and time depends on the field strength prior
to this time and at places close to this point. Hence the material parameters are functions of the frequency ω and
the wave vector �k, in general. While the temporal dispersion is common knowledge, spatial dispersion in usually
disregarded. However it becomes crucial in the optical response of nanostructures. Here we map the complete
�k-dependent optical response of a split-ring-resonator array over a broad frequency range via Mueller-matrix
spectroscopic ellipsometry at different angles of incidence and all azimuthal orientations. The comparison with
a closed-ring structure elucidates the rule of spatial dispersion in metal-dielectric nanostructures.
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I. INTRODUCTION

Maxwell’s equations in the presence of matter are incom-
plete in the sense that they have to be amended by constitutive
relations of �D and �B to �E and �H . When choosing the common
relations

D = εE and B = μH, (1)

both material parameters, the dielectric permittivity ε and
the magnetic permeability μ, are second-rank tensors with
components assumed to be a function of frequency in order
to describe the time-dependent response. For a more general
description one has to consider that an electric field can also
lead to a magnetization and a magnetic field to a polarization.
Including these effects, and looking only at the linear,
local, and quasistatic response, the so-called bi-anisotropic
constitutive relations exhibit the most general description:1

�D = ε �E + ξ �H and �B = μ �H + ζ �E. (2)

Neglecting symmetry considerations, one ends up with 36
complex material parameters, which all depend on frequency
but—and this is most important for the following—not on
the wave vector �k. Although challenging, in principle they
can be calculated ab initio from the atomic structure. The
best test for band-structure calculations, for example, is still
the comparison of theoretically obtained ε(ω) with the one
determined by spectroscopy.2 It has to be mentioned that
from simple transmission or reflection measurements it is
not possible to determine complex values, but generalized
ellipsometry yields the information required for that compar-
ison even for a triclinic crystal.3 The coupling parameters ξ

and ζ describe the magnetoelectric effects. Albeit known for
more than hundred years, they have experienced a revival over
the last 15 years.4 One has to stress that all experiments for
retrieving magnetoelectric coefficients were done in the kHz
or MHz range where the quasistatic (long wavelength) limit is
clearly fulfilled; i.e., Eq. (2) is unrestrictedly valid.

Approaches explicitly including nonlocal effects (spatial
dispersion) were developed for the visible and near-infrared
region, where the typical size of the building blocks of matter
cannot be neglected compared to the wavelength of light
anymore. In this spectral range no distinction can be made

between the magnetic induction �B and the magnetic field
intensity �H because μ = 1 at optical frequencies.5 Under this
assumption the constitutive relations become rather simple:

�D = εij (ω,�k) �E and �B = �H. (3)

The elements of the dielectric tensor εij (ω,�k) in Eq. (3) can
be expanded as a function of the wave vector �k:6

εij (ω,�k) = εij (ω) + iγijm(ω)km + αijmn(ω)kmkn + · · · . (4)

As long as only the term linear in �k is considered, bi-anisotropy
[Eq. (2)] and spatial dispersion [Eq. (3)] represent equivalent
descriptions;7 i.e., the �k dependence can be mimicked by a
complex anisotropy.

II. OUTLINE OF THE PROBLEM

In crystal optics the regular building blocks of the material
(atoms forming unit cells of size P ) are small compared to
the wavelength of light, P � λ; therefore spatial dispersion
leads only to very small corrections in ε(ω). In particular
in highly symmetric crystals such as Si and GaAs the
situation is very illustrative, because in crystals with inversion
symmetry the terms linear in k in Eq. (4) vanish (γijm = 0).
Commonly they are treated as isotropic, but even for their small
periodicities below one nanometer the k2 term leads to a small
but measurable anisotropy;8,9 they exhibit a birefringence
on the order of 
n ≈ 10−6 in their optical response. As
mentioned above bi-anisotropy and spatial dispersion are only
equivalent as long as higher order terms are neglected. Even
for the description of the entire optical response of these
simple semiconductors the �k dependence has to be stated
explicitly; it cannot be mapped on a bi-anisotropic behavior.
The tensors γijm and αijmn in Eq. (4) are of rank three and four,
respectively; to the best of our knowledge they have not been
defined experimentally or theoretically for crystals with lower
symmetry.

For most nanostructures—dubbed metamaterials—the
building blocks are in the range λ/10 � P � λ/2. To describe
their optical behavior with effective optical parameters, a
well-defined homogenization procedure has to be applied.10,11

Classical effective medium approximations, such as Brugge-
man’s theory, are only valid in the long-wavelength limit.
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These models fail in the description of disordered composites
at higher filling factors12 and they yield physically unreason-
able effective optical parameters; for instance, they usually
provide effective permittivities that are not Kramers-Kronig
consistent.13 The same is true for most retrieval procedures for
effective permittivities and permeabilities from reflection and
transmission measurements at normal incidence.14 During the
last couple of years it has become clear that in general it is not
possible for these kinds of materials to define effective optical
parameters, which are independent of the angle of incidence
of the probing light.15–18 In this context it is surprising that
even for the model structure of metamaterials, the split-ring
resonator, the complete �k-dependent optical response has not
been measured up to now.

III. EXPERIMENTAL DETAILS

In this paper we present the optical properties of a large
split-ring-resonator (SRR) array measured over the entire
�k space by Mueller-matrix spectroscopic ellipsometry20 and
compare the results with an array of closed rings (CRs) of the
same size. The samples are prepared by shadow nanosphere
lithography.21 A densely packed hexagonal monolayer of
470 nm polystyrene spheres on a glass substrate is used as
a mask, through which about 20 nm gold is evaporated. The
samples are tilted by 17◦ with respect to normal and rotated
about this axis during evaporation. A complete revolution
produces closed rings with an inner diameter of about 50 nm
and an outer diameter of 100 nm. Split-ring structures are
obtained when the rotation is stopped before the circle is
completed. By varying the opening angle, the resonance
frequency of the SRR can be tuned.22 This method enables us
to produce a large area (10 × 10 mm2) of periodic split-ring
resonators as displayed in Fig. 1.

We characterized these structures by Mueller-matrix (MM)
spectroscopic ellipsometry at various angles of incidence θ

and azimuthal orientations α in the energy range of 0.5
to 3.5 eV (corresponding wavelength 2.5 to 0.35 μm).
The measurements were performed in transmission utilizing
a Woollam VASE spectroscopic ellipsometer, a polarizer-
compensator-sample-rotating analyzer type instrument, which
can determine 12 out of the 16 MM elements. It turns out
that depolarization is negligible for our samples, and thus the
number of relevant MM elements shrinks to ten. Hence the
present incompleteness of the Mueller matrix by the missing
fourth row does not constitute real limitations.

FIG. 1. Scanning electron micrograph of the investigated closed-
ring structures (left) and the split-ring-resonator array (right).

IV. RESULTS

In Fig. 2 the transmission spectra at normal incidence are
displayed for the two different samples of Fig. 1. The curves
correspond to linear polarization parallel and perpendicular to
the gap as indicated in the inset. For the CR structures only
one well-pronounced resonance appears at about 0.8 eV. The
slight shift between the two polarization states is due to minor
deviations from the perfect circle that lift the degeneracy. In the
case of split rings, the symmetry is completely broken. Corre-
spondingly the SRR array gives a strongly anisotropic optical
response: The resonances are shifted in opposite frequency
directions for polarizations parallel and perpendicular to the
gap. All observed resonances are predominantly plasmonic
modes of the entire SRR or CR structure. By increasing
the frequency, higher-order plasmonic modes are excited,
which can be labeled according to the number of nodes in
their out-of-plane electric-field component.23 Light polarized
parallel to the gap couples to modes in the SRR structure
with an odd number of nodes, whereas modes with an even
number of nodes are excited for perpendicular polarization.
Upon closing the gap all odd modes vanish. The fact that
higher-order modes can be excited at all is a consequence of the
lateral extension of the structure. The size of the nanostructures
is not negligible compared to the wavelength anymore. This
gives a first hint that spatial dispersion can be important for
these structures. As was pointed out by Rockstuhl et al.,23

there is particularly no need to employ lump circuits, such as
LC resonators.

From a simple transmission measurement at normal inci-
dence it is not possible to judge whether a sample exhibits
a purely dielectric response, which can be modeled by an ε

tensor, or whether a more general model as described above

FIG. 2. (Color online) Transmission spectra at normal incidence
of the split-ring-resonator (SRR) and closed-ring (CR) arrays.
Whereas the CR appears nearly isotropic with a slight shift in the
resonances between perpendicular directions, the SRR exhibits a
strong dichroism.
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is necessary to represent the entire optical behavior. To reveal
anisotropy measurements at various azimuth orientations are
necessary and spatial dispersion emerges only when the angle
of incidence is varied. For a single angle of incidence, for
example, the measured ellipsometric angles ψ and 
 of our
samples can easily be modeled by a biaxial layer with two
and three Lorentz oscillators perpendicular and parallel to the
gap and one normal to the surface, respectively. With a similar
model the optical response of simple gold disks of comparable
size was recently described quite well.24 At normal incidence
this simple description provides also the transmission spectra
displayed in Fig. 2. The problem is that in the case of the
CR structure, one needs different parameters for each angle of
incidence. Being interested in the complete optical response
of the structure, we measured the MM elements mij (θ,α,ω)
over the entire �k space by varying the angle of incidence θ

from 0◦ to 50◦ in steps of 4◦ and the azimuthal orientation α

between 0◦ and 360◦ in 10◦ steps in the energy range between
0.5 and 3.5 eV. Mapping the complete ω and �k dependencies
accumulates a large amount of data. For reasons of clarity
we restrict ourselves to the resonance energies at 0.8 eV for
the CR array and 0.6 eV and 1.0 eV for the SRR array; here
the MM elements reach their highest values; i.e., the mixing of
polarization states is most pronounced. Outside the resonances
the off-diagonal elements rapidly decay to zero.

To visualize the complex optical behavior of our nanos-
tructures, we plot the MM elements in polar coordinates,
where the radial component is the projection of the incident
photon wave vector onto the plane of the sample: |�k| sin θ .
The polar component corresponds to the azimuthal angle α.
These plots map the complete �k space at a given wavelength.
The mij values are normalized to m11 and represented by a
color code as indicated. This representation of the MM allows
a very compact visualization of the entire optical response
of anisotropic media. It has some similarities to conoscopic
images known from crystal optics. One disadvantage is that
the direct comparison to transmission measurements is not
obvious. But from our measured MM elements the spectra
shown in Fig. 2 can of course be obtained.20

For a first impression and for comparison in Fig. 3(b) a
simulated MM contour plot for a 20 nm thick closed Au
film on glass is shown. As expected for an isotropic sample,
the upper right and the lower left (2 × 2) submatrices are
zero20 because the polarizations do not mix; i.e., incoming
p-polarized light remains p polarized, and s-polarized light
stays s polarized. We additionally measure the MM of a
closed 20 nm thick Au film on glass. The agreement between
experiment and simulation is nearly perfect. The experimental
values for the upper right and the lower left (2 × 2) submatrices
are below 10−3 in perfect agreement with the simulation. At
a first glance for the hexagonal CR array one would expect
a similar optical response. However the MM contour plot
displayed in Fig. 3(a) is significantly more complex. Although
the hexagonal CR structure is isotropic,25 with increasing |�k|
the elements m13 = m31 reveal small but measurable values
giving unambiguous evidence that the polarization states mix
at oblique incidence. For structures with inversion symmetry,
like our hexagonal array, the third rank tensor γijk in Eq. (4)
indeed vanishes. Hence the polarization mixing of the CR

FIG. 3. (Color) (a) MM contour plot for the closed-ring array
measured at 0.8 eV in transmission. In spite the isotropic lattice,
the off-diagonal elements m13 = m31 �= 0 clearly indicate a mixing
of polarization states at oblique incidence. Note that some matrix
elements are enhanced by a factor as indicated; m13 and m31 are
multiplied by a factor of 40, for instance. (b) Simulated MM contour
plot in transmission for a 20 nm closed Au film on glass. The upper
right and the lower left (2 × 2) submatrices are zero; isotropic samples
normally do not mix the polarization states at all.

array at oblique incidence is due to the k2 term. The absolute
values of m13 become as large as 0.02. This is huge when
compared to the tiny birefringence of Si and GaAs, mentioned
above. The building blocks of our CR array are orders of
magnitude larger than that of the semiconductors, leading to

n values comparable to quartz. Note that in classical optics,
isotropic media mix the polarizations states of incoming light
only when they are optically active. In the case of our CR
structures this behavior is mimicked by spatial dispersion,18

calling for a �k optics. The optical response of the hexagonal
CR structure is even more complex than that of the square
hole array discussed in this paper.18 Whereas, for example, the
m13 = m31 pattern of the square hole array exhibits inversion
symmetry, the CR structure violates inversion symmetry. This
does not mean that the samples are nonreciprocal, but they
exhibit a optical response that is normally only known from
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crystals or structures with very low symmetry, like slated
nanocolumns, whose optical behavior can be described by
monoclinic optical constants.19 But opposite to crystals with
symmetry lower than orthorhombic (skew unit cell), the MM
patterns of the CR structure show no dispersion of the optic
axes; i.e., the MM pattern does not rotate with energy. All these
are strong hints that the optical response is dominated by the
k2 term in Eq. (4).

Before we discuss the MM contour plots of the SRR array,
let us consider the Mueller matrix M in more detail. For a
non-depolarizing, purely dielectric specimen, i.e., a sample
where in Eq. (2) μ = 1 (nonmagnetic) and ξ and ζ are zero
(not optical active, reciprocal), the complete optical response
is given by a Mueller matrix M, which can be decomposed as26

M = MDMR, (5)

FIG. 4. (Color) (a) Measured and (b) simulated MM contour plots
for the split-ring-resonator array at a given photon energy of 0.6 eV.
For the simulations a simple in-plane anisotropy was used with two
and three Lorentz oscillators in the two perpendicular directions,
respectively. This model describes the overall optical response of the
SRR array very well. It is not necessary to assume any permeability
μ �= 1.

where the diattenuator matrix MD acts on the intensity only
(i.e., ideal polarizer), and the retarder matrix MR changes
the phase depending on the incident polarization (i.e., ideal
retarder). For dielectric samples with an in-plane anisotropy,
the MM element m13 exhibits a sin{2α} dependence and
the element m23 has a cos{2α} sin{2α} dependence on the
azimuth orientation α.20 Note that for all MMs which can
be decomposed as in Eq. (5), the first row and the first
column are transposed to each other. Depolarization effects
lift this correlation. The fact that all our measured MMs
exhibits the property m1i = mi1 provides clear evidence that
depolarization effects can be neglected in our investigations.

In Fig. 4 the measured MM contour plots of our SRR array
are displayed together with the simulated ones obtained from
the anisotropic model that has been utilized above to explain
the transmission (Fig. 2). It has to be mentioned that going
from the resonance at 0.6 eV to the one at 1.0 eV simply
rotates the MM pattern of the off-diagonal elements by 90◦.
The SRR array exhibits an optical response, which can be
perfectly described by a biaxial layer of 20 nm thickness with
two Lorentz oscillators for the direction perpendicular and
three oscillators for the direction parallel to the gap and one
oscillator normal to the surface. In contrast to the CR array, for
instance, for the SRR array the azimuthal dependence of the
element m13 nicely follows the behavior expected for a purely
dielectric sample with a strong in-plane dichroism (m13 ∝
sin{2α}). In particular, there is no need to introduce any kind
of permeability to model the entire optical response of SRR
arrays.

It should be noted that spatial dispersion is also present in
the SRR sample, however, much weaker than the dichroism in
the resonance of the SRRs, and therefore it does not appear
in Fig. 4. In the case of the CR structure presented in Fig. 3,
the MM element m13, for example, is magnified by a factor
of 40.

V. DISCUSSION AND CONCLUSION

Going back to our original question of how to describe
the electrodynamic properties of nanostructures, we have to
conclude that bi-anisotropic constitutive relations [Eqs. (2)]
cannot explain the entire optical response of our test samples.
The Mueller-matrix contour plots especially reveal the role
of spatial dispersion in the optical behavior of artificial
nanostructures. With the expansion given in Eq. (4), the
�k-dependent behavior can in principle be well described, but
one has to be aware that the tensors γijm and αijmn are of rank
three and four, respectively; i.e., a huge number of effective
optical parameters are needed for their proper description.
Keeping this in mind, the question arises as to whether the
concept of effective optical parameters is applicable at all, or
whether for the proper treatment of nanostructures the full
three-dimensional boundary conditions have to be taken into
account.
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