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Modeling interfacial phenomena often requires both a detailed atomistic description of surface interactions
and accurate calculations of long-range deformations in the substrate. The latter can be efficiently obtained using
an elastic Green’s function if substrate deformations are small. We present a general formulation for rapidly
computing the Green’s function for a planar surface given the interatomic interactions, and then coupling the
Green’s function to explicit atoms. The approach is fast, avoids ghost forces, and is not limited to nearest-neighbor
interactions. The full system comprising explicit interfacial atoms and an elastic substrate is described by a single
Hamiltonian and interactions in the substrate are treated exactly up to harmonic order. This concurrent multiscale
coupling provides simple, seamless elastic boundary conditions for atomistic simulations where near-surface
deformations occur, such as nanoindentation, contact, friction, or fracture. Applications to surface relaxation and
contact are used to test and illustrate the approach.
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I. INTRODUCTION

A large number of interfacial problems are challenging to
simulate using brute-force methods. The response depends
on details of atomic interactions at the interface and also on
long-range elastic deformations of the bulk. This situation
arises in studies of contact and friction in scanning probe
experiments1,2 or between atomically rough surfaces,3,4 and
fracture of brittle5 or ductile6 materials. The elastic response of
the supporting solid can also appreciably influence chemi- and
physisorption processes at crystal surfaces, including stress
corrosion7 and thin-film growth.8

There has been great recent interest in accelerating such
simulations by treating each spatial region with the modeling
method that most efficiently captures material response.5–7,9–12

An explicit atomistic treatment is essential at the interface
where gradients in stress, strain, and chemical composition
may be large. Long-range elastic deformations in the bulk
extend to depths that are comparable to the length scale of
variations along the interface L, but the strains at these depths
may be small enough to treat with models that assume slow
variations and/or linear response. In many cases, a simplified
treatment of the substrate may decrease the computational cost
for force calculations substantially, from order L3 to order
L2 ln(L).

A variety of methods for approximating the response of
the substrate have been proposed and many are reviewed
and contrasted in Refs. 9 and 11. Most treat the interface
atomistically and transition to a finite-element description for
the bulk. In general, this introduces ghost forces near the inter-
face or leads to a model with no underlying Hamiltonian.9,12

There is an alternative approach that avoids both problems.
An atomistic description is retained throughout the system,
but atomic interactions in the substrate are treated in the
harmonic approximation. The linear response of the substrate
can then be efficiently calculated using Green’s function
methods.

Traditionally, Green’s function techniques have been used
to describe the elastic response of the infinite or semi-infinite
bulk to inclusions such as point, line, or planar defects by

invoking the Dyson equation.13–16 Recent extensions of this
approach have included a full nonlinear atomistic description
of the defect coupled to a harmonic lattice17 that smoothly
connected to a continuum description at large distances.18–20

Green’s function techniques have also been employed to solve
boundary value problems in continuum elasticity.21–23 An
atomistic system can be coupled to a continuum boundary,20,24

but the strain field will only match exactly for long-wavelength
deformations. Recently, Campaña and Müser25 showed that
a Green’s function approach can be used for the solution
of atomic-scale contact problems. In their work, the surface
Green’s function is evaluated from a fluctuation-dissipation
theorem. Assuming that the underlying potential is harmonic,
the mean response is not affected by these fluctuations. A
similar method was used to find the dynamic Green’s function
in complex geometries by Cai et al.26 Most applications
of the Green’s function approach to atomic scale contact
problems4,25,27–29 have used the analytic solution30 for simple
cubic lattices or the isotropic continuum Green’s function.3,31

An implementation of the code has been ported to the widely
used molecular dynamics package LAMMPS.32–34

There are two difficulties with the Green’s function ap-
proach as it has been implemented for atomic scale contact
problems. One is that the formulation does not include all
the atomic forces near the interface between explicit and
harmonic regions. The neglected forces vanish in the special
case of nearest-neighbor interactions at zero pressure, which
has been considered in most past work. In other cases, these
forces must be included or the coupled system does not satisfy
Newton’s third law. Neglecting them creates problems similar
to ghost forces in other methods9 and creates artificial surface
relaxation at the elastic/explicit interface. The second difficulty
is that calculating the Green’s function with the fluctuation
dissipation theorem can require significant computation. All
L3 atoms in the substrate must be included and sampling
long-wavelength modes correctly requires times that are at
least of order L.35 Thus, while the Green’s function needs to
be calculated only once, it may require more computational
effort than calculations using it.
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In this paper we describe an approach that includes all inter-
atomic forces near the interface and allows rapid calculation
of the elastic Green’s function for an arbitrary interaction.
Fourier transforming the equations of motion in the plane of
the substrate decouples the equations for each in-plane wave
vector �q.36 The remaining coupling between atomic planes of
the substrate is effectively one dimensional and can be solved
for any crystalline solid without the need of separate molecular
dynamics simulations and fluctuation/dissipation analysis.
Prescriptions for solving the equations using a transfer matrix
formulation36,37 and a renormalization transformation38,39 are
described. Full dynamical equations are developed for a num-
ber of crystals and interactions and then implemented for static
problems. The static Green’s function can be precomputed in
a time that is O(L2 ln L) and, thus, represents a negligible
fraction of the total computation time for contact problems.
The only approximation intrinsic to this construction is linear
response sufficiently far below the surface.

To demonstrate that the resulting approach provides seam-
less boundary conditions for interfacial calculations we apply
the method to three cases (Sec. III). The first is relaxation of
the spacing between atomic planes near a free surface. Full
atomistic results are reproduced by our method, but previous
formulations do not include the forces that produce surface
relaxation.25,33 We next consider Hertzian contact between a
rigid sphere and elastic substrate and show that a few planes
of explicit atoms on the Green’s function layer allow the
anharmonic corrections to Hertz theory to be captured. Our
last example is contact of a randomly rough stepped surface
with a flat substrate. A few planes of explicit atoms allow both
anharmonic effects and subsurface plasticity to be captured up
to relatively high contact areas.

II. ELASTIC SURFACE GREEN’S FUNCTIONS

We start from the total energy E({�riα}) of the crystal as
a function of the positions of all atoms �riα . The energy may
have arbitrary form and could be replaced by the free energy
to model the response at finite temperature. Atoms are then
partitioned into three types (see Fig. 1): substrate atoms,
boundary atoms, and explicit atoms. The explicit atoms may
be anything that interacts with the boundary atoms, including a
continuation of the crystal, adsorbed atoms, or atoms from an
opposing surface. The goal of the Green’s function formulation
is to absorb the linear response of the substrate atoms into an
effective interaction between boundary atoms. This reduces the
total number of degrees of freedom to those of the boundary
and explicit atoms.

The width of the boundary region must be greater than
the range of interactions so there are no direct interactions
between explicit and substrate atoms. The boundary layer is
constructed so it satisfies this condition and contains an integer
number of primitive unit cells along its width. The substrate
is then divided into layers of the same width, so all atoms
are accounted for and each layer only interacts with adjacent
layers. In the following, Greek indices α, β, . . . identify layers,
with the boundary layer at α = 0 (see Fig. 1). Latin indices i,
j , . . . will number unit cells within each of these layers.

The total energy is divided into terms that involve inter-
actions between explicit atoms, Eee, between explicit and

(a)

(b)

FIG. 1. (Color online) (a) Side view of a face-centered cubic (fcc)
crystal with a (100) surface showing the layer structure for second-
nearest-neighbor interactions. The top atoms are treated explicitly. In
this case, they represent a continuation of the crystal. The boundary
layer (α = 0) is thick enough to prevent direct interactions between
explicit and substrate atoms. The effect on boundary atoms from
the elastic response of substrate atoms is captured using the Green’s
function. The force-constant matrix D has diagonal components U′

0

and U′ within the layers and off-diagonal components V coupling
adjacent layers. Layers are labeled by the index α and unit cells in
each layer (square boxes) by the index i. Arrows show the atoms that
produce a force on one atom in the boundary layer. Only the atoms in
the boundary and substrate (solid arrows) contribute to the net elastic
force �fi0. As a result, there is a net force that would be balanced by
the force from explicit atoms (dashed arrow) if the explicit atoms
continued the fcc crystal. (b) Top view of atoms at top of boundary
layer. Periodicity in this plane is used to decouple the response at
different wave vectors in the first Brillouin zone of the crystal. The
solid and dashed lines show the conventional and primitive unit cells
for the surface.

boundary atoms, Eeb, and between boundary or substrate
atoms, Ebs,

Etot = Eee + Eeb + Ebs. (1)

The first two terms are treated exactly, while Ebs is treated
in the usual harmonic approximation.17,40 The energy Ebs

is expanded in terms of displacements about a reference
configuration. This is usually the ground state but could be a
crystal under a uniform strain that most closely approximates
the loaded crystal. For example, under high contact pressures
there will be a mean compressive strain that extends throughout
the substrate.

We will denote the set of displacements from equilibrium
for the nc atoms in unit cell i in layer α by the 3nc

dimensional vector �uiα (see also Appendix A). The harmonic
approximation for Ebs can then be written as

Ebs = E0 −
∑
iα

�fiα · �uiα + 1

2

∑
iαjβ

�uiαDiαjβ �ujβ + O(u3),

(2)

where E0 is the energy of the reference state, �fiα is a 3nc-
dimensional vector giving the force on atoms in the iα unit
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cell, and Diαjβ is the 3nc × 3nc force-constant matrix,

Diαjβ ≡ ∂2Ebs

∂ �uiα∂ �ujβ

∣∣∣∣
�uiα=0,�ujβ=0

. (3)

Since we expand about a static solution, the total force

�fiα ≡ −∂Ebs

∂ �uiα

∣∣∣∣
�uiα=0

(4)

must vanish for all substrate atoms (α > 0). For boundary
atoms, �fi0 is generally not zero because it includes only the
boundary and substrate interactions. These are indicated by
solid arrows in Fig. 1(a), and the forces coming from explicit
atoms are indicated by dashed arrows. In this figure, the explicit
atoms continue the ideal crystal and exert a force that is
equal and opposite �f exp

i0 = − �fi0. If the crystal is terminated
at the boundary layer, the unbalanced forces give rise to
the well-known phenomena of surface relaxation.41 Previous
applications of Green’s functions to contact mechanics25

did not include �fi0. However, they generally focused on
nearest-neighbor interactions and crystals at zero pressure.
For this very special case �fi0 vanishes and there is no surface
relaxation. In almost all other cases the forces must be
included.

The dynamical equation for the boundary and substrate
atoms can now be written as

m
∂2 �uiα

∂t2
+

∑
jβ

Diαjβ �ujβ = δ0α

( �fi0 + �f exp
i0

)
, (5)

where m is a diagonal matrix whose elements equal the mass
associated with each degree of freedom in the unit cell, the
forces are only nonzero for the boundary layer, and �f exp

i0 is the
force from explicit atoms. Note that even if explicit crystalline
atoms are present on top of the boundary layer, the forces �fiα

and f
exp
iα do not vanish individually and, hence, we need to

consider both explicitly.
The dynamical equation is simplified by transforming into

reciprocal space within the plane of the layers and remaining in
real space in the perpendicular direction. Because the crystal
retains translational symmetry within the plane [Fig. 1(b)],
the equations for each two-dimensional wave vector �q in the
first Brillouin zone (BZ) are decoupled. We denote the set
of two-dimensional lattice vectors that connect the unit cells
within the boundary layer by �Ri0. The unit cells in all other
layers are then located at �Riα = �Ri0 + α�c, where �c is the basis
vector connecting unit cells in adjacent layers. The Fourier
transforms in space and time are defined as

�uα(�q,ω) =
∑

j

∫ ∞

−∞
dt �ujα(t)e−i �q· �Rj0+iωt , (6)

�ujα(t) =
∫

BZ

d2q

ABZ

∫ ∞

−∞

dω

2π
�uα(�q,ω)ei �q· �Rj0−iωt , (7)

where the sum in the first equation is over all unit cells in the
boundary layer. The integral in the second equation runs over
all wave vectors in the two-dimensional first BZ of the surface
and ABZ = ∫

BZ d2q is the BZ area.
Translational symmetry in the substrate guarantees that

Diαjβ depends only on relative positions Ri0 − Rj0 and β − α.

The Fourier transform is

Dβ−α(�q) =
∑

k

Djαkβe−i �q·( �Rj0− �Rk0) (8)

and must vanish for |β − α| > 1 because interactions do not
extend beyond adjacent layers. The convolution theorem can
be used to write the Fourier transform of the dynamical
equation [Eq. (5)] as∑

β

(−mω2δαβ + Dαβ(�q))�uβ(�q,ω) = δα0 �ftot(�q,ω), (9)

where �ftot includes both internal and explicit forces and only
acts on the boundary layer.

In the following we assume that the substrate terminates
at layer α = N . Within the substrate, D only depends on β −
α and only couples adjacent layers. Let U′(�q) = Dαα(�q) be
the force-constant matrix that couples within each layer and
Vα(�q) = Dα(α+1)(�q) the matrix coupling to the nearest layer
beneath. Then V†

α(�q) is the matrix coupling to the nearest layer
above (see Fig. 1), where † denotes the Hermitian conjugate.
The force-constant matrix has a tridiagonal form that facilitates
solution

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U′
0 V 0 · · · 0 0

V† U′ V · · · 0 0

0 V† U′ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · U′ V

0 0 0 · · · V† U′
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

As discussed below, the diagonal term for the final layer, U′
N ,

depends on the boundary conditions imposed on the bottom of
the substrate. The term U′

0 differs from U′ because the diagonal
elements of Diαiα include terms from nearest neighbors in all
layers. This can easily be seen by considering the case of
a pair potential coupling two atoms, φ(�ri − �rj ). The second
derivative of this part of the total energy will contain terms
diagonal in i. Since the top layer has fewer neighbors included
in the harmonic approximation, the diagonal terms will be
reduced. Specific examples are provided in Appendix A.

The displacements throughout the substrate are linear
functions of the forces applied to the boundary layer:

�uβ(�q,ω) = Gβ0 �ftot(�q,ω). (11)

Here the Green’s function G satisfies the equation∑
β

(−mω2δαβ + Dαβ(�q))Gβγ (�q,ω) = δαγ I, (12)

where I is a 3nc × 3nc identity matrix.
We only need to calculate G00, since Eeb only involves

displacements of the boundary layer. It is convenient to express
everything in terms of these displacements, which can then be
used to calculate the forces from explicit atoms as well as the
substrate force. Defining the surface stiffness matrix � = G−1

00
we have

�ftot(�q,ω) = �(�q,ω)�u0(�q,ω). (13)

Equation (13) resembles Hooke’s law, and the coefficients �

can be regarded as renormalized spring constants that govern
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the response of the elastic half space.25 Note that even though
the atomistic interaction within the bulk may be short ranged,
the real space coefficients � typically couple the surface over
all length scales.

One can evaluate the Green’s function using a transfer
matrix formulation. This approach has been previously applied
to the analysis of the electronic36 and phononic37 structure of
surfaces and, more generally, to the statistical mechanics of
systems with only short-ranged interactions, like the Ising
model.42–44 Our derivation is most similar in form to that
of Velasco and Ynduráin.37 Unlike the force-constant matrix,
the Green’s function is not sparse. We denote the individual
elements by

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G00 G01 G02 · · · G0N

G10 G11 G12 · · · G1N

G20 G21 G22 · · · G2N

...
...

...
. . .

...

GN0 GN1 GN2 · · · GNN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (14)

where we will drop the explicit reference to �q and ω below.
From Eq. (12) we obtain generally (N + 1)2 equations for

our finite system with N + 1 layers. We only pick the N + 1
equations involving the surface layer. These are

U0G00 + VG10 = I (15)

V†G00 + UG10 + VG20 = 0

V†G10 + UG20 + VG30 = 0
...

V†Gn−1,0 + UGn,0 + VGn+1,0 = 0 (16)

...

V†GN−1,0 + UNGN,0 = 0, (17)

where U = U′ − mω2. It is also straightforward to include
wave-vector-dependent damping by adding a term of the form
iω
(�q) in addition to the mass term.

Given the structure of these equations it is useful to define
the transfer matrix Tn as

Gn+1,0 = TnGn,0. (18)

The surface Green’s function G00 and stiffness � are then
obtained from Eq. (15) as

� = G−1
00 = U0 + VT0. (19)

Combining Eqs. (16), (17), and (18) yields

VTnTn−1 + UTn−1 + V† = 0 (20)

and

UNTN−1 + V† = 0. (21)

For physically relevant solutions the displacements pro-
duced by static surface forces (i.e., at ω = 0) must decrease
or remain constant with increasing depth. This implies that
the eigenvalues of Tn have magnitude between 0 and 1.
If the eigenvalues are less than 1, the deformation decays
exponentially with distance from the surface and the result is
insensitive to the depth of the system. The analytic solution

to the continuum Green’s function for a semi-infinite plane45

gives an exponential decay with length of order 1/|�q| and we
find that the lattice Green’s function is consistent with this
scaling for small |�q|dnn, where dnn is the nearest-neighbor
spacing. As a result, the surface stiffness matrix is sensitive to
boundary conditions for small wave vectors: |�q| ∼ 1/Ndnn.

One interesting case is that of free boundary conditions. In
this case, one allowed solution is uniform translation of the
entire system, i.e., T = I for �q = 0. Translational invariance
requires that no force is produced by a uniform translation
of the crystal and this imposes an acoustic sum rule on the
components of D.17,40 It is straightforward to show that Eq. (20)
is consistent with this sum rule for Tn = I. The surface stiffness
matrix for uniform translation of all atoms vanishes for this
case because from Eq. (19) we get �(�) = U0(�) + V(�),
which is precisely the acoustic sum rule at the surface.

To maintain a finite stiffness, one normally considers
systems with a rigid boundary condition applied at the bottom
of the substrate. This corresponds to UN = U. In essence, this
equality implies that there is a contribution from neighbors
below layer N but that their displacement is set to zero. The
acoustic sum rule is violated because these neighbors impose a
frame of reference. For the rigid boundary condition we expect
a constant, uniform force will produce a constant uniform
strain. Then T0 ≈ I(1 − 1/N) and the surface stiffness �(�)
is finite but goes to zero as 1/N with increasing system
depth N .

The fact that the termination at layer N is important for
small �q means that we cannot, in general, assume that Tn is
independent of n. We solve the equations using a continued
fraction approach based on the relation

VTn−1 = −V(U + VTn)−1V†. (22)

The continued fraction has the form

� = U0 − V
1

U − V
1

U − V
1

U − V
1

U − . . .
V†

V†
V†

V† (23)

For large q, the bottom boundary is unimportant and the
continued fraction converges after a few iterations. For small
q, the continued fraction is terminated after N terms using
Eq. (21). In the examples below we focus on static solutions
ω = 0. For dynamic solutions a small imaginary part is added
to the frequency to obtain the retarded Green’s function.46

The above method of finding � is of order N for small q.
Since the Green’s function can be precomputed, this does not
represent a significant computational barrier. However, there
is an alternative approach based on decimation that is only of
order log N . Related approaches have been used for real-space
renormalization calculations of electronic structure.38,39

Equations (15) to (17) only couple nearest-neighbor ele-
ments of G. The equations for odd n can be used to express
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G2n+1,0 in terms of G2n+2,0 and G2n,0. Substituting the result
into the equations for even n, one obtains equations of the
same form as Eqs. (15) to (17) but with renormalized U(2)

and V(2),

U(2)
0 G00 + V(2)G20 = I, (24)

(V(2))†G2n−2,0 + U(2)G2n,0 + V(2)G2n+2,0 = 0, (25)

(V(2))†GN−2,0 + U(2)
N GN,0 = 0. (26)

The procedure can then be repeated with the renormalized
equations. The general recursion expressions for the renor-
malized matrices at iteration m are

U(m+1) = U(m) − (V†U−1V)(m) − (VU−1V†)(m), (27)

V(m+1) = −(VU−1V)(m), (28)

U(m+1)
0 = U(m)

0 − (VU−1V†)(m), (29)

U(m+1)
N = U(m)

N − (V†U−1V)(m). (30)

The greatest efficiency is achieved when N = 2M . The
equations are then iterated M times to produce two linear
equations containing only G00 and GN0,

U(M)
0 G00 + V(M)GN0 = I, (31)

(V(M))†G00 + U(M)
N GN0 = 0. (32)

This yields

� = U(M)
0 − V(M)(U(M)

N

)−1
(V(M))†. (33)

For large wave vectors, the renormalized V(m) goes rapidly
to zero as m increases and U(m)

0 goes to a constant.38 The
surface stiffness matrix � is equal to the renormalized U(m)

0 . We
numerically checked that transfer matrix and renormalization
group calculations give identical results.

III. APPLICATION TO STATIC CONTACT MECHANICS

To show that the Green’s function method provides seam-
less boundary conditions we present results for three cases.
The first is surface relaxation at a flat crystal/vacuum interface,
where the unbalanced forces �fi0 are important. The second is
Hertzian contact of a rigid sphere and a flat elastic substrate. In
the final example, the sphere is replaced by a randomly rough
surface, which enhances plastic deformation in the crystal.

Results for different crystals and interactions are presented.
The simplest is the (100) surface of a face-centered cubic
(fcc) crystal with nearest-neighbor harmonic interactions with
spring constant k. This system is called nn-fcc below.

The second system, called 2n-fcc, is also the (100) fcc sur-
face but with second-nearest-neighbor interactions. Particles
interact with a Lennard-Jones potential

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(34)

for r < r1 = 1.35σ . The potential and force are then smoothly
brought to zero at r2 = 1.8σ using a third-order spline.47 The
value of r2 is chosen so the potential extends only to second-
nearest neighbors in the zero pressure ground state of the fcc
structure.

The third case, called sc, is the (100) surface of a simple cu-
bic solid with the same spring constant k between first and sec-
ond neighbors. This solid has also been used by Campaña and
Müser in their work on the contact of rough surfaces.25,27–29

We checked that the transfer matrix and renormalization
formulations give surface stiffness matrix coefficients that are
identical to the analytic result of Saito30 for the sc system.

The final system uses the Green’s function from continuum
theory for an isotropic medium. Here the surface stiffness
matrix is approximately linear in �q for all wave vectors. The
full continuum expression is given in Appendix B. Explicit
expressions for the force-constant matrices of the other
models are given in Appendix A.

As a first example, we consider surface relaxation at a flat
crystal/vacuum interface. Terminating the crystal generally
leads to nonzero internal forces on atoms that lie on the ideal
lattice sites. These are described by �fi0 in our Green’s function
method. One consequence is that the spacing between atomic
planes deviates from the bulk value and varies as a function
of the depth below the interface. For a flat surface, the forces
are the same on all unit cells so we only need to consider the
�q = 0 contribution.

Figure 2 shows the deviation from the bulk spacing between
atomic planes as a function of depth for the 2n-fcc system.
Results for zero, two, four, and eight atomic planes of explicit
atoms on top of the boundary layer are all equivalent. (Note that
there are two atomic planes per boundary and substrate layer.)
This confirms that the Green’s function provides a seamless
boundary condition for the explicit region. Note that in some
systems surface relaxation leads to a different periodicity of the
surface and bulk layers. To capture this relaxation, one must

FIG. 2. Fractional change in spacing of atomic planes d from
bulk value d0 as a function of depth below a free (100) surface of
an fcc crystal. Results from the Green’s function with zero, two,
four, and eight atomic planes (zero, one, two, and four unit cells) are
equivalent. The surface atomic plane is 0 and the separation is plotted
at the midpoint between planes. Open symbols show the spacing
within the explicit crystal and between explicit and substrate planes.
Full symbols denote spacing within the substrate.
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include layers of explicit atoms above the Green’s function
boundary layer.

The previous Green’s function implementation of Campañá
et al.25 did not include �fi0 and, thus, did not capture surface
relaxation. We found that excluding �fi0 had several effects.
One was that it led to nonuniform spacing between atomic
planes of explicit atoms placed on top of the boundary layer.
This variation is effectively a form of surface relaxation due to
an effective discontinuity in the forces between surfaces. It also
represents a violation of Newton’s third law because boundary
atoms feel a force from explicit atoms, but the counterforce
is missing. When the explicit atoms were from an opposing
surface, we found that the change in spacing of atomic planes
led to changes in the force on the second layer that could be
important for adhesive contact.

Our second example is Hertzian contact45 of a rigid
spherical indenter with radius R and an elastic substrate with
contact modulus E∗. Continuum theory45,48 predicts contact
occurs in a circle of contact radius a. Both a and the peak
pressure p0 in the center of the contact rise as the cube root of
the normal load N ,

a

R
= π

2

p0

E∗ =
(

3N

4E∗R2

)1/3

. (35)

These analytic predictions are compared to different atomistic
models in Fig. 3.

All atomistic models have substrates with a square array of
256 × 256 surface atoms and a depth of 256 atomic planes.
Different numbers of atomic planes are treated explicitly and
the number of atomic planes in the boundary and substrate
layers depends on the interaction range. Here and in all
following simulations we move the indenter and then relax
the positions of the substrate atoms assuming a rigid boundary
at the bottom of the substrate. The sphere is featureless and
interacts with an atom at position �ri via the potential Vrigid(�ri) =
V (|�ri − �r0| − R), where �r0 is the center of the sphere and R

its radius. The potential V is the Lennard-Jones potential of
Eq. (34) but cut off at its minimum and with ε increased by a
factor of 100 to approximate a hard-sphere interaction.

The contact modulus E∗ is analytically known for the
isotropic continuum case, where E∗ = 2μ(1 + ν)/(1 − ν2), μ
is the shear modulus, and ν Poisson’s ratio (see Appendix B).
In the results below ν = 0. The 2n-sc substrate is isotropic
with E∗ = 8

3k/Aa , where Aa is the surface area occupied by a
single atom. The nn-fcc and 2n-fcc cases are anisotropic, and in
this case the contact modulus generally depends on orientation
and indenter geometry.49,50 There is no simple analytic relation
and we will use Hertz theory to fit effective values of E∗.

Figure 3(a) shows the variation of p0 with load for all
atomistic systems. First, we discuss results where the entire
substrate is treated with the Green’s function method so the
elastic response is linear. Data for each system were divided
by the value of E∗ that optimizes the fit to the solid line
showing the prediction of continuum theory. For the cases
where E∗ is known, the fit value is within about 2% of the
analytical expression. Some deviation is expected from the
discrete geometry and the finite compliance of the interface
potential. For the continuum Green’s function the fit yields
E∗ = 2.02μ compared to the analytic E∗ = 2μ. For the 2n-sc

(a)

(b)

FIG. 3. Contact of a rigid spherical indenter with radius R =
100σ on an elastic substrate. Shown is (a) the peak pressure p0

and (b) contact radius a as a function of load N normalized by
the elastic contact modulus E∗. We compare calculations for (100)
surfaces of the fcc lattice with nearest-neighbor (nn) and second-
nearest-neighbor (2n) interactions to calculations of a simple cubic
(100) surface and continuum calculations. The effective size of the
substrate is a cubic block with 256 atoms in each lateral direction and
periodicity parallel to the surface. The values for the effective contact
modulus E∗ for the anisotropic nn-fcc and 2n-fcc cases are fit to the
peak pressure shown in panel (a).

solid we obtain E∗ = 2.73k/Aa as compared to the analytic
E∗ ≈ 2.67k/Aa . For the nn-fcc and 2n-fcc substrate, the fits
give E∗ = 1.4k/Aa and E∗ = 70.4ε/σ 3, respectively. While
we have no prediction to compare to, these numbers are of the
order of the relevant elastic moduli.

Figure 3(b) compares the load-radius relationship for
different models to continuum theory using the value of E∗
obtained from fitting p0 above. Contact was defined by a
repulsive interaction between atoms and indenter. The contact
radius was then obtained by equating πa2 to the number of
contacting atoms times the surface area per atom. While a/R

rises linearly with the slope predicted by continuum theory,
there is an offset corresponding to an increase in contact area.
An even larger offset is observed in previous simulations of
atomic scale contact.1,51–53 The deviations are minimized in
our work by using a featureless indenter and making the
interaction closer to a hard wall repulsion by increasing ε

by two orders of magnitude. The same limit was achieved in
Ref. 53 by increasing the density of atoms on the indenter.
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(a)

(b)

FIG. 4. Pressure as a function of distance from the tip center along
a row of atoms in the (110) direction for rigid spherical indenters with
radius (a) R = 100σ or (b) R = 1000σ on an elastic substrate.

The peak strain at the interface is of order a/R and one
may expect nonlinear behavior at the largest values of ∼10%
in Fig. 3. The Green’s function approach allows this to be
studied while treating only a small number of explicit atoms.
Figure 3 shows that including 16 layers of explicit atoms does
not change the contact area on the scale of the figure but
does increase the peak pressure. The full pressure distribution
for different numbers of atomic planes at several loads is
shown in Fig. 4 for R = 100σ and R = 1000σ . In all cases,
the Green’s function results follow the analytic solution for
elastic substrates (solid line). When explicit atomic planes are
included, there are deviations from Hertz theory. The pressure
needed to deform the central regions is higher for the explicit
solution because Lennard-Jones bonds become stiffer as they
are compressed. As expected from Hertz theory, the deviations
increase with a/R which sets the peak strain. Increasing R

from 100a to 1000a reduces the deviations at a fixed value of
a. Deviations are very small for a/R less than 2%, which is
consistent with direct evaluations of anharmonic effects.

Note that the number of atomic planes needed to capture
nonlinear effects grows with a/R. A single pair of planes has
little effect, while 8 planes is sufficient for a/R up to about

0.09 [Fig. 4(a)]. All atom simulations are consistent with the
16-plane results for a/R = 0.12 and one may expect plastic
deformation at larger a/R for most materials. In the Hertz
solution, strains decay over scales of order a and the peak
shear strain is at a depth of about a/3.45 Including explicit
atoms to greater depths should allow the system to capture
nucleation of defects and other nonlinear effects.

The next test considers the case of contact with a rigid,
randomly rough surface, which has been extensively investi-
gated using similar techniques.3,4,25,27–29 Many experimental
surfaces are found to have roughness on all scales that can be
described as a self-affine fractal. The root-mean-squared (rms)
change in height dh over a lateral distance � scales as dh ∝ �H

where H is called the Hurst or roughness exponent. We
generate a self-affine surface with H = 0.8 on a 1024 × 1024
grid using Voss’ random midpoint algorithm.54 This surface is
Fourier filtered to remove roughness on all wavelengths below
16 grid spacings. We then use bicubic splines to interpolate the
discrete positions to a continuous surface with height h(x,y).
The final surface has a rms slope of h′

0 =
√

|∇h|2 = 0.09.
The rough surface is pushed against a 2n-fcc solid with

256 × 256 surface atoms and different numbers of explicit
layers. Atoms at position �r = (x,y,z) interact with the surface
via the potential Vrigid(x,y,z) = V [z − h(x,y)], where V (z)
has the same functional form as the interaction used for the
rigid sphere but depends only on the height difference. The
area of contact A is determined by multiplying the area per
atom by the number of atoms in the top layer of the crystal
that feel a repulsion from the rough surface.

FIG. 5. Contact of a rigid rough surface on a crystalline fcc (100)
surface. The periodicity of the rough surface is 256 nearest-neighbor
distances d0 in both directions with a nominal surface area of A0 =
256d0 × 256d0. The solid interacts via a pair potential that extends
to second neighbors as described in the text. The area A is shown as
a function of the load N normalized by the rms slope h′

0 =
√

|∇h|2
of the rough surface and the contact modulus E∗. The substrate is
a block with 256 atoms in each direction. We compare the results
of a simulation with only a harmonic half space to systems with
two, four and eight explicit atomic planes on top of the half space.
The anharmonicity of the explicit interatomic interactions leads to a
stiffening and a slightly smaller contact area at larger loads. The solid
line has slope 1/κ = 1/2.
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FIG. 6. (a) Load dependence of the depth Dpl of the deepest plastically deformed atom divided by the spacing d0 of atomic planes as
determined from a common neighbor analysis (CNA). The Green’s function results with 16 atomic planes of explicit atoms follow the all atom
calculation until plasticity reaches the Green’s function layer. (b) Snapshots showing the projections of the atoms that have displaced plastically
as determined from a CNA. The CNA shows dislocation loops are emitted from the surface. Snapshots shown by 1, 2, and 3 correspond to the
loads marked 1, 2, and 3 in panel (a) and are recorded at 8%, 15%, and 16% contact area, respectively. Dislocations in the full atomistic and
reduced system behave identically until the deepest dislocation loop hits the elastic boundary where it cannot propagate.

Previous numerical and analytic work has found a linear
relationship between load and contact area of the form

N

h′
0E

∗A0
= 1

κ

A

A0
(36)

with κ ≈ 2.29,55,56 Figure 5 compares this prediction (solid
line) to results for 2n-fcc surfaces with different numbers of
layers of explicit atoms. At small loads, results for all numbers
of explicit atoms lie close to the solid line. The purely elastic
calculation, where the entire elastic solid is described by the
Green’s function, follows the solid line all the way to 10%
contact area. When two explicit atomic planes are included,
the area rises less rapidly as the load increases. This reflects
anharmonicity in the explicit planes, where the Lennard-Jones
potential stiffens as bond lengths shrink under the applied
pressure. Note that results with four and eight explicit planes
are nearly indistinguishable, implying that anharmonicity is
largely confined to the outer layers. A small number of explicit
planes is sufficient in this case because the effective radius a of
local contacting regions for this rough surface is only of order
4σ . This allows the Green’s function method to reproduce
the full nonlinear response of the atomistic system at a small
fraction of the computational cost.

The rough surface just considered is artificial because it has
no atomic structure. As a final example, we consider a rough
rigid surface made of discrete atoms on a crystalline lattice.
The layered structure leads to steps or terraces that focus stress
and lead to dislocation nucleation.

The stepped surface is created from an fcc crystal with a
(100) surface and the same lattice spacing as the substrate. A
smooth randomly rough surface with rms slope h′

0 = 0.03 and
H = 0.5 was created using the procedure described above.
Then all atoms of the lattice with heights below the surface
were removed. The elastic substrate is like the nn-fcc case
described above. However, since ideal springs would not allow
plasticity, neighbors interact with a Lennard-Jones potential
that is splined to zero force between 1.2σ and 1.25σ . All
systems had 256 × 256 surface atoms and 256 atomic planes.
Two atomic planes make up a unit cell and the spacing of

atomic planes d0 is the nearest-neighbor spacing dnn divided
by

√
2. To identify plastic deformation, we detect atoms whose

environment deviates from the crystal using common neighbor
analysis (CNA).57,58

Figure 6(a) plots the depth of the deepest plastic atom Dpl

normalized by the spacing of atomic planes d0. Fully atomistic
calculations of the entire volume are used as a benchmark.
They are compared to calculations where the top 16 atomic
planes (8 substrate layers) are treated explicitly and the remain-
ing atoms are replaced by the Green’s function. Note that the
Green’s function and all atom calculations give nearly identical
results until plasticity reaches the depth of the boundary layer.
Dislocations cannot propagate in to the boundary layer, but
their motion is not affected by the boundary layer when there
are a couple of explicit layers separating them. Arrest of
dislocations at the boundary is unavoidable in most contin-
uum/atomistic coupling schemes,59 with a notable exception
of the coupled atomistic and discrete dislocation method.60

Projections showing the geometry of the dislocations
generated in the full and 16 layer calculations are compared
in Fig. 6(b). The structure is fully captured for the load
corresponding to point 1 in Fig. 6(b). At point 2, the deepest
plastic atom has nearly reached the boundary layer. The largest
dislocation loop is slightly suppressed in the 16 layer system,
but the remaining dislocations are not affected. At point 3, the
dislocations have clearly penetrated past the boundary layer
and this cannot be captured by the Green’s function. Note that
this load is comparable to the highest load in Fig. 5 and the con-
tact area is close to 16%. We have found that global measures,
such as plots of contact area vs. load, are much less sensitive
to the number of explicit layers than the dislocation depth.

IV. CONCLUSIONS

An approach for coupling an explicit atomistic region to a
substrate described with a Green’s function was developed and
tested. The entire system is described by a single Hamiltonian
and the only approximation is to neglect anharmonic terms
in the substrate. Many other atomistic/coupling schemes
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introduce ghost forces or cannot be described by a single
Hamiltonian.9,12 Previous applications of the Green’s function
approach have also neglected some forces near the elas-
tic/explicit boundary leading to violations of Newton’s third
law and ghost forces when interactions extend beyond nearest
layers.

Efficient methods for calculating the Green’s function given
the interatomic potential were described. Fourier transforming
in the plane of the substrate reduces the problem to a one-
dimensional coupling between N layers for each in-plane
wave vector �q. These equations can be solved using a transfer
matrix approach36,37 or a renormalization group method38,39

with computational effort that scales as 1/|�q| or − ln |�q|,
respectively. This is order N2 faster than a previous fluctuation-
dissipation formulation for obtaining the Green’s function.25

While we have exclusively presented calculations using pair
potentials, an extension to many-body formulations such as
embedded-atom61 or bond-order62 potentials is straightfor-
ward. Similarly, we consider only static applications but
present equations for the full dynamic problem with arbitrary
masses and damping.

Three tests of the method were discussed. The first is
surface relaxation, which reflects the loss of neighbors at a free
surface. The Green’s function approach accurately reproduced
explicit atomistic simulations. The previous Green’s function
implementation25 was only accurate for nearest-neighbor
interactions at zero pressure where relaxation vanishes. The
second test was Hertzian contact by a rigid sphere. With no
explicit atoms, the elastic Green’s function reproduced the
analytic response for an elastic continuum. Adding only 8
to 16 atomic planes of explicit atoms allowed anharmonic
corrections to Hertz theory to be captured with a relatively
modest increase in computer time. The final example was
contact with a randomly rough surface with atomic steps
that nucleated subsurface dislocations. The Green’s function
method captured the full response, including contact area and
dislocation distribution, until the dislocations came very close
to the elastic layer.

There are several ways in which the current approach can
be extended. Periodic changes in elemental composition of
the crystal as encountered in nanolaminates can be included
straightforwardly by allowing the force-constant matrix to
vary with depth. Another extension is to evaluate both the
full force and the harmonic approximation for atoms at the
elastic/explicit interface. The deviation can be used to estimate
errors and determine whether to terminate the calculation or
add additional layers of explicit atoms. This addition could
be done adaptively on the fly. A third is to include finite
temperature. The static elastic response can still be described
by a Green’s function that must be modified if the temperature
is high enough to produce anharmonic effects. The success of
recent extensions of the quasicontinuum method63,64 suggests
that the most important changes in the Green’s function can be
captured by using the thermally expanded lattice to determine
the force-constant matrix.
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APPENDIX A: FORCE-CONSTANT MATRICES FOR (100)
SURFACES AND PAIR INTERACTIONS

The force-constant matrices are readily derived for any
potential, but we focus on pair potentials V (r) that depend
only on the separation r between each pair of particles. The
potential energy of the boundary and substrate then becomes

Ebs =
∑

ij,i<j

V (rij ) = 1

2

∑
ij

V (rij ), (A1)

where the sum is over all atomic sites i and j that lie in the
boundary or substrate layers (Fig. 1).

To simplify the notation we will first calculate the force-
constant matrix for the case of a single atom per unit cell,
nc = 1, and thus nearest-neighbor interactions. We denote the
atomic positions by �ri and �rij = �ri − �rj is the vector between
atoms i and j . The force-constant matrix is defined in terms
of derivatives of the energy relative to the displacement �ui ≡
�ri − �r0

i from equilibrium positions �r0
i . It is useful to separate

the components along and perpendicular to the unit vector
�e0
ij = �r0

ij /|�r0
ij | in the direction between equilibrium positions

of i and j ,

Dij = D‖
ij + D⊥

ij . (A2)

The parallel component is

D‖
ij = 1

2

∑
kl

∂2V

∂r2
kl

∂rkl

∂ �ui

⊗ ∂rkl

∂ �uj

∣∣∣∣
�ui=0,�uj =0

= −kij �e0
ij ⊗ �e0

ij + δij

∑
n∈neighb.

kin�e0
in ⊗ �e0

in, (A3)

where ⊗ denotes the outer product and

kij = ∂2V

∂r2
ij

∣∣∣∣
r0
ij

(A4)

is the effective spring constant in the equilibrium structure.
The perpendicular component is

D⊥
ij = 1

2

∑
kl

∂V

∂rkl

∂2rkl

∂ �ui∂ �uj

∣∣∣∣
�ui=0,�uj =0

= fij

r0
ij

(
I − �e0

ij ⊗ �e0
ij

)

− δij

∑
n∈neighb.

fin

r0
in

(
I − �e0

in ⊗ �e0
in

)
, (A5)

where

fij = − ∂V

∂rij

∣∣∣∣
r0
ij

(A6)
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is the absolute force at the equilibrium separation r0
ij . Note

that D⊥
ij vanishes for crystals at zero pressure that interact via

nearest neighbors only since, in this case, fij = 0 in the above
equations. Even for interatomic potentials that act over a larger
range, this contribution is typically an order of magnitude
smaller than D‖

ij and, indeed, often ignored in discussions of
phononic excitations.40 We explicitly checked the influence of
D⊥

ij for the contact situations discussed in Sec. III and found
no visible change on the scale of the plots. Yet, for the sake of
completeness, we retain D⊥

ij in the following derivations and
denote the force-constant for bond rotation by k⊥ = −f/r0.

The following sections consider different crystal systems.
In all cases, the free surface of the elastic half-space is oriented
perpendicular to the z direction. To simplify expressions in-
volving phase factors, we use the abbreviations cx = cos qxdnn,
sx = sin qxdnn, c x

2
= cos qxdnn

2 , and s x
2

= sin qxdnn

2 .

1. sc (100) with second-nearest-neighbor interaction

This solid is sc with nearest-neighbor and second-nearest-
neighbor interactions, both with identical spring constant k.
At zero pressure, the forces between neighbors all vanish, so
the spring constants for bond rotations k⊥ = 0. The crystal
is oriented with the (100), (010), and (001) directions along
the x, y, and z axes, respectively. Since the second-nearest
neighbors lie in the same plane as nearest neighbors, a single
atom unit cell and boundary layer can be used. There are four
nearest and four second-nearest neighbors in each layer and
one nearest and four second-nearest neighbors in layers above
and below. Summing contributions over these neighbors, one
finds that the dynamical matrices for this system are given by

U(�q) = k

⎛
⎜⎝

6 − 2cx(1 + cy) 2sxsy 0

2sxsy 6 − 2(1 + cx)cy 0

0 0 6

⎞
⎟⎠, (A7)

U0(�q) = k

⎛
⎜⎝

5 − 2cx(1 + cy) 2sxsy 0

2sxsy 5 − 2(1 + cx)cy 0

0 0 3

⎞
⎟⎠, (A8)

V(�q) = k

⎛
⎜⎝

−cx 0 isx

0 −cy isy

isx isy −1 − cx − cy

⎞
⎟⎠. (A9)

From these expressions we obtain a Green’s function that is
identical to the analytic expression of Saito.30

For this solid the explicit forms of the acoustic sum rule40

in the bulk and at the surface are

V†(�) + U(�) + V(�) = 0, (A10)

U0(�) + V(�) = 0. (A11)

Equations (A7) to (A9) fulfill these rules.

2. fcc (100) with nearest-neighbor interaction

The fcc crystal is oriented with the (110), (11̄0), and (001)
directions along the x, y, and z axes, respectively. This orients
the axes along the nearest-neighbor directions and we use the
single atom, square unit cell shown in Fig. 1(b). There are four
nearest neighbors in the same plane and four in each adjacent

layer. The translation vector connecting neighboring layers is
�c = dnn(1/2,1/2,1/

√
2), so successive layers are offset in the

x-y plane.
We consider the case k⊥ �= 0 to allow for cases where the

reference state is under pressure. The intralayer force-constant
matrix for this lattice is written as U = knnU‖

nn + k⊥
nnU⊥

nn with
the subscript nn denoting nearest neighbors. Then

U‖
nn(�q) =

⎛
⎜⎝

4 − 2cx 0 0

0 4 − 2cy 0

0 0 4

⎞
⎟⎠, (A12)

U⊥
nn(�q) =

⎛
⎜⎝

8 − 2cy 0 0

0 8 − 2cx 0

0 0 8 − 2cx − 2cy

⎞
⎟⎠, (A13)

in the bulk and U0 = knnU‖
0(�q) + k⊥

nnU⊥
0 (�q) with

U‖
0(�q) = U‖

nn(�q) −

⎛
⎜⎝

1 0 0

0 1 0

0 0 2

⎞
⎟⎠, (A14)

U⊥
0 (�q) = U⊥

nn(�q) −

⎛
⎜⎝

3 0 0

0 3 0

0 0 2

⎞
⎟⎠, (A15)

at the surface. The interlayer force-constant matrix is V =
(knnV‖

nn + k⊥
nnV⊥

nn) exp{i(qx + qy)dnn/2} with

V‖
nn =

⎛
⎜⎝

−c x
2
c y

2
s x

2
s y

2
i
√

2s x
2
c y

2

s x
2
s y

2
−c x

2
c y

2
i
√

2c x
2
s y

2

i
√

2s x
2
c y

2
i
√

2c x
2
s y

2
−2c x

2
c y

2

⎞
⎟⎠, (A16)

V⊥
nn =

⎛
⎜⎝

−3c x
2
c y

2
−s x

2
s y

2
−i

√
2s x

2
c y

2

−s x
2
s y

2
−3c x

2
c y

2
−i

√
2c x

2
s y

2

−i
√

2s x
2
c y

2
−i

√
2c x

2
s y

2
−2c x

2
c y

2

⎞
⎟⎠. (A17)

Equations (A12) to (A17) fulfill the sum rules Eqs. (A10) and
(A11).

3. fcc (100) with second-nearest-neighbor interaction

For the discussion of second-nearest-neighbor interactions
we use the same unit cell within the surface plane but must
increase the width of the boundary layer to two atomic planes
so nc = 2. Successive layers are not offset so the translation
vector is perpendicular to the plane: �c = dnn(0,0,

√
2). There

are four second-nearest neighbors in the same plane, and one
in each layer with distance 2dnn. The vectors and matrices in
Sec. II all have dimension 3nc, but it is useful to divide them
into terms associated with each atom. The displacements and
forces are then expressed as nc vectors of length 3 or nc × nc

arrays of 3 × 3 matrices. Using tildes to identify smaller 3 × 3
matrices, the force-constant matrix elements become

U0 =
(

Ũ0 Ṽei(qx+qy )dnn/2

Ṽ†e−i(qx+qy )dnn/2 Ũ1

)
, (A18)

U =
(

Ũ Ṽei(qx+qy )dnn/2

Ṽ†e−i(qx+qy )dnn/2 Ũ

)
, (A19)
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V =
(

W̃ 0
Ṽe−i(qx+qy )/2 W̃

)
. (A20)

In the following, k
‖
nn and k

‖
2n are the spring con-

stants for nearest-neighbor and second-nearest-neighbor bond
stretching, while k⊥

nn and k⊥
2n are the spring constants

for first- and second-nearest-neighbor bond rotation, re-
spectively. The intralayer force-constant matrix is given
by Ũ = Ũnn + Ũ2n with Ũnn = k

‖
nnŨ‖

nn + k⊥
nnŨ⊥

nn and Ũ2n =
k

‖
2nŨ‖

2n + k⊥
2nŨ⊥

2n. The expressions for Ũ‖
nn and Ũ⊥

nn are iden-
tical to the nearest-neighbor fcc (100) case and given in
Eqs. (A12) and (A13). The contribution due to second-nearest
neighbors is

Ũ‖
2n(�q) =

⎛
⎜⎝

2 − 2cxcy 2sxsy 0

2sxsy 2 − 2cxcy 0

0 0 2

⎞
⎟⎠, (A21)

Ũ⊥
2n(�q) =

⎛
⎜⎝

4 − 2cxcy −2sxsy 0

−2sxsy 4 − 2cxcy 0

0 0 4 − 4cxcy

⎞
⎟⎠. (A22)

In this case, the surface force-constant matrix element becomes
Ũ0 = Ũ‖

0 + Ũ⊥
0 with

Ũ‖
0(�q) = k‖

nn

⎧⎪⎨
⎪⎩Ũ‖

nn(�q) −

⎛
⎜⎝

1 0 0

0 1 0

0 0 2

⎞
⎟⎠

⎫⎪⎬
⎪⎭

+ k
‖
2n

⎧⎪⎨
⎪⎩Ũ‖

2n(�q) −

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠

⎫⎪⎬
⎪⎭ , (A23)

Ũ‖
1(�q) = k‖

nnŨ‖
nn(�q) + k

‖
2n

⎧⎪⎨
⎪⎩Ũ‖

2n(�q) −

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠

⎫⎪⎬
⎪⎭ ,

(A24)

Ũ⊥
0 (�q) = k⊥

nn

⎧⎪⎨
⎪⎩Ũ⊥

nn(�q) −

⎛
⎜⎝

3 0 0

0 3 0

0 0 2

⎞
⎟⎠

⎫⎪⎬
⎪⎭

+ k⊥
2n

⎧⎪⎨
⎪⎩U⊥

2n(�q) −

⎛
⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎠

⎫⎪⎬
⎪⎭ , (A25)

Ũ⊥
1 (�q) = k⊥

nnŨ⊥
nn(�q) + k⊥

2n

⎧⎪⎨
⎪⎩Ũ⊥

2n(�q) −

⎛
⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎠

⎫⎪⎬
⎪⎭ ,

(A26)

while the interlayer force-constant matrices are

Ṽ‖(�q) = k‖
nnṼ‖

nn(�q), (A27)

Ṽ⊥(�q) = k⊥
nnṼ⊥

nn(�q), (A28)

W̃‖(�q) = k
‖
2n

⎛
⎜⎝

0 0 0

0 0 0

0 0 −1

⎞
⎟⎠, (A29)

W̃⊥(�q) = k⊥
2n

⎛
⎜⎝

−1 0 0

0 −1 0

0 0 0

⎞
⎟⎠. (A30)

The expressions for Ṽ‖
nn and Ṽ⊥

nn are identical to the nearest-
neighbor fcc (100) case given in Eqs. (A16) and (A17).

For second-nearest-neighbor interactions the acoustic sum
rules become

W̃†(�) + Ṽ†(�) + Ũ(�) + Ṽ(�) + W̃(�) = 0, (A31)

Ṽ†(�) + Ũ1(�) + Ṽ(�) + W̃(�) = 0, (A32)

Ũ0(�) + Ṽ(�) + W̃(�) = 0. (A33)

It is straightforward to check that these are fulfilled by
Eqs. (A21) to (A30).

The values for the individual spring constants are evaluated
from the derivatives of the potential at the equilibrium spacing.
Here we use the Lennard-Jones potential given by Eq. (34) for
r < r1 and smoothly spline it to zero force between r1 = 1.35σ

and r2 = 1.8σ . Evaluating the derivatives for the zero-pressure
equilibrium state yields k

‖
nn = 65.6 ε

σ 2 , k
‖
2n = −5.06 ε

σ 2 , k⊥
nn =

−0.41 ε
σ 2 , and k⊥

2n = 0.41 ε
σ 2 . The force �f0 is has magnitude

F0 = 0.64 ε
σ

at the boundary layer and is directed away from
the bulk at the top layer of atoms and toward the bulk at
the bottom layer: �f0 = (0,0,F0,0,0, − F0) [see also Eq. (5) in
Sec. II].

APPENDIX B: ISOTROPIC CONTINUUM ELASTICITY

For completeness, we compare the surface stiffness co-
efficients to the behavior of �(�q) = G−1(�q) for a purely
continuum elastic media. The solution is obtained by a
Fourier analysis of the equations for mechanical equilibrium
in continuous isotropic elastic bodies21,22,65 and reads

μG(�q) =

⎛
⎜⎜⎝

1
q

− νq2
x

q3 − νqxqy

q3 i
(1−2ν)qx

2q2

− νqxqy

q3
1
q

− νq2
y

q3 i
(1−2ν)qy

2q2

−i
(1−2ν)qx

2q2 −i
(1−2ν)qy

2q2
1−ν
q

⎞
⎟⎟⎠ , (B1)

where μ is the shear modulus and ν Poisson’s ratio. All
calculations reported here are for ν = 0. A continuous medium
has complete translational symmetry and the BZ extends over
all q. However, we only specify displacements at the discrete
set of surface atoms and use the corresponding BZ. This is
similar to approximating the continuum equations by solving
on a discrete mesh.
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