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We present self-consistent calculations of electron transport in graphene nanoconstrictions within the Hartree
approximation. We consider suspended armchair ribbons with V-shaped constrictions having perfect armchair
or zigzag edges as well as mesoscopically smooth but atomically stepped constrictions with cosine profiles. Our
calculations are based on a tight-binding model of the graphene and account for electron-electron interactions
in both the constriction and the semi-infinite leads explicitly. We find that electron interactions result in the
following. (i) Electrons accumulating along the edges of the uniform ribbon and along the zigzag and cosine
constriction edges but not along armchair constriction edges. (ii) The first subband showing almost perfect
transmittance due to localization at the uniform graphene boundary except at low energies for the cases of zigzag
and cosine constrictions where Bloch stop-bands form in related periodic structures. (iii) The second subband
being almost perfectly blocked by the constriction. (iv) Electron interactions favor intrasubband scattering
while the noninteracting electron theory predicts the predominance of intersubband scattering. (v) Conductance
quantization for the first few conductance steps being more pronounced for armchair constrictions but less so for
zigzag constrictions. (vi) A much more prominent 2e2/h conductance plateau for the cosine constriction than is
found in the absence of electron interactions. Possible implications for recent experiments are briefly discussed.
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I. INTRODUCTION

Graphene nanoribbons are strips of graphene several
nanometers wide and of arbitrary length. Their unique
electronic structure and transport properties that arise from
the linear, massless Dirac-like spectrum of the underlying
honeycomb lattice of graphene are attracting a great deal
of interest at the present time.1 In experimental studies of
graphene nanoribbons the electronic charge density in the
ribbon is usually varied by the application of a variable voltage
to a gate electrode located near the ribbon.2–10 If, due to the
application of the gate voltage, there is a net charge on the
ribbon, the electronic charge density in the ribbon ceases to
be uniform, and there is a strong redistribution of the charge
towards the edges of the ribbon. This charge redistribution
and its effects on the electronic structure and transport have
been examined theoretically by several authors for ribbons of
uniform width separated from the gate electrode by a dielectric
film.11–14 It has been predicted that the charge redistribution
results in a 1/

√
x charge singularity12 at the edge of the ribbon

(here x is the coordinate normal to the ribbon boundary)
and the modification of the electron dispersion relation.13

Electron transport in graphene nanoribbons with constrictions
(GNCs) is also attracting theoretical15–18 and experimental19

attention at the present time. However, the effects of charge
redistribution in GNCs have not as yet been discussed in the
literature. In this paper we explore this topic theoretically.

The present theory accounts for the effects of the Coulomb
repulsion that gives rise to the charge redistribution within the
self-consistent Hartree approximation that has been used pre-
viously to study charge redistribution in uniform ribbons.11–14

We consider infinite ribbons with armchair edges and V-shaped
or cosine-shaped constrictions and treat the effects of electron-
electron interactions at the Hartree level throughout these
entire structures. We do not include exchange or higher-order
correlation effects in our model to simplify the numerical

calculations. The ribbons that we consider are suspended
above a dielectric layer which covers a gate electrode as in
a recent experiment.19 We treat the effects of the dielectric and
gate within an image charge model. We describe the charged
nanoribbon by fixing the chemical potential, and obtaining a
self-consistent solution where all electronic states with lower
energies than the Fermi energy are filled. From this calculation
we obtain the Hartree electronic energy bands and charge
densities and compute the conductance. Our model considers
only pz orbitals of the graphene within the tight-binding
approximation. The structures studied below include more
than 10 000 carbon atoms inside the computational area.

We find that strong charge accumulation along the constric-
tion boundary occurs or does not occur depending on the type
of constriction that is considered. As more electron subbands
become populated the lowest subbands gradually localize near
the graphene boundary. We find that, in the Hartree model,
electrons in the first subband of the ribbon are transmitted al-
most perfectly through the constriction with little intersubband
scattering, except at the small Fermi energies where they can
be resonantly reflected by a constriction having zizgag edges.
By contrast, in the noninteracting electron model strong inter-
subband scattering occurs at the constriction. Depending on
the type of constriction, conductance quantization is predicted
to be more or less pronounced in the Hartree approximation
than in the noninteracting approximation, a finding that may
be relevant to recent experimental observations.

The remainder of this paper is organized as follows. Our
model and method of solution are described in Sec. II. Our
numerical results are presented in Sec. III. We summarize our
main conclusions in Sec. IV.

II. MODEL

We consider a graphene nanoribbon (GNR) suspended in
a way similar to that in the experimental setup of Tombros
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FIG. 1. (a) Representative device with freestanding graphene
nanoribbon. (b) Image charge model.

et al.19 The GNR is separated from the back gate by layers of
a dielectric and air, see Fig. 1(a). For the dielectric material
we choose SiO2 with relative permittivity ε = 3.9. The GNR
is attached at its two ends to semi-infinite leads represented
by ideal ribbons having the same width W as the GNR. Four
different types of devices are considered in the following: an
ideal uniform ribbon, and ribbons having V-shaped armchair
and zigzag constrictions, or constrictions with cosine profiles
imposed on one side. We disregard any defects other than the
atomic steps at the boundary of the cosine-shaped constriction
in the present study. The host configuration is taken as armchair
as are the edge configurations of the semi-infinite leads.

As representative devices we consider GNRs of width W =
10 nm and length L = 27 nm, Fig. 1(a). There are 82 carbon
atoms in the cross section, making the ribbon semiconducting.
The constrictions, if imposed, are V-shaped or cosine-shaped
trenches 5-nm deep inside the ribbon thus leaving half of the
width W of the ribbon in the narrowest part of the constriction
for electron propagation. The scattering region of length L

is attached to the semi-infinite graphene leads. The length
L is taken long enough to include part of the leads near the
constriction and therefore to treat the leads accurately. Because
for the V-shaped constrictions we consider atomically ideal
boundaries, the apex angles of these constrictions are 60◦ and
120◦ for the armchair and zigzag cases, respectively. The SiO2

and air layers are both 50-nm thick. Thus the back gate is
100 nm from the nanoribbon. We performed simulations for
different ribbon widths for these constriction geometries and
all of the results showed similar features.

The system shown in Fig. 1 is described by the Hamiltonian

H =
∑

i

V H
i a

†
i ai −

∑
〈i,j〉

tij (a†
i aj + H.c.), (1)

where tij = t = 2.7 eV is the matrix element between nearest-
neighbor atoms; V H

i is the Hartree potential at atom i which
results from the Coulomb interaction with the uncompensated
charge density −en in the system (including the image
charges). In coordinate space the Hartree potential can be
written as

V H (r) = e2

4πε0ε

∫
dr ′ ∑

k

nk(r′)√
|r − r′|2 + b2

k

, (2)

TABLE I. Coordinates and electron and image charge densities
for the model shown in Fig. 1(b). k = 0 refers to the electron density
n0 that gives rise to the image charge densities for which k > 0. d

is the distance between the graphene and the dielectric and l is the
thickness of the dielectric.

k z coordinate, bk charge density, −enk

0 0 −en0

1 2d −e 1−ε

1+ε
n0

2 2(d + l) e 4ε

(1+ε)2 n0

3 2(d + 2l) e 4ε

(1+ε)2
1−ε

1+ε
n0

4 2(d + 3l) e 4ε

(1+ε)2 ( 1−ε

1+ε
)2n0

· · · · · · · · ·

where −enk(r′) is the kth electron or image charge placed
at distance bk from the graphene layer. The image charges
included in the model keep the back-gate electrode at zero
potential.11–13,20 The potential due to a charge density −en0

located a distance d above a dielectric (with dielectric constant
ε and thickness l) that is over a metal gate, as shown in
Fig. 1(b), can be described by an infinite number of image
charge densities. The first few image charge densities and
their z coordinates (measured from the position of the electron
charge) and also the electron charge density itself are given
in Table I. The first row (k = 0) describes the direct Coulomb
interaction between electrons in the graphene layer. Because
the contributions from the image charges decrease rapidly as k

grows and to facilitate computation the results presented below
were obtained keeping only the k = 0,1,2,3 terms.

The integration in Eq. (2) was performed over the whole
device including the semi-infinite leads. To include electron-
electron interactions over the whole system, we partition the
system into three parts, the internal computational region and
two semi-infinite leads.21,22 The internal region incorporates
not only the constriction but also segments of uniform ribbon
on both sides of it, including part of the leads. The semi-infinite
leads themselves begin far enough from the constriction to
ensure that the total self-consistent potential and the electron
density do not change appreciably along the leads (i.e., the
electron density and the potential in the leads are not affected
by the internal region). Thus the leads can be considered as
uniform graphene ribbons.

Starting from the Hamiltonian Eq. (1), we evaluate the
Green’s function numerically using the technique described
by Xu et al.23 The Green’s function in the real-space represen-
tation G(r,r) provides information about the local density of
states at site r

LDOS(r,E) = − 2

πS
Im[G(r,r,E)], (3)

where factor 2 takes account of the spin degeneracy and S is the
area corresponding to one carbon atom. The density of states
(DOS) is DOS(E) = ∫

dr LDOS(r,E). The local density of
state (LDOS) can be used to calculate the electronic density
n(r) at site r

n(r) =
∫ ∞

Vc

dE LDOS(r,E) f (E − EF ), (4)
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where EF is Fermi energy and f is the Fermi-Dirac distribution
function. All the calculations reported in this paper correspond
to the temperature T = 10 K. A zero temperature version of
Eq. (4) has been used previously in Ref. 13. In general at
nonzero temperatures the lower limit of integration in Eq. (4)
is −∞. However, in the present work the LDOS is zero in
a range of energies of width much larger than kT below the
charge neutrality point Vc and therefore Eq. (4) is a good
approximation. Note that an analogous approach based on
positive energy solutions was used to study interaction effects
in isolated graphene quantum dots in Ref. 24. The position of
the charge neutrality point Vc at a given Fermi energy is deter-
mined numerically from solution of the Schrödinger equation

H� = E(k)�, (5)

with H being the Hamiltonian (1) and the wave function �

obeying the Bloch theorem

�m+M = eikM�m, (6)

where k is the Bloch wave vector and �m is the Bloch wave
function at coordinate m; M = 3a is unit cell length of the
armchair ribbon.23,25,26 Having calculated the Bloch states
and constructed the band diagram one can readily obtain the
number of the Bloch states NBloch for a given Fermi energy
that in turn serves as a basis for analysis of transport properties
of GNCs.25 Because the projections of the two Dirac points
in the armchair ribbon coincide at k = 0 we solve Eq. (5) at
zero wave vector and find Vc from eigenvalues E(k = 0).

The integration path in Eq. (4) goes along the real axis and
a fine integration grid is used to capture the locations of the
subband edges and quasibound states if any are present.

Since the Hartree potential VH given by Eq. (2) depends on
the electron density n(r) which is a solution of the Schrödinger
equation with the Hamiltonian (1), these equations need to be
solved iteratively. The iteration process is executed until the
convergence criterion nm

out−nm
in

nm
out+nm

in
< 10−3 is met, where nm

in and
nm

out are the input and output average values of the electron
density at the mth iteration. In the cases where a constriction
is present in the GNR the above computation proceeds in
two stages. At the first stage, self-consistency is achieved for
the uniform ribbon. The charge density and potentials in the
semi-infinite leads are fixed. Then the constriction is imposed
on the scattering region and self-consistency is achieved again.

Having calculated the electron density and the position of
the Dirac point numerically, we are in a position to find the
conductance

G = −2e2

h

∫
dE

∑
ij

Tij (E)
∂f (E − EF )

∂E
(7)

as a function of the Fermi energy. Here Tij (E) is the
transmission coefficient from subband j in the left lead to the
subband i in the right lead, at energy E. Tij (E) is calculated by
the recursive Green’s function method, see Ref. 23 for details.

The Fermi energy and charge neutrality point are related to
a value of the gate voltage measured in experimental setup as
Vc + EF = eVg (Refs. 11 and 13). In a real device, it is the
gate voltage Vg that results in a change of carrier density in
the graphene ribbon. We define eVg as the chemical potential
difference between the metallic gate and the ribbon, necessary
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FIG. 2. (Color online) Results for uniform GNRs: (a) The
conductance, (b) charge neutrality point, (c) positions of the bottoms
of the subbands that are near the Fermi energy, and the wave vectors
at the Fermi energy calculated within the (d) noninteracting and
(e) Hartree approaches vs. the Fermi energy. The inset in (c) shows the
DOS for EF = 0.105t ; the peak marks the position of the bottom of
the subband. The outset in (c) shows the derivative of the Fermi-Dirac
distribution function for T = 10 K. Arrows in (a) mark the energies
used for charge density plots in Fig. 3. t = 2.7 eV.

to accommodate extra carriers in the graphene and remove
them from the metallic gate. Knowledge of both Vc and EF thus
allows one to estimate the value of Vg used in an experiment.
Note that Vc = 0 in the noninteracting approach.

III. RESULTS

Figure 2 shows results for uniform GNRs: (a) the
conductance, (b) the charge neutrality point, (c) the positions
of the bottoms of the subbands that are near the Fermi energy,
and (d) and (e) the wave vectors at the Fermi energy calculated
within the Hartree and noninteracting models, respectively.
The conductance values for the two models for the same
values of the Fermi energy are very close to each other. In
both cases the conductance increases by the quantum 2e2/h

each time a new subband opens for propagation. The opening
of a new electron subband also results in an increase in the
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FIG. 3. Comparison of the electron concentrations in uniform
GNRs calculated in the noninteracting and Hartree approaches for
different numbers of populated subbands. The electron concentration
in the armchair unit cell oscillates between neighboring carbon atoms
due to the specific structure of the wave functions (see, e.g., Ref. 27).
A half of the cross-section is shown. The electron Fermi energies for
the different plots are indicated by arrows in Fig. 1(a).

slope of the charge neutrality point Vc vs. Fermi energy as is
seen in Fig. 2(b); Vc increases monotonically with increasing
Fermi energy because the electron density on the ribbon
increases. The slope change is caused by the additional
contribution to the electrostatic potential on the ribbon
due to the charges populating a new subband. Assuming a
parabolic dispersion near the subband edge yields an E−1/2

divergence of the DOS that leads to an additional electron
density δn ∝ ∫

E−1/2dE ∝ E1/2 where E is measured from
the subband edge. The associated charge contributes to the
Hartree potential that in turn leads to the rise in Vc.

The subband energy position shown in Fig. 2(c) reveals a
linear drop of the energy levels relative to EF as EF increases.
Each time an energy level crosses EF electrons start populating
the GNR and contribute to the electrical conductance. Note
that the bottoms of the subbands in the GNR do not show
any pinning to the Fermi level such as that observed in
conventional quantum wires28 and open quantum dots.22 As
can be seen in Fig. 2(d), the electron interactions modify
the band structure of the GNR: The results for the Hartree
model show avoided crossings and the two lowest subbands
having smaller velocities. The reason for these modifications
of the band structure due to electron-electron interactions can
be understood from the analysis of the charge distribution in
the GNR that is shown in Fig. 3: The electron interactions
in the Hartree model result in strong redistribution of the
charges towards the edges of the ribbon when the Fermi
energy is increased. The larger the Fermi energy, the stronger
redistribution of the electron density. Note that the charge
accumulation along the boundaries of uniform graphene strips
was also discussed in Refs. 11–14.

Figure 4(c) shows the conductance as a function of the
Fermi energy for a GNR with an armchair constriction.
The noninteracting electron calculation predicts conductance
quantization in steps of 2e2/h over the whole range of EF

values shown in Fig. 4(c). However, the results of the Hartree
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FIG. 4. (Color online) (c) The conductance as a function of the
Fermi energy for GNR with armchair constriction: solid line—
noninteracting electrons; line with dots—Hartree model; dashed
line—(noninteracting) conductance without constriction that equals
the number propagating states in the leads. The shaded gray area
denotes the number NBloch of propagating Bloch states at the Fermi
energy for the infinite modulated ribbon in which the constriction is
repeated periodically. (a) The electron concentration nH calculated
in the Hartree model. (b) The difference between Hartree and
noninteracting electron concentrations nH − nnoni. The Fermi energy
in (a) and (b) is EF = 0.13t and is marked by the arrow in (c). The
insets in (a) and (b) show the partial transmission probabilities Tij for
the Hartree and noninteracting calculations, respectively.

calculation show only the first two conductance plateaus to be
well defined. The transition between these plateaus appears
sharper than that predicted by the noninteracting calculation.
To understand the reason for the better quantization for the first
few conductance steps in the Hartree approach let us inspect
the electron concentration distributions and transmission
coefficients for EF = 0.13t shown in Figs. 4(a) and 4(b). The
charge density is enhanced along the bottom straight boundary
in Figs. 4(a) and 4(b) in a similar way to that in the uniform
GNR discussed above. However, the enhancement that occurs
along the armchair constriction is very nonuniform: Much
less charge accumulates near the apex at the narrowest part
of the constriction [see Figs. 4(a) and 4(b), respectively, for
the electron concentration distribution nH (r) in the Hatree
calculation and the difference between the Hartree and
noninteracting electron concentrations nH (r) − nnoni(r)]. The
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FIG. 5. (Color online) The wave-function square modulus |�i |2
for a GNR with an armchair constriction calculated within the
noninteracting and Hartree approximations, left and right columns,
respectively. The Fermi energy is EF = 0.13t , see the arrow in
Fig. 4(c). The corresponding partial transmission probabilities for
the ith state are shown in the insets in Figs. 4(a) and 4(b).

partial transmission Tij in the Hartree model reveals nearly
perfect transmittance for the first state, see the inset in Fig. 4(a).
Note that T11 ∼ 1 for all of the conductance steps in the Hartree
theory. However, the transmittance due to the second state was
found to be strongly suppressed. Tij for the noninteracting
approach shows a fairly uniform distribution over all states,
see the inset in Fig. 4(b). To understand this phenomenon, let
us consider the square moduli of the wave functions shown in
Fig. 5. The first state in the Hartree approach transmits nearly
perfectly because of its localization near the straight bottom
boundary. By contrast, the second state is mostly localized
near the top boundary, where the constriction is located
and transmission is therefore blocked. Note that localization
develops gradually as EF increases and the first and second
states propagating along opposite boundaries reveal a very
similar dispersion for the uniform ribbon for EF � 0.15t , see
Fig. 2(d). These two states become mostly trapped within
triangular wells at the straight ribbon boundaries. It is also
worth noting that this phenomenon holds true for all of
the constriction shapes studied below. It does not occur in
the noninteracting electron model because of the absence
of change accumulation near the boundaries. In general, we
find electron interactions to favor intrasubband scattering
whereas in the noninteracting approximation intersubband
scattering predominates. The conductance step degradation
in the Hartree model for EF > 0.2t in Fig. 4(c) is related
to the overall poor transmittance of the highest states, where
the charge accumulation along the ribbon’s edges but not in
the constriction itself is further increased. When this happens
the constriction becomes a more effective obstacle to electron
propagation through the ribbon in the Hartree theory than in
the noninteracting electron approximation.

zigzag constriction
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FIG. 6. (Color online) (a) The electron concentration nH in the
Hartree approximation. Concentrations equal to or greater than 8 ×
1017m−2 are colored yellow. The dashed rectangle bounds region with
the electron concentration plotted on a different scale. The inset in
(a) shows the partial transmission probabilities Tij in the Hartree
model. (b) The conductance as a function of the Fermi energy for
a GNR with a zigzag constriction. The labels and meaning of the
shading are the same as in Fig. 4(c).

The conductance as a function of EF and a representative
electron concentration distribution nH for a zigzag constriction
are shown in Figs. 6(b) and 6(a). The charge density along
the zigzag constriction edge is strongly enhanced by values
up to an order of magnitude larger than for the armchair
constriction; see the density scales in the inset in Fig. 6(a).
One reason for this is the electron localization at zigzag edges
previously predicted in both noninteracting and interacting
electron theories; see, for example, Refs. 25–27. This is a
topological property of zigzag-terminated ribbons. Another
reason is the effect of electron interactions that increases the
charge density along the edge further. The electrons occupy
only one graphene sublattice along the zigzag edge while they
occupy both sublattices along the armchair edge. We find the
crossover between these charge occupations to occur over a
distance of about ten carbon atoms at the armchair-to-zigzag
junction. The partial transmission for the first subband is
T11 ∼ 1 similarly to the case of the armchair constriction
although it is suppressed at EF ∼ 0.08t and ∼0.05t and below
∼0.04t due to resonant backscattering by strongly localized
states at the zigzag edge. Thus, for the zigzag constriction,
conduction is very strongly suppressed throughout the range
of energies where the first plateau occurs for the ideal ribbon
without the constriction, whereas this does not occur in
Fig. 4 for the armchair constriction due to the much weaker
electron backscattering in that case. It is worth noting that,
in the modulated ribbon consisting of periodically repeated
identical zigzag constrictions, stop-bands form at the energies
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FIG. 7. (Color online) The same as Fig. 6 but for a GNR with a
constriction having a cosine profile.

∼0.08t , ∼0.05t , and ∼0.025t where conduction through the
structure with the corresponding single constriction is strongly
suppressed in Fig. 6(b). These stop-bands, where the number of
propagating Bloch states NBloch [the gray shading in Fig. 6(b)]
in the periodic structure is zero, are similar to those predicted
in edge-corrugated graphene ribbons.25 However, here the
stop-bands form due to electron interactions. The mismatch
between the electronic structures of the armchair host
and zigzag constriction also contributes to less pronounced
conductance quantization being seen in Fig. 6(b) for the zigzag
constriction than in Fig. 4(c) for the armchair constriction.

Figure 7 shows a representative electron concentration
distribution nH and the conductance for a constriction with
a cosine profile. We found strong accumulation of the charge
density along the boundary of the constriction itself, similar
to that for the zigzag constriction. Note that even though the
overall shape of the cosine constriction is smooth there are
multiple pieces of the zigzag-terminated edges connected to
each other by atomic steps along the constriction boundary.
The conductance dip at EF ∼ 0.08t is correlated to the absence
of propagating Bloch states at this energy in the corresponding
modulated ribbon with periodically repeated constrictions,
as is the case for the similar features in Fig. 6(b) for the
zigzag constriction. Interestingly, although in Fig. 7(b) only
hints of conductance plateaus can be seen in the results for
the noninteracting electron model (red solid curve), a very
pronounced first conductance plateau is found when electron
interactions are included in the Hartree model (dots), although
only hints of higher plateaus can be discerned in this case as
well. We find the first conductance plateau to remain robust
for GNCs with the cosine shape of length 7–16 nm (not
shown). It may be relevant that in their experimental study
of a constriction with an overall smooth profile (albeit for a
much larger structure than those studied here) Tombros et al.19

observed a very pronounced first integer conductance plateau
(g ∼ 2e2/h) but only very weak higher plateaus or only hints
of higher plateaus. In such a scenario, a well-defined first
plateau may be caused by the lowest state being adiabatically
transmitted along one of the graphene boundaries in an
asymmetric constriction with curvature of one boundary being
much smaller than that of the other. Because no image of
the constriction on which the transport measurements were
carried out was presented,19 the degree of asymmetry is not
known. Note also that the experimental device in Ref. 19 was
fabricated by current annealing that substantially reduces edge
disorder at both boundaries.

IV. SUMMARY

In conclusion, we have presented a self-consistent model
of electron quantum transport in graphene ribbons and con-
strictions. The second of these are represented as trenches of
depth 5 nm and length range 7–17 nm and having different
shapes. The model is based on the Green’s function formalism
and accounts for electron-electron interaction within the
Hartree approach. The Hartree model predicts several features
not found in the noninteracting model. The electron charge
density gradually accumulates along straight boundaries of
uniform ribbons as the Fermi energy increases. However,
accumulation at the constriction depends strongly on the
details of the constriction geometry. There is little if any
charge accumulation along a V-shaped armchair constriction
boundary but strong accumulation along a V-shaped zigzag
boundary or a boundary with an overall smooth cosine profile.
For each of these constriction types imposed on a ribbon
with armchair boundaries, except near isolated reflection
resonances, we find almost perfect transmission of electrons
in the first subband (with little intersubband scattering) and
almost perfect reflection of electrons in the second subband
of the ribbon in the Hartree model. By contrast, we find
the constriction to induce strong intersubband scattering of
electrons for every subband in the noninteracting electron
model. For the constriction with the cosine profile, the first
integer conductance plateau is much more pronounced in the
Hartree model than in the noninteracting model, a finding
that may be relevant to the recent experiment of Tombros
et al.19 The transport properties of the two lowest subbands
are the result of by electron localization near the opposite
boundaries of the ribbon. An analogy can be drawn between
perfect transmission along a uniform graphene boundary and
the edge state transport in the quantum Hall effect, where both
are immune to defects in interior of a device.

The results presented above were for constrictions in semi-
conducting ribbons and showed no evidence of an anomalous
0.7 plateau in the conductance. However, we have also carried
out similar conductance calculations for a metallic ribbon with
an armchair constriction that yielded conductances with a 0.7
plateau (similar to that observed experimentally by Tombros
et al.19) for both the Hartree and noninteracting electron
models.
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