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Local and nonlocal electron-phonon couplings in K3 picene and the effect of metallic screening
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We analyze the properties of electron-phonon couplings in K3 picene by exploiting a molecular-orbital
representation derived in the maximally localized Wannier function formalism. This allows us to go beyond
the analysis done in Phys. Rev. Lett. 107, 137006 (2011), and separate not only the intra- and intermolecular
phonon contributions but also the local and nonlocal electronic states in the electron-phonon matrix elements.
Despite the molecular nature of the crystal, we find that the purely molecular contributions (Holstein-like
couplings where the local deformation potential is coupled to intramolecular phonons) account for only 20% of
the total electron-phonon interaction λ. In particular, the Holstein-like contributions to λ in K3 picene are four
times smaller than those computed for an isolated neutral molecule, as they are strongly screened by the metallic
bands of the doped crystal. Our findings invalidate the use of molecular electron-phonon calculations to estimate
the total electron-phonon coupling in metallic picene, and possibly in other doped metallic molecular crystals. The
major contribution (80%) to λ in K3 picene comes from nonlocal couplings due to phonon-modulated hoppings.
We show that the crystal geometry together with the molecular picene structure leads to a strong one-dimensional
spatial anisotropy of the nonlocal couplings. Finally, based on the parameters derived from our density-functional
theory calculations, we propose a lattice modelization of the electron-phonon couplings in K3 picene which gives
90% of ab initio λ.
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I. INTRODUCTION

Understanding the transport properties of molecular crys-
tals based on hydrocarbon molecules is relevant not only to
fundamental condensed matter physics, but also for appli-
cations in nanoelectronics. For instance, organic field-effect
transistors are appealing as they are flexible, lightweight, and
cheap. Rubrene-based field-effect transistors1,2 display tunable
mobilities that can be as large as 40 cm2/(V s). More recently
it was shown that picene field-effect transistors3 based on
liquid electrolytes have p-channel characteristics,4 although
with much reduced mobilities with respect to rubrene.

Transport properties of organic molecular crystals can also
be tuned by intercalation of alkali or alkaline earth metals.
K intercalation leads to metallic states in phthalocyanine
materials5 and in several other polycyclic aromatic hydrocar-
bons. In picene,6 phenanthrene,7,8 coronene,9 and in 1,2:8,9-
dibenzopentacene,10 intercalation stabilizes a superconducting
state with critical temperatures (Tc) up to 33 K. A detailed
understanding of transport phenomena in such systems is then
relevant also for the realm of fundamental research.

An important source of intrinsic scattering in aromatic
molecular crystals is provided by the electron-phonon cou-
pling. In these systems there is an interplay between in-
tramolecular local interactions and intermolecular nonlocal
interactions. Determining the mutual role of local and nonlocal
interactions is hardly doable without a proper theoretical ap-
proach. Molecular crystals can indeed behave very differently,
depending on the details of the molecules composing the
crystal and on their arrangement. In alkali-doped fullerenes,11

superconductivity is supposed to be mostly due to intramolec-
ular phonons. In this case, if the electronic states coupled to
the phonons are molecular and the metallic screening is weak,
then the problem can be tackled at a molecular level by the

calculation of electron-phonon interaction12,13 on an isolated
ionized molecule.

The situation is more complicated in the field of hy-
drocarbon molecular crystals. In the case of K3 picene,
molecular calculations14 using the B3LYP functional give
a large electron-phonon coupling that alone can almost
explain Tc. However, the generalization of this approach to
other hydrocarbon molecular crystals predicts a decrease of
the critical temperature with the increase of the molecular
size, in disagreement with experimental data.6–8,10 Indeed, in
experimentation the largest Tc is for the crystal composed
by the largest molecules. Subedi and Boeri15 performed
density-functional-theory (DFT) calculations in which the
crystal structure of pristine picene was adopted and K doping
was treated in a rigid doping approach. The screening of the
self-consistent potential was assumed to be that of insulating
picene. A very large electron-phonon coupling was found
mostly due to intramolecular phonons, in agreement with
Ref. 14.

In our previous work16 we performed DFT calculations,
relying on fewer approximations than in Ref. 15. The
theoretically devised crystal structure of K3 picene was
considered16,17 and K atoms were explicitly included in the
calculation. Furthermore, we included the metallic screening
of crystalline K3 picene in the self-consistent potential. By
projecting the phonon polarizations into intramolecular and
intermolecular vibrations, we found that K3 picene has a
strong electron-phonon coupling (λ = 0.73) that is partially
due to the coupling to intermolecular and intercalant phonons
(40%) and partially to the coupling to intramolecular phonons
(60%), in disagreement with Refs. 14 and 15. In our present
work, we go beyond what we have done in Ref. 16. Instead
of analyzing the “locality” of the electron-phonon coupling in
terms of phonon projections only, we study it also by means
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of electronic projections onto a molecular basis, which allows
one to distinguish between the on-site electronic Hamiltonian
and the hopping parts, both modulated by the coupling with
phonons. This approach leads to a stricter distinction between
purely molecular and crystal contributions, and yields a further
reduction of the purely molecular component, estimated to be
about 20% of the total λ.

The three approaches illustrated above, namely, molecular
calculations, rigid doping of the crystal, and explicit treatment
of the dopants, rely on different approximations that could
explain the discrepancies. An important one is the treatment of
the electronic screening and its effects on the electron-phonon
interaction. In molecular calculations14 and in Ref. 15, metallic
screening is neglected. Analogy with alkali-doped fullerenes
points out, however, that this assumption is not necessary
fulfilled. In K3C60, it has been suggested that metallic
screening strongly affects the electron-phonon coupling.18–20

For example, A1g modes causing a shift without splitting of
the t1u C60 molecular levels, are supposed to be screened by
the charge transfer from up-shifted to down-shifted levels,20

i.e., by the metallic screening in the solid. In K3 picene the
situation could be similar. However, the relative contribution
of intramolecular, intermolecular, and intercalant interactions
remains unclear and largely unexplored. In this work we
carry out a detailed and quantitative analysis of the total
electron-phonon coupling λ in K3 picene by addressing these
issues.

The paper is organized as follows. In Sec. II we provide
the general definition of local and nonlocal electron-phonon
couplings for a molecular crystal. In Sec. III we describe the
geometry of K3 picene, and we show the dominant hoppings of
the corresponding tight-binding Hamiltonian in the Wannier
basis. In Sec. IV electron-phonon calculations are carried out
by discriminating between local and nonlocal couplings. We
find that the purely local contributions account for only 20%
of the full λ, while the remaining part comes from nonlocal
sources. Section V analyzes the screening acting on the local
electron-phonon terms by a direct comparison between the
crystal and the isolated (unscreened) molecule. We show that
the effect of the metallic screening provided by the crystal
environment to the deformation potential is sizable, with a
strong reduction of the local electron-phonon coupling with
respect to the corresponding strength found in the neutral
isolated molecule. In Sec. VI we look for the most important
nonlocal terms contributing to the total λ and we build a model
Hamiltonian with a few nonlocal electron-phonon couplings
added to the local part, which gives 90% of the total λ. The
conclusions are in Sec. VII.

II. DEFINITION OF LOCAL AND NONLOCAL
ELECTRON-PHONON COUPLINGS IN

A MOLECULAR CRYSTAL

We suppose that the band structure of a molecular crystal
is described by the electronic tight-binding Hamiltonian Hel,
written in a basis set built out of molecular orbitals |i,m〉 =
c
†
im|0〉, where i is the index of the molecular site having its

center of mass located at the equilibrium position Ri , and
m is the orbital index, with c

†
im and cjn satisfying canonical

anticommutation relations. For simplicity, we assume here that

there is only one molecule per unit cell, so the vectors Ri define
also the Bravais lattice. Hel reads then as

Hel = −
∑
ij

∑
mn

tmn(Rj − Ri)c
†
imcjn, (1)

where we omitted the spin index by implicitly assuming that
the spin-up and spin-down components are equivalent, namely,
there is no spin symmetry breaking. The hopping matrix is
defined as

−tmn(Rj − Ri) = 〈i,m|H |j,n〉, (2)

where we exploit the lattice translational invariance.
In second quantization a phonon displacement us of atom

s with mass Ms relative to the ith molecule is

us(Ri) = i

Nq

∑
qν

1√
2Msωqν

es
qν(bqν + b

†
−qν)eiq·Ri+iq·τ s , (3)

where Nq is the number of phonon momentum points describ-
ing the system, ωqν is the phonon dispersion of mode ν at
a given momentum q, es

qν is the three-dimensional s-atomic
component of the phonon eigenvector eqν , and τ s is the
position of the atom s in the unit cell. The operators b

†
qν and

bqν satisfy canonical bosonic commutation relations.
The harmonic phonon Hamiltonian Hphon reads as

Hphon =
∑
qν

ωqν

(
b†qνbqν + 1

2

)
. (4)

The complete Hamiltonian for the electron-phonon (el-phon)
problem includes electron-phonon coupling terms, and is
written as

H = Hel + Hphon + H local
el−phon + H nonlocal

el−phon , (5)

where the local electron-phonon coupling is

H local
el−phon = 1

Nq

∑
qν

∑
i

∑
mn

gqν
mn(0)eiq·Ri c

†
imcin(b†−qν + bqν),

(6)

while the nonlocal coupling H nonlocal
el−phon is

1

Nq

∑
qν

∑
ij

i �=j

∑
mn

(
gqν

mn(Rj − Ri)e
iq·Ri c

†
imcjnbqν + h.c.

)
. (7)

The phase eiq·Ri makes the total momentum conserved in
the electron-phonon scattering terms. The electron-phonon
coupling strength projected on the molecular orbitals is
defined as

gqν
mn(Rj − Ri) =

∑
s

〈i,m| δv

δuqs

|j,n〉 · es
qν

/√
2Msωqν, (8)

where i,j are indices of molecular sites, uqs is the Fourier
transform of the phonon displacement us(Ri), and δv/δuqs is
the (screened) deformation potential.

From Eq. (6), it is apparent that the local coupling is a
Holstein-type interaction which couples the phonons with
on-site molecular electronic terms, while in Eq. (7) the
nonlocal couplings modulate the hoppings tmn(Rj − Ri) in
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Hel via the bosonic fields b
†
−qν and bqν . The local and non-

local coupling strengths are proportional to the deformation
potential expressed in the molecular-orbital basis, centered on
either the same site or two different molecules, respectively.
By translational invariance, the strength depends only on the
vector Rj − Ri . It is worth pointing out that in this context
the definition of “local” and “nonlocal” couplings is purely
electronic. In our previous work,16 we distinguished between
the “intermolecular” and “intramolecular” contributions based
on the phonon projections. The intramolecular phonons are
those having eqν projected on the single molecule manyfold,
while the intermolecular phonons are those having eqν spanned
by the rigid molecular rototranslations together with all inter-
calant displacements. Therefore, one can expand the bosonic
fields bqν into binter

qν + bintra
qν , a resolution of the identity being

the sum of intermolecular and intramolecular projections.
We thus note that cross-contributions such as intramolecular
phonons in nonlocal couplings or intermolecular phonons in
local couplings are possible. Projection of both the electronic
and phononic parts guarantees the isolation of the single-
molecule contribution. In this work, we are going to use
the words “local” and “nonlocal couplings” to mean the
electronic molecular basis set projections as in Eqs. (6) and
(7), respectively, while we keep the notation of Ref. 16 by
using “intramolecular” and “intermolecular phonons” to refer
to the phonon projections.

III. GEOMETRY AND BAND STRUCTURE OF K3 PICENE

The molecules in the K3 picene crystal are arranged
to satisfy the P 2

1 symmetry group. The unit cell contains
two molecules and is monoclinic with axes a = 8.707 Å,
b = 5.912 Å, c = 12.97 Å, α = 90◦, β = 92,77◦, and γ =
90◦. The unit-cell parameters have been taken from the

experiment,6 while the internal coordinates have been opti-
mized after a full geometry relaxation performed in a DFT
framework within the local-density approximation (LDA)
(for more details see the Supplementary Materials section of
Ref. 16). The final structure is drawn in Fig. 1, where we plot
the orthogonal projections of the unit cell repeated twice in
each crystallographic direction. From Figs. 1(b) and 1(c), one
can clearly see the molecular stacking along the c axis, while
in Fig. 1(a) (the ab projection) the molecular herringbone
arrangement of each layer is visible. The intercalant occupies
the interstitial space and tunes the intermolecular angles by
steric effect.

In order to understand the interplay between the K3 picene
geometry and its band structure, we are going to derive a
tight-binding model constructed on a Wannier function basis.
The maximally localized Wannier representation of the DFT
orbitals is useful not only to implement an interpolation
scheme for computing the band structure and the electron-
phonon matrix elements, but also to have a physical insight
on the system. For example, the formation of the chemical
bond in a solid can be visualized by means of the Wannier
representation of the molecular orbitals (MOs). In a molecular
crystal, as the picene, the Wannier representation is even more
natural, as it builds on the local nature of molecular sites, where
the MOs are strongly localized. The spatial local representation
given by the Wannier transformation helps in modeling the
electronic structure of the K-doped picene and understanding
the mechanism which sets the superconductivity.

By following Ref. 22, the maximally localized Wannier
functions (MLWFs) are defined as

w̃nR(r) = 1√
Nw

∑
k

[∑
m

UMLWF
mn (k)ψmk(r)

]
e−ik·R, (9)

FIG. 1. (Color online) Orthogonal projections of the K3 picene unit cell, repeated twice along each crystallographic direction. The unit-cell
sides are drawn in red. Carbon atoms are in yellow, hydrogen is in blue, and potassium in green. Panel (a): ab projection with the c axis pointing
outwards. Panel (b): ac projection with the b axis pointing inwards. Panel (c): bc projection with the a axis pointing inwards.21
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FIG. 2. (Color online) Surface plot of the orbitals of an isolated neutral picene molecule (upper row) and the molecular MLWF functions
[wn0(r)] in the K3 picene crystal (lower row). The surface is defined by the set of points which satisfies the condition |
n(r)| = 0.05, where

n(r) = Re[φn(r)]Sign[φn(r)], with φn(r) the MO whose phase has been fixed and normalized such that φn(rmax) = 1, rmax being the location
of the maximum of its modulus (Ref. 21).

where the sum
∑

k is over a Nw-point grid in the Brillouin
zone (BZ),23 R is a Bravais lattice vector, ψmk(r) are the Bloch
eigenstates of the mth band, and UMLWF(k) is a unitary matrix
(for composite bands), defined to minimize the total spread of
the wave function

� =
∑

n

[〈w̃n0|r2|w̃n0〉 − |〈w̃n0|r|w̃n0〉|2]. (10)

Note that in this case there are two molecules per unit cell,
and so the Bravais vectors R are not the centers of each
molecule, at variance with the simplest case taken into account
in Sec. II. In the K3 picene, the MLWFs have been determined
for the bands derived from the lowest unoccupied molecular
orbital (LUMO), LUMO + 1, and LUMO + 2 of the neutral
picene molecule. Those bands form a quasicomposite group,
as the LUMO is well separated from the highest occupied
molecular orbital (HOMO). The HOMO-LUMO gap in the
pristine picene is 3 eV large,24 and only the LUMO + 2 is
weakly entangled with the upper bands. Therefore, a prelimi-
nary disentanglement procedure has been performed25 before
UMLWF(k) could be obtained. Thus, in our case UMLWF(k) is
a 6 × 6 matrix (three bands per molecule, two molecules per
unit cell), and a tight-binding Hamiltonian can be defined in
the rotated MLWF basis, according to the matrix elements

Hnm(R) = 〈w̃n0|H |w̃mR〉, (11)

where H is the one-body LDA Hamiltonian.
In molecular crystals, the MLWF is not necessarily the best

basis to work with. The most “physical” basis is the one which
diagonalizes the local part [Hnm(0) and (n,m) running on the
same molecule] of the Hamiltonian in Eq. (11). Indeed, the
local part of H represents the molecule in the crystal, and
its eigenvectors wn and eigenvalues εmol

n are, respectively, the
MOs and molecular levels in the crystal environment. From
here on, we define wnR(r) to be the “molecular” MLWFs,
where U(k) = UMLWF(k) × Umol, with Umol being the unitary
transformation which diagonalizes the local problem in the
MLWF basis. The molecular MLWFs |wnR〉 obtained in the

rigorous Wannier function formalism play the role of the
molecular orbitals |i,m〉 generically introduced in Sec. II.

In order to see how the crystal environment affects the
local MOs, in Fig. 2 we plotted the local molecular MLWF
functions wn0(r) of K3 picene together with the MOs of the
isolated neutral molecule [wMOL

m (r)]. One can see that wn0(r)
in the doped crystal is a good representation of the orbitals in
the isolated neutral picene. Indeed, the LUMO and LUMO + 1
are in close agreement. The LUMO + 2 differs only slightly,
as in the crystal it is more “delocalized,” something expected
as in the molecular calculations its energy level is close to the
free particle continuum, and therefore it is more affected by the
environment. The overall agreement allows one to make a one-
to-one correspondence between the molecular properties and
the crystal local on-site properties expressed in the molecular
MLWF.

We now analyze the hopping terms in Eq. (11). They show
a clear hierarchy in magnitude depending on their spatial
direction. The largest are the nearest-neighbor (NN) hoppings
which connect the molecules within the herringbone layer.
In the herringbone structure, each molecule is linked to its
four nearest neighbors in two different ways, by the proximity
of either a two-ring molecular side, or a three-ring side [see
Fig. 3(a)]. We found that there is a large asymmetry between
the NN hoppings connecting two molecules via a three-ring
molecular side, dubbed “1D NN” in the text, and the ones
whose connection is bridged by a two-ring side, dubbed “2D
NN.” The 1D NN terms, sized up to 0.09 eV, are almost twice
larger than the 2D NN hoppings, which reach 0.05 eV at
most. This is due to the internal degrees of freedom of the
single-crystal site, as the picene has an aromatic five-ring
structure. If the molecule were symmetric, the 1D and 2D
NN hopping terms would be equal. The consequences of this
internal asymmetry will be studied later in both the band
structure and the electron-phonon couplings.

Not only the NN but also the next-nearest-neighbor (NNN)
hoppings are not symmetric. Indeed, the NNN terms pointing
along the b crystallographic axis (named “1D NNN” in the
text) are more than twice larger than the ones pointing along
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FIG. 3. (Color online) Intermolecular hoppings in the herringbone layer. Panel (a): The two possible nearest-neighbor (NN) intermolecular
hoppings are represented, with the strongest in orange (1D NN) mediated by a three-ring molecular side, while the weakest in blue (2D NN)
is bridged by a two-ring side. Panel (b): All possible NN and NNN hoppings in the plane are drawn, the 1D NNN are in red and the 2D NNN
are in dark blue. Panel (c): Two ladder chains formed by selecting only the 1D NN and 1D NNN hoppings, the strongest ones among the
bidimensional hoppings.

the a crystallographic axis (dubbed “2D NNN”), which do not
go beyond 0.02 eV. This can be easily explained by noting that
the b axis is shorter than the a axis, and thus in the b direction
the molecules are more closely packed, with an increase of the
transfer integrals and so of the hoppings. See Fig. 3(b) for a
graphical representation of all the NN and NNN hoppings in
the herringbone plane.

It turns out that the 1D NNN and the 2D NN terms are
of the same magnitude (≈0.05 eV). The combination of
1D NN and 1D NNN hoppings only, creates ladder chains
spanning the b axis [see Fig. 3(c)], while in a four-hopping
model (with the addition of the 2D NN and the 2D NNN
terms), their combination spans the full 2D space. The two-
ring versus three-ring asymmetry clearly favors a “nematic”
one-dimensional electronic structure with respect to the full
bidimensional layer. Therefore we define a “1D model”
comprised of the 0D (on-site), 1D NN, and 1D NNN terms,
and a “2D model” which includes all terms of the “1D model”
plus the 2D NN and 2D NNN hoppings.

To understand the impact of this hierarchy on the band
structure, we take the hoppings of the tight-binding Hamilto-
nian written in the MLWF basis, and we are going to selectively
switch them on and off. The full band structure is plotted in
Fig. 4(d) for the LUMO, LUMO + 1, and LUMO + 2 states,
which yield two bands each. By keeping only the local on-site
terms, we obtain the molecular levels εmol

n in the crystal, which
of course are dispersionless [Fig. 4(a)]. By switching on the
1D NN and the 1D NNN hoppings along the molecular “wire,”
one gets the band structure of the 1D model in Fig. 4(b). The
dispersion develops only along the b axis, but it gives the
main contribution to the full 3D bandwidth, while the double
degeneracy along the CY path is due to the P 2

1 symmetry. The
full band structure can be roughly modeled by the 1D model,
except that the Fermi surface is poorly reproduced. For the 2D
model [see Fig. 1(b)], a band structure closer to the 3D one is
obtained, with the LUMO bands almost perfectly reproduced,
and the flatness of the BD and CY paths due to the decoupling
in the layer stacking.

In the spirit of downfolding the full electronic structure to a
low-energy lattice model, one interesting question is whether
a two-orbital model is enough to reproduce the low-energy

physics. To this aim, we suppressed the LUMO + 2 orbital
from the tight-binding model. The result is shown in Fig. 5.
As one can see, the LUMO + 1 bands are strongly deformed,
and the Fermi surface is strongly modified. To have a correct
description of the low-energy physics of the crystal, one needs
also to include the LUMO + 2 molecular orbital. Therefore, a
correct modelization of the system comprises three orbitals, up
to the LUMO + 2, the hybridization between the LUMO + 1
and LUMO + 2 being very strong.

-0.4 eV

-0.2 eV

 0.0 eV

 0.2 eV

 0.4 eV

 0.6 eV 0D (molecule)

-0.4 eV

-0.2 eV

 0.0 eV

 0.2 eV

 0.4 eV

 0.6 eV0D (molecule) 1D model

-0.4 eV

-0.2 eV

 0.0 eV

 0.2 eV

 0.4 eV

 0.6 eV

Γ B D Z C Y Γ

0D (molecule) 1D model

2D model

Γ B D Z C Y Γ

-0.4 eV

-0.2 eV

 0.0 eV

 0.2 eV

 0.4 eV

 0.6 eV

0D (molecule)(a) 1D model(b)

2D model(c) 3D(d)

FIG. 4. Band structure of a tight-binding Hamiltonian for the K3

picene derived in a MLWF basis including LUMO, LUMO + 1, and
LUMO + 2 states, plotted along the �BDZCY� k-space path. In
the reciprocal crystal units, the special points are � = (0,0,0), B =
( 1

2 ,0,0), D = ( 1
2 ,0, 1

2 ), Z = (0,0, 1
2 ), C = (0, 1

2 , 1
2 ), and Y = (0, 1

2 ,0). In
the left-upper panel only the “on-site” hoppings have been retained,
while in the right-lower panel the band structure has been obtained
with the full tight-binding model. The upper-right (the lower-left)
panel is the result of a tight-binding model with only 1D (1D + 2D)
nearest-neighbor and next-nearest-neighbor hoppings. The zero of
the energy axis is the Fermi level.
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-0.4 eV

-0.2 eV
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 0.2 eV
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 0.6 eV

Γ B D Z C Y Γ

3D without LUMO+2(a)

Γ B D Z C Y Γ

-0.4 eV

-0.2 eV

 0.0 eV
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 0.6 eV3D without LUMO+2(a) 3D(b)

FIG. 5. The full band structure (right) and the one obtained
by taking off the LUMO + 2 states (left) from the tight-binding
Hamiltonian obtained in the molecular MLWF basis for the K3 picene.
The definition of the high-symmetry points in the k path is reported
in the caption of Fig. 4. The zero of the energy axis is the Fermi level.

A. Technical details for the band structure calculations

The LDA-DFT calculations have been performed with the
QUANTUM-ESPRESSO26 code. K, C, and H atoms are described
by ultrasoft pseudopotentials. The plane-wave (PW) cutoff is
60 Ry for the wave function and 600 Ry for the charge. A
4 × 4 × 4 electron-momentum grid and a Methfessel-Paxton
smearing of 0.015 Ry are used in the electronic integration.

Wannierization has been performed with the WANNIER9027

program on a Nw = 4 × 4 × 4 electron-momentum mesh by
including the LUMO, LUMO + 1, and LUMO + 2 states.
Both the long-range hoppings and inclusion of the first three
LUMOs are needed to get localized orbitals and Wannierized
bands in a very good agreement with those computed in the
PW basis set in a window of ±0.3 eV around the Fermi level.
Indeed, the maximum discrepancy between the ab initio bands
and the Wannierized ones is only 5 meV for the LUMO and
LUMO + 1 states, while it is larger (0.05 eV at most) for the
LUMO + 2 band, which is, however, higher in energy.

The spreads �n = 〈w̃n0|r2|w̃n0〉 − |〈w̃n0|r|w̃n0〉|2 of the
nth MLWF w̃nR(r) are 11.8 Å, 13.2 Å, and 21.1 Å for n = 1, 2,
and 3, respectively. The n = 3 MLWF orbital is more spread
out and leads to a LUMO + 2 molecular orbital more sensitive
to the crystal environment, as highlighted by Fig. 2.

IV. LOCAL AND NONLOCAL ELECTRON-PHONON
COUPLINGS IN K3 PICENE

The total electron-phonon coupling is λ = 1
Nq

∑
qν λqν ,

where ν is the phonon mode and q is its momentum. The
phonon-resolved coupling reads

λqν = 2

ω2
qνN (0)

1

Nk

∑
k

∑
n,m

∣∣gν
kn,k+qm

∣∣2

× (fkn − fk+q,m)δ(εk+q,m − εkn − ωqν), (12)

which couples the occupied state |k,n〉 (the ket refers to the
periodic part of the Bloch function) of momentum k and band n

with the empty state |k + q,m〉 separated by the phonon energy

ωqν . N (0) is the electron DOS per spin per cell at the Fermi
level. The electron-phonon matrix elements are gν

kn,k+qm =∑
s es

qν · ds
mn(k + q,k)/

√
2Msωqν , where ds

mn(k + q,k) =
〈k + q,m|δvSCF/δuqs |k,n〉, with δvSCF/δuqs the periodic part
of the DFT screened deformation potential. In Eq. (12), fkn

are Fermi functions depending on the temperature T , and
the expression for λqν has to be evaluated by a T → 0
extrapolation. In the “adiabatic” limit, namely, for ωph 	 �ε,
where �ε is the bandwidth and ωph is the characteristic
phonon frequency, the expression for λqν in Eq. (12) reduces
to the one proposed by Allen,28 generally used in previous
electron-phonon estimates:

λAD
qν = 2

ωqνN (0)

1

Nk

∑
k

∑
n,m

∣∣gν
kn,k+qm

∣∣2
δ(εk,n)δ(εk+q,m).

(13)

We are going to dub λAD in the equation above as “adiabatic,”
while λ in Eq. (12) we dub “nonadiabatic.”

By exploiting the definition of Wannier functions in Eq. (9),
the deformation potential matrix elements ds

mn(k + q,k) can
be written in terms of the molecular MWLF basis as

ds
mn(k + q,k) =

∑
R

∑
m′n′

eik·RUmm′ (k + q)dqs

m′n′(R)U ∗
nn′(k),

(14)

where the deformation potential in the MLWF local represen-
tation is

dqs
mn(R) = 〈wm0|δvSCF

δuqs

|wnR〉. (15)

Equation (15) is analogous to Eq. (11) but for the electron-
phonon coupling elements, when only the localization of
the wave function is used. Therefore, the same analysis
carried out in Sec. III can be done here, with the distinction
between the “local” [with R = 0 and (m,n) orbitals on a
single molecule] and “nonlocal” [with R �= 0, or R = 0 with
(m,n) orbitals centered on two different molecules of the
unit cell] matrix elements. Thus, it is the Wannier function
formalism which allows one to make the bridge from the
plane-wave representation to the molecular-orbital description
of the electron-phonon problem introduced in Sec. II, with the
distinction between local and nonlocal couplings.

As already pointed out in Sec. II, an analogous but
independent definition of local and nonlocal contributions can
be done not only for the electronic states, but also for the
phonon modes. To project the phonon vibrations we use the
same strategy as reported in Ref. 16, namely, we introduce a
3N×3N tensor PS, which projects on either the intramolecular
modes or the ensemble of K and intermolecular modes. PS

acts on the 3D eigenphonons eqν , such that one can define
the phonon-projected matrix elements as gS = ∑

s(PSeqν)s ·
ds

nm(k,k + q)/
√

2Msωqν . The resulting phonon-projected λ is
then

λS,S′
qν = 2

ω2
qνN (0)

1

Nk

∑
k,n,m

gSg
�
S′

× (fkn − fk+q,m)δ(εk+q,m − εkn − ωqν). (16)
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TABLE I. Adiabatic λAD and nonadiabatic λ computed via
Eqs. (13) and (12), respectively, for selected electron-phonon cou-
plings, corresponding to Fig. 6. We report also the phonon frequency
logarithmic average ωlog for both the adiabatic and nonadiabatic
formulations. “Full el-phon” means that all terms are taken from
the ab initio calculation of the electron-phonon coupling, “local
el-phon” means that that only local terms are retained in dqs

m′n′ (R),
while “nonlocal el-phon” refers to the case where only off-site terms
are taken in dqs

m′n′ (R). In the “local el-phon with intraphonons,” not
only the deformation potential but also the phonon eigenmodes are
projected on the molecule.

ωAD
log ωlog

Model λAD λ (meV) (meV)
Full el-phon 0.88 0.73 25 18
Nonlocal el-phon 0.65 0.60 17 14
Local el-phon 0.25 0.17 63 41
Local el-phon with intraphonons 0.20 0.12 93 68

The total λ is
∑

S,S′ λS,S′ = ∑
S,S′

1
Nq

∑
qν λS,S′

qν . The contribu-

tion of each subspace S is computed as
∑

S′ λS,S′
, where we add

both the diagonal term and the usually very small off-diagonal
contributions. The results of this analysis are reported in
Table I and Fig. 6.

In Fig. 6 we plot the Eliashberg function α2F (ω) =∑
qν λqνωqνδ(ω − ωqν)/(2Nq) and the integral λ(ω) =

2
∫ ω

0 dω′α2F (ω′)/ω′, namely, the frequency-resolved
electron-phonon coupling. The first row is the total λ

computed by means of Eqs. (13) and (12) by including all
(local and nonlocal) electron-phonon contributions. This
result has been already reported in Ref. 16. In the second
row, we plot λ where only nonlocal matrix elements are
taken. This accounts for 72% (80%) of the total λ in the
adiabatic (nonadiabatic) formulation. In this case, the main
contribution to the electron-phonon coupling comes from
intermolecular soft phonon modes, with strong spectral
weight at low frequencies (<500 cm−1). In the third row of
Fig. 6, we plot the coupling arising only from local matrix
elements. The corresponding α2F (ω) is peaked around
frequencies related to in-plane molecular phonon modes,
which give the main contribution to the local electron-phonon
coupling. In the lower row, not only the deformation potential
matrix elements but also the phonon modes are projected
on each molecule. The band structure (εkn) and the phonon
spectrum (ωqν) are instead unmodified with respect to the
full solid. Therefore the latter case is the closest estimate of
the electron-phonon coupling of a single (doped) molecule
placed in the crystal metallic environment. The projection of
the phonon eigenmodes on the molecular subspace further
reduces λ. We reach therefore one of the main conclusions
of this work. The purely molecular contributions (filtered
in both the wave function and eigenphonons) are such that
the resulting λ accounts for only 23% (17%) of the full λ in
the adiabatic (nonadiabatic) formulation. All the rest comes
from nonlocal sources. Note also in Table I that the phonon
frequency logarithmic average ωlog varies substantially with
respect to the model. The nonlocal contributions drastically
reduce the ωlog value, which corresponds to a lower estimate of
Tc, which depends linearly on ωlog, according to McMillan.29

A. Technical details for the electron-phonon calculations

In order to evaluate the electron-phonon coupling in the K3

picene, we first carried out phonon calculations in the density-
functional perturbation theory framework (DFPT)30 on a Nq =
2 × 2 × 2 grid of phonon momenta q, as illustrated in Ref. 16.
The electronic grid used in DFPT has a mesh of 2 × 2 × 2
points with a Methfessel-Paxton smearing of 0.03 Ry. For
each phonon mode ν with momentum q we computed both the
“nonadiabatic” electron-phonon interaction in Eq. (12) and the
“adiabatic” one in Eq. (13). The k summation in both equations
has been performed by means of the Wannier interpolation
technique27,31–33 in the MLWF basis. The convergence in the k
summation was reached for a Nk = 60 × 60 × 60 momentum
grid, with temperature and smearing given by T = 150 K and
σ = 4.3 meV, respectively, with T = 3σ .

The matrix elements gν
kn,k+qm have been computed by se-

lecting the local and nonlocal contributions in the deformation
potential [through the MLWF via Eq. (15)] and the phonon
modes (through the phonon projector PS).

With the smearing and k-point grid at convergence, we
checked the accuracy of the extrapolated value of the Fermi
level εF by comparing it to the value obtained by an ab initio
calculation with a large k-grid (Nk = 10 × 10 × 10) and a
small Gaussian smearing (0.002 Ry). The uncertainty in εF is
of the order of 1 meV, giving rise to a change in the density of
state N (0) of only 1%. Thus, a comparable error occurs in λ

from the εF position.
Thanks to the Wannier interpolation, the electronic k

summation in the electron-phonon coupling λq is converged
for each q. The main residual error in the total λ comes from
the coarse Nq = 2 × 2 × 2 momentum grid used in the q
summation of λq. An estimate of this error was done in Ref. 16
by studying the fluctuations of λq over the q-point sampling.
We found that the uncertainty on λ goes from about 20% for
the adiabatic values to less than 15% for the nonadiabatic
estimates, while the error on the relative contributions (i.e.,
ratio of local λ over nonlocal λ) is even smaller (less than 10%).

V. SCREENING OF LOCAL
ELECTRON-PHONON COUPLINGS

The result presented in the previous section is completely
unexpected if one follows the common wisdom that molecular
crystals can be reliably described by molecular derived
quantities.34,35 For instance, molecular electron-phonon calcu-
lations have been used to compute λ in molecular crystals.36,37

This has been the case of some previously published works on
the doped C60 (Refs. 12,13,38–40) and the newly discovered
“aromatic” superconductors.14,36,37,41,42 Here, we show that at
least in the K3 picene, molecular-only calculations are not
reliable to predict the crystal total λ. Presumably, this applies
also to the whole series of new aromatic superconductors,
where the physics should be similar.9

To explain why the intramolecular electron-phonon cou-
pling is so weak in the crystal, we carried out electronic-
structure and phonon calculations for the isolated neutral
molecule in the same QUANTUM-ESPRESSO26 PW frame-
work. The resulting electron-phonon coupling values are
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FIG. 6. Eliashberg α2F and integrated λ for various electron-phonon coupling models. All ab initio elements are taken in the first row,
the second row is for the nonlocal dqs

m′n′ (R) terms, and the third and fourth rows are for the on-site coupling. In the latter also the phonon
eigenmodes are projected on the intramolecular subspace. To the left we show quantities computed by the adiabatic approximation [Eq. (13)],
and to the right those evaluated by Eq. (12).

in good agreement with previous molecular calculations by
Kato et al.14

The isolated molecule calculations allowed us to compute
also the molecular deformation potential in the MO represen-
tation:

dsMOL
mn = 〈

wMOL
m

∣∣δV MOL
SCF

δus

∣∣wMOL
n

〉
, (17)

where now dsMOL
mn is q independent. By replacing dqs

mn(0) with
dsMOL

mn in Eq. (14), and by taking only the local contributions
[namely, R = 0 and (m,n) running on the same molecule], one

can directly compare the difference between δV MOL
SCF
δus

and δvSCF
δuqs

on
the resulting λ. Indeed, we have already shown that the MOs

wMOL
m are very close to the molecular MLWF wmR (see Fig. 2),

so that a difference in λ can come only from the deformation
potential operator. Moreover, we noticed that the q dependence
of dqs

mn(0) is very weak, and so a direct comparison can be
made at each crystal phonon momentum q. The molecular
δV MOL

SCF
δus

is the “bare” one, while δvSCF
δuqs

is screened by the crystal
environment and by the partially occupied metallic bands of
LUMO + 1 character.

From here on, our estimates of λ are based only on the
adiabatic approximation in Eq. (13). Although we have seen
that it is less accurate than the nonadiabatic formula, we are
going to use it because from the adiabatic formulation it is
easier to make the connection to the molecular approximation
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TABLE II. λAD corresponding to the integrated α2F functions
plotted in Fig. 7. Row order corresponds to the label sequence of
the figure. The phonon frequency logarithmic average ωAD

log is also
reported.

ωAD
log

Model λAD (meV)
Crystal local el-phon with crystal intraphonons 0.20 93
Molecular el-phon with crystal intraphonons 0.78 96
Crystal local el-phon with molecular phonons 0.15 110
Molecular el-phon with molecular phonons 0.57 125

formula43 for λ and make the comparison with previous works
(which mainly used the adiabatic approximation). The results
are plotted in Fig. 7 and reported in Table II. By comparing
panels (a) and (b), it turns out that the total coupling λ with the
screened deformation potential is about 4 times weaker, which
implies that on average the electron-phonon matrix elements
gν

kn,k+qm are twice smaller than the “bare” ones of the isolated
neutral molecule.

Therefore, we reach our second main conclusion of this
work. Describing correctly the effect of the metallic screening
provided by the crystal environment to the deformation
potential is critical to get the right estimate of the electron-
phonon coupling.

Now, let us analyze in detail the effect of the metallic
crystal environment on the dynamical matrix, and so on the
phonons. In Eq. (13), we replace the phonon eigenvalues
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FIG. 7. Eliashberg function α2F and the adiabatic λAD computed
via Eq. (13) for both crystal local d [panels (a) and (c)] and purely
molecular dMOL [panels (b) and (d)]. In the formula, we used either
the intramolecular projected phonons eqν [panels (a) and (b)] or the
purely molecular dynamical matrix [panels (c) and (d)]. Note that the
y-axis scale of the left panels is 4 times wider than the scale on the
right panels to show that the magnitude of the local d (averaged over
the phonon momenta q and the phonon modes ν) is about 4 times
smaller than the magnitude of dMOL (averaged over the molecular
phonon modes ν).

ωqν and eigenvectors eqν with the corresponding molecular
ωMOL

ν and eMOL
ν , computed for the isolated undoped picene

molecule. The results are reported in Figs. 7(c) and 7(d). If
compared to panels (a) and (b), there is a global frequency
softening of 50 cm−1 for the in-plane phonons in the crystal
induced by the doping. The second effect is a remodulation
of the frequency dependence of the electron-phonon coupling
strength. In the α2F (ω) obtained with molecular phonons, the
coupling is mostly peaked around 1600 cm−1, while it is much
more broadly distributed in the crystal phonons.

From this analysis we can conclude that upon doping the
metallic environment provided by the crystal strongly affects
both the deformation potential and the dynamical matrix.
The metallic screening reduces the electron-phonon coupling
strength, while it softens the phonon modes and makes their
coupling to the charge broader in the phonon frequency.

The α2F (ω) plotted in Fig. 7(d) for molecular phonons

and molecular δV MOL
SCF

δus,0
closely resembles the one published in

Ref. 15, where the deformation potential and the dynamical
matrix have been computed for the undoped insulating picene
crystal in the rigid doping approximation. Thus, the effect of
the metallic screening from partially filled bands has been
neglected in both the deformation potential and the dynamical
matrix. The value of ωAD

log corresponding to the Eliashberg
function of Fig. 7(d) is 125 meV, very close to the value
reported in Ref. 15 (126 meV). This is a further indication
that erroneous results can be obtained for doped picene if the
metallic screening is not included in the calculations.

A. Technical details for the molecular
electron-phonon calculations

The molecular DFT calculations have been carried out with
the PW basis set in the same supercell as the one of the K3

picene, where only one of the two molecules per crystal unit
cell has been taken. We checked that the K3 picene supercell is
large enough to get the same molecular levels as the ones
of a much larger supercell, and thus the boundary effects
are negligible. We left the atomic positions of the molecule
unchanged from the crystal, in such a way that the deformation
potential calculated for the molecule could directly replace
the one for the crystal in gν

kn,k+qm of Eqs. (12) and (13)
without any particular rotation in the coordinate space. The
DFT calculation of the molecule was performed in its neutral
state, at the � point. The electron-phonon calculations were
performed at q = ( 1

2 , 1
2 , 1

2 ) (in crystal fractional coordinates)
to avoid the effective charge contributions to the deformation
potential, which results in the Fröhlich Hamiltonian44 and
diverges for zone-center optical phonons.

VI. IMPACT OF DIMENSIONALITY ON NONLOCAL
ELECTRON-PHONON COUPLINGS

In this section we want to go beyond the distinction between
intramolecular local and intermolecular nonlocal couplings,
and analyze what are the most important electron-phonon
interactions among the nonlocal contributions. We keep a
“direct space” approach in labeling the various terms by
exploiting the local picture provided by the molecular MLWFs.
In other words, we aim at finding the minimal electron-phonon
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FIG. 8. Eliashberg function α2F computed with the adiabatic
formulation [Eq. (13)] for various electron-phonon coupling models,
based on a selection of the deformation potential d(R) terms. The
1D model gives 85% of the total λ by keeping almost all of the
dominant low-frequency contributions related to the coupling with
the intermolecular phonons.

lattice model (where each lattice site represents the center of a
picene molecule), which gives the closest possible description
to the full “ab initio” Hamiltonian.

In practice, we select a subset of possible elements in
the deformation potential matrix expressed in the molecular
MLWF basis [Eq. (15)]. According to the set of Bravais
vectors R and Wannier function indices (m,n), it is possible to
restrict the coupling to be local (0D), unidimensional (1D) with
molecular chains oriented along the b crystallographic axis,
bidimensional (2D) with molecular layers spanning planes
containing the a and b crystallographic axes, or the full
“ab initio” model without constraints. It is also possible to
select the neighboring molecules based on their distance,
therefore distinguishing between nearest neighbors (NN) and
next-nearest neighbors (NNN) on a given direction. In Sec. III,
we introduced the 1D and 2D models for the hoppings. The
same models apply also for the deformation potential matrix
elements.

The results are reported in Fig. 8 and Table III. The 1D
model gives 85% of the total λ. The 2D model, where also
the 2D NN and 2D NNN contributions are added, yields 90%
of the total electron-phonon coupling. From the α2F (ω) in
the upper-rightmost panel of Fig. 8, it is apparent that in the
1D model the strongest coupling originates from out-of-plane

TABLE III. λ computed via Eq. (13) for various electron-phonon
coupling models, corresponding to Fig. 8. ωAD

log is the phonon
frequency logarithmic average. “0D” means that only local molecular
couplings are retained in the deformation potential matrix elements,
“1D” refers to the one-dimensional model of chains along the b

crystallographic axis, and “2D” is the model for the molecular
herringbone layer spanning the a and b axes.

Model λAD ωAD
log (meV)

0D 0.25 63
1D 0.74 26
2D 0.77 27
Full 3D 0.88 25

vibrations and intermolecular phonons, as a large contribution
comes from frequencies below 300 cm−1.

This is the third important result of this work. One can
model the system by few non-local electron-phonon couplings
[Eq. (7)] added to the local Holstein-like terms [Eq. (6)]. As the
local terms are weak (see Sec. V), those few nonlocal couplings
are responsible for more than 60% of the total λ. This opens the
way toward an efficient and reliable lattice modelization of the
system, where more sophisticated many-body techniques can
be used to deal with the electronic correlation and electron-
phonon coupling together.

It is striking that the main contribution to the coupling (more
than 50%) comes from the phonon-modulated hoppings in the
b crystallographic direction, meaning that the electron-phonon
coupling is strongly anisotropic along molecular chains. Based
on the molecular arrangement of the crystal and on the band
structure, one would have instead expected a planar anisotropy,
as the system is layered, with planes oriented in the a-b
directions. On the contrary, there is no clear distinction in
magnitude between the in-plane and the out-of-plane matrix
elements, except for the hierarchy between the strong 1D
components and the rest. From this point of view, the material
behaves more like an array of chains rather than an array of
planes. The 1D anisotropy is a consequence of the asymmetry
of the picene armchair structure, as already shown in Sec. III.

In order to generalize this argument to the experimental
situations and other superconducting aromatic crystals, caution
must be taken in view of the importance of the arrangement
of the molecules, and of disorder. Even though the connection
between molecular shape and electron-phonon anisotropy is
intrinsic and thus disorder-independent, disorder in experi-
ments can affect the local geometry and change the total
electron-phonon coupling strength.

VII. CONCLUSIONS

In this paper we went beyond what we have done in
Ref. 16, where we carried out a detailed analysis of the
electron-phonon coupling based on the phonon projection to
intramolecular and intermolecular eigenmodes. Here, thanks
to the maximally localized Wannier function formalism,
we took into account also the electronic projection of the
deformation potential into local (Holstein-like) and nonlocal
couplings, defined based on a molecular-orbital representation.
We found that the purely molecular contribution (projected in
both the deformation potential and phonon eigenmodes) is
very weak. It accounts for only 20% of the total λ [in the
adiabatic coupling formulation of Eq. (13)]. It is therefore
impossible to predict the total coupling of K3 picene with
isolated molecular calculations only. We understood this as
an effect of the metallic screening, which mainly reduces the
deformation potential matrix elements. This turns out from
a direct comparison of the projected local coupling in the
crystal with the full coupling in the isolated molecule, carried
out within the same theoretical framework.

Moreover, we demonstrated that while 80% of the electron-
phonon coupling in K3 picene is nonlocal, more than 60%
of λ comes just from two terms, i.e., the 1D nearest
neighbor (NN) and the 1D next-nearest-neighbor (NNN)
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phonon-modulated hoppings, which form ladder chains along
the b crystallographic axis of the compound.

The strong spatial 1D anisotropy of the electron-phonon
coupling is another interesting outcome of the present work.
The intermolecular modes couple more strongly with the
electrons along chains of molecules, arranged in an ordered
array of ladders. We related this to the picene molecular edge
asymmetry in its armchair structure.

Finally, we showed that the model comprised of local,
1D NN, and 1D NNN contributions yields 85% of the
total electron-phonon coupling of the crystal. This ab initio
modelization opens the way to reliable and quantitative

many-body calculations on the lattice, in order to study the
interplay between strong electronic correlation (typical of a
molecular crystal with flat bands45–47) and electron-phonon
coupling in K3 picene.
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12J. L. Janssen, M. Côté, S. G. Louie, and M. L. Cohen, Phys. Rev. B

81, 073106 (2010).
13C. Faber, J. L. Janssen, M. Côté, E. Runge, and X. Blase, Phys.
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