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We calculate the dynamical conductivity of AA-stacked bilayer graphene as a function of frequency and in the
presence of a finite chemical potential due to charging. Unlike the monolayer, we find a Drude absorption at charge
neutrality in addition to an interband absorption with onset of twice the interlayer hopping energy. At finite doping,
the interband absorption exhibits two edges, which depend on both chemical potential and interlayer hopping
energy. We study the behavior as a function of varying chemical potential relative to the interlayer hopping energy
scale and compute the partial optical sum. The results are contrasted with the previously published case of AB
stacking. While we focus on in-plane conductivity, we also provide the perpendicular conductivity for both AB
and AA stacking. We also examine conductivity for other variations with AA stacking, such as AAA-stacked
trilayer. Based on proposed models for topological insulators discussed in the literature, we also consider the
effect of spin-orbit coupling on the optical properties of an AA-stacked bilayer, which illustrates the effect of an
energy gap opening at points in the band structure.
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I. INTRODUCTION

Graphene continues to provide a rich platform for
investigations into the physics of massless Dirac fermions.
Initially studies of graphene were limited to the realm of theory
where the low-energy linear dispersion1 and chiral nature of
the honeycomb carbon lattice were shown2 to result from a
simple nearest-neighbor-hopping tight-binding Hamiltonian,
which at low energy maps on to a Dirac Hamiltonian
for massless fermions with Fermi velocity vF . With the
experimental realization of graphene,3,4 a considerable
literature has now accumulated that has uncovered a variety
of exotic effects, such as an unusual quantum Hall effect,5,6

giant Faraday rotation,7 plasmarons,8 and so on, some of
which has been summarized in reviews.9–12

Bilayer graphene is also of intense interest as it too shows
an unusual quantum Hall effect13,14 and indeed its low-energy
tight-binding Hamiltonian maps to an equation for chiral
fermions with an effective mass15 based on an interlayer
hopping parameter γ . In addition, it has been seen that bilayer
graphene can develop a sizable band gap, which is tunable by
charge doping.16 Recent interest in bilayer graphene physics
has focused on the large degeneracy at the charge neutrality
point, which provides opportunity for instabilities leading to
new ground states. See Ref. 15 for a summary of the literature
on this point and also a general review of the properties
of bilayer graphene. The natural form for bilayer graphene
is the so-called Bernal or AB stacking, which is the basis
of the parent compound graphite from which it is usually
derived. Consequently, past work has primarily focused on this
stacking configuration. However, more recently Moiré patterns
seen in scanning tunneling microscopy imaging of graphene
bilayers and multilayers point to alternative stackings where
one layer is rotated by some angle relative to the other.17,18

This is sometimes referred to as twisted or misaligned bilayer
graphene. In these systems, the electronic properties are
modified at low energy such that monolayer behavior appears
along with a reduced Fermi velocity.18 In these systems, it

is possible to have regions that are rich in AB stacking and
regions that display mainly AA stacking. These types of
stackings are shown in Figs. 1(a) and 1(b), respectively. Here,
A and B refer to atoms on the two triangular sublattices of the
honeycomb lattice and the stacking is in reference to whether
the A atom of one plane is stacked over the A or B atom of
the other plane. For Bernal AB stacking only half the atoms
are aligned on top of each other and the other half sit over the
center of the hexagon in the opposite layer. For AA stacking all
atoms are matched up between the two layers. For very small
twist angles, the regions of AA stacking have been suggested
to provide localization effects.19,20 Very recently, AA-stacked
graphene has also attracted interest due to research that has
identified such stacking in certain samples, potentially making
this another experimentally accessible system to study.21,22 For
AA stacking there is also the prediction for new ground states
to occur, such as antiferromagnetism.23

As a result, we are motivated by these developments to
examine the dynamical conductivity of doped AA-stacked
graphene to elucidate features that would demonstrate unique
properties of this system and allow for the identification of
characteristic energy scales associated with the band structure.
Moreover, as the optical properties of graphene are of consider-
able importance for technological applications, all variants of
graphene are also of potential interest and should be examined.
The dynamical conductivity of graphene has been exten-
sively studied theoretically24–29 and experiments have largely
verified the expected behavior.30–33 Likewise, the conductiv-
ity for Bernal-stacked bilayer graphene has been predicted
theoretically34–37 and observed.38–40 There has also been work
on magneto-optical conductivity of graphene in which theory
and experiment are also in good agreement. Indeed, a review of
this literature may be found in Ref. 41. Some preliminary work
on the absorption coefficient of undoped AA-stacked graphene
in zero magnetic field has been reported,42 however most
materials naturally occur with charge doping where the Fermi
level or chemical potential μ is away from charge neutrality
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FIG. 1. (Color online) (a) Two AB-stacked graphene sheets with
the dark (blue) dots representing one sublattice and the light (green)
dots, the other. (b) Two AA-stacked graphene sheets.

(μ = 0). Furthermore, the interesting feature for practical
applications is the variation of optical properties with doping,
usually achieved through a field effect transistor structure.

In the following, we provide a thorough examination of
the finite frequency conductivity for AA stacking, for both
in-plane and out-of-plane response. Unlike a single monolayer,
AA-stacked graphene shows a Drude response in the in-plane
conductivity at charge neutrality along with Pauli blocking at
low frequencies below the onset of a flat interband absorption.
This interband absorption splits at finite doping into two
interband absorption edges leading to flat universal values
associated with one and two layers. In terms of the interlayer
hopping energy γ , the partial optical sum, which is a measure
of the transfer of spectral weight, shows distinct behavior for
μ < γ versus μ > γ . The perpendicular conductivity has a
strong response at 2γ at all dopings. This is contrasted with
the case for AB stacking, which we also show here as we can
also provide an analytical formula for this quantity to add to
the literature. Indeed, we have provided analytical formulas
in almost all cases and physical understanding of our results
are given. We also contrast the AA-stacked case with that for
AAA stacking. Finally, because of the connection between the
Dirac nature of graphene and topological insulators (TIs), we
also follow up on a toy model43 by providing the conductivity
for two AA-stacked sheets with spin-orbit coupling in one or
both planes, potentially mimicking weakly coupled TIs or a
TI in proximity to a metallic sheet.

Our paper is organized as follows. In Sec. II, we review
our theoretical calculation for the dynamical conductivity of
AA-stacked graphene. Our presentation follows that for AB-
stacked bilayer graphene done by Nicol and Carbotte,35 which
uses many-body Green’s function, which easily allows for
further theoretical development, such as the inclusion of a self-
energy from impurities,36 electron-phonon interaction,44–49

electron-electron interactions,50–52 etc. In Sec. III, we discuss
the results of the AA-stacked case, examining both in-plane
and perpendicular conductivity and contrasting with the AB-
stacked case. We discuss the effect of biasing the bilayer. We
also consider the theory for other variations on the AA-stacked
case in the subsequent sections. For instance, we examine the
case for the AAA-stacked trilayer in Sec. IV and report results
for models with spin-orbit coupling in AA-stacked bilayer in
Sec. V. Our conclusions are found in Sec. VI.

II. THEORY FOR AA-STACKED BILAYER

To derive the optical conductivity of AA-stacked bilayer
graphene, we follow the method shown in the work of
Nicol and Carbotte35 for the case of AB-stacked bilayer
graphene. This is based on the Kubo formula for the current-
current response function and the many-body Green’s function
approach.53 Thus, to begin we must first examine the band
structure and provide an expression for the electronic Green’s
function. For the case of AA stacking, an A (B) atom in the
upper layer is stacked directly above an A (B) atom in the
lower layer [see Fig. 1(b)] as opposed to the typical Bernal
stacking shown in Fig. 1(a).

For AA stacking, the single spin Hamiltonian is given by

H = −t
∑
n,δ

(b†1 n+δa1 n + H.c.) − t
∑
n,δ

(b†2 n+δa2 n + H.c.)

+ γ
∑

n

(a†
2 na1 n + b

†
2 nb1 n + H.c.). (1)

The first two terms are the nearest-neighbor intralayer hopping
terms for electrons to move within a given plane with hopping
energy t ∼ 3 eV. The two planes are indexed 1 and 2. As a
consequence of the geometry of the honeycomb lattice, each
sheet has two inequivalent atoms labeled A and B. The operator
ai n annihilates an electron, which is on an A-atom site with site
label n in the graphene sheet indexed by i. The label n indexes
the sites of the triangular Bravais lattice. Conversely, b

†
i n+δ

creates an electron in sheet i on the neighboring site at the po-
sition n + δ, where δ is one of three possible nearest-neighbour
vectors given by δ1 = −(a1 + a2)/3, δ2 = (2a1 − a2)/3 and
δ3 = −(a1 − 2a2)/3. The primitive vectors of the triangular
sublattice are a1 = (a

√
3/2,a/2) and a2 = (a

√
3/2, −a/2),

where |a1| = |a2| = √
3acc with acc the shortest carbon-

carbon distance. The third term in Eq. (1) corresponds to
the interlayer hopping between graphene sheets. The hopping
parameter between an A (B) site in one layer and the nearest
A (B) site in the other layer is given by γ , which is reported
to be about 0.2 eV,42,54 which differs in AB-stacked bilayer
graphene where it is closer to 0.4 eV. There is also a possibility
to hop between an A (B) site in one layer to a B (A) site
in the other layer; however, these hopping energies are very
small54,55 and thus ignored in our model. The Hamiltonian
given in Eq. (1) transforms to k space in the usual way53 and
can be written in the following matrix representation:

Ĥ =

⎛
⎜⎜⎜⎝

0 0 γ f (k)

0 0 f ∗(k) γ

γ f (k) 0 0

f ∗(k) γ 0 0

⎞
⎟⎟⎟⎠ , (2)
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FIG. 2. (Color online) Top: Low energy dispersion for a bilayer
with Bernal AB stacking (left) and AA stacking (right). Bottom:
Low energy density of states [in units of 2γ /π (h̄vF )2] for AB- and
AA-stacked bilayers, left and right frames respectively.

where f (k) = −t
∑

δ eik·δ and we have used the eigenvector
� = (a1 k,b2 k,a2 k,b1 k) following the notation of McCann.56

The band structure is given by the eigenvalues of this matrix.
Reflecting the fact that there are now four atoms per unit cell,
we obtain the following four energy bands:

εα(k) = ±[|f (k)| + (−)αγ ], (3)

where α = 1 and 2 and |f (k)| is the energy dispersion for
a single sheet of graphene. We essentially have two copies
of the band structure of monolayer graphene, one shifted by
−γ and the other by +γ , or bonding and antibonding bands,
and indeed we will see that this provides part of the physics
that enters the dynamical conductivity. As our interest is to
understand the conductivity at low energies, we choose to
expand f (k) around the K point of the Brillouin zone to obtain
f (k) = h̄vF keiθ , where vF = √

3ta/2h̄ and θ is the k-space
angle around the K point. The low-energy band structure
can be seen in Fig. 2 where it is compared to that of the
familiar Bernal stacking. As the physics of the conductivity
associated with the K ′ will be the same as for the K point, it is
sufficient to work only about the one K point in what follows
and multiply the result by a factor of two for the so-called
valley degeneracy associated with the two K points per unit
cell.

We can also provide, as others have shown,57 an ana-
lytic expression for the total double spin density of states,
N (ε),

N (ε) = 2 γ

π (h̄vF )2

[∣∣∣∣ ε

γ
− 1

∣∣∣∣ +
∣∣∣∣ ε

γ
+ 1

∣∣∣∣
]
, (4)

which results from the sum of two Dirac cone density of states
shifted relative to each other by 2γ . A plot of the low-energy
density of states in units of 2γ /π (h̄vF )2 for AA-stacked bilayer
graphene is shown in Fig. 2 and is contrasted with that for AB
stacking.35

With our Hamiltonian, it is straightforward to determine the
Green’s function Ĝ(z) from Ĝ−1(z) = zÎ − Ĥ . Thus

Ĝ−1(z) =

⎛
⎜⎜⎜⎝

z 0 −γ −f (k)

0 z −f ∗(k) −γ

−γ −f (k) z 0

−f ∗(k) −γ 0 z

⎞
⎟⎟⎟⎠ . (5)

The only elements of the Green’s function that contribute to
our final expressions for longitudinal and perpendicular optical
conductivity are G11, G12, G13, and G14. We will only show
these elements explicitly,

G11(z) = z3 − z(γ 2 + |f (k)|2)

(z − ε1)(z + ε1)(z − ε2)(z + ε2)
, (6)

G12(z) = 2γ zf (k)

(z − ε1)(z + ε1)(z − ε2)(z + ε2)
, (7)

G13(z) = z2γ + γ |f (k)|2 − γ 3

(z − ε1)(z + ε1)(z − ε2)(z + ε2)
, (8)

and

G14(z) = z2f (k) + γ 2f (k) − f (k)|f (k)|2
(z − ε1)(z + ε1)(z − ε2)(z + ε2)

. (9)

The finite frequency conductivity is calculated through the
standard procedure of using the Kubo formula,53 where the
conductivity is written in terms of the retarded current-current
correlation function. From this the real part of the conductivity
can be written as35

σαβ(
) = Nf e2

2


∫ ∞

−∞

dω

2π
[f (ω − μ) − f (ω + 
 − μ)]

×
∫

d2k

(2π )2
Tr[v̂αÂ(ω + 
,k)v̂βÂ(ω,k)], (10)

where we have used the spectral function representation of the
Green’s function,

Ĝij (z) =
∫ ∞

−∞

dω

2π

Âij (ω)

z − ω
. (11)

Here α and β represent the spatial coordinates x,y,z, Nf is
a degeneracy factor, f (x) = 1/[exp(x/T ) + 1] is the Fermi
function for temperature T , and μ is the chemical potential
taken to be positive here but to accommodate for negative
values, μ just needs to be replaced by |μ| everywhere.
Note that we will usually take h̄ = 1 when referring to the
relationship between energy and frequency and restore it when
necessary. For our results, we show only the T = 0 case. For
the longitudinal in-plane conductivity, σxx(
), v̂α = v̂β = v̂x

where

v̂x =

⎛
⎜⎜⎜⎝

0 0 0 vF

0 0 vF 0

0 vF 0 0

vF 0 0 0

⎞
⎟⎟⎟⎠ . (12)
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The velocity operator can be evaluated from a Peierls substi-
tution as demonstrated in Ref. 35 or from h̄v̂x = ∂Ĥ/∂kx . We
can then evaluate the trace, drop the terms that will vanish upon
averaging over angle, and obtain an expression dependent on
the two spectral functions A11 and A13. In the zero temperature
limit, the real part of the longitudinal conductivity σxx(
) is
then

σxx(
) = Nf e2

2


∫ μ

μ−


dω

2π

∫
d2k

(2π )2
4v2

F [A11(ω + 
)A11(ω)

+ A13(ω + 
)A13(ω)]. (13)

In keeping with the low-energy expansion of f (k) about a
single K point, the integral over k, which in general is over
the first Brillouin zone, is now taken as an integral over a
single K point. The degeneracy factor is thus Nf = gs gv ,
where gs = 2 to account for the sum over spin, which has
been ignored up until now, and gv = 2 to account for a sum
over the K and K ′ points of the Brillouin zone. Furthermore,
the upper limit of the k integral is taken to be a large
cutoff value typical of momentum associated with the large
bandwidth. It is convenient to scale Eq. (13) by the constant
background conductivity of a single sheet of graphene26 given
by σ0 = e2/4h̄. All that remains before we can calculate
our conductivity is to specify the necessary spectral function
elements. Given our expressions for G11 and G13 and Eq. (11),
we obtain

A11 = π

2
[δ(ω − ε1) + δ(ω + ε1) + δ(ω − ε2) + δ(ω + ε2)]

(14)

and

A13 = π

2
[δ(ω + ε1) − δ(ω − ε1) + δ(ω − ε2) − δ(ω + ε2)] .

(15)

For our numerical work, we use the Lorentzian repre-
sentation of the δ function, δ(x) = (η/π )/[η2 + x2], with a
broadening of η = 0.01γ . The broadening is manifest in the
optical conductivity as an effective transport scattering rate
of 1/τimp = 2η due to the convolution of the two Lorentzian
functions in the conductivity formula.

We can also examine the perpendicular conductivity,
σzz(
), associated with transport perpendicular to the graphene
sheets. In Eq. (10), our velocity operator is now (v̂α = v̂β = v̂z)

v̂z =

⎛
⎜⎝

0 0 v∗ 0
0 0 0 v

v 0 0 0
0 v∗ 0 0

⎞
⎟⎠ , (16)

where v = i γ d/h̄ with d the interlayer distance. d is about
3.6 Å and 3.3 Å for AA and AB stacking respectively.42,54

This leads to the real part of the zero temperature perpendicular
conductivity

σzz(
) = Nf e2

2


∫ μ

μ−


dω

2π

∫
d2k

(2π )2
4 |v|2

× [A11(ω + 
)A11(ω) − A∗
12(ω + 
)A12(ω)

−A13(ω + 
)A13(ω) + A∗
14(ω + 
)A14(ω)] (17)

with A11 and A13 given by Eqs. (14) and (15), respectively,
and

A12 = π f (k)

2ε
[−δ(ω − ε1) − δ(ω + ε1)

+ δ(ω − ε2) + δ(ω + ε2)] (18)

and

A14 = π f (k)

2ε
[δ(ω − ε1) − δ(ω + ε1)

+ δ(ω − ε2) − δ(ω + ε2)] (19)

with ε = |f (k)|.

III. RESULTS FOR AA-STACKED BILAYER

Here we present results for the longitudinal conductivity,
which is obtained by evaluating Eq. (13) numerically using
the Lorentzian form in place of the δ function and taking
the broadening parameter η = 0.01γ . Figure 3 shows curves
for the case of μ < γ and μ > γ (top and bottom frames,
respectively). For the case of charge neutrality (μ = 0), the
conductivity displays a Drude response at low frequency
due to intraband transitions and a flat interband absorption,
which commences at 2γ . This is quite unlike the case of
monolayer graphene, which would have had a flat interband
response at all frequencies. Here the response is not simply
that of two monolayers as one might naively think. This is
because the AA-stacked bands are essentially two decoupled
graphene monolayer bands, which represent bonding and
antibonding bands and are shifted relative to each other57 (as
emphasized in the inset where the bands are identified with
different colors). The matrix elements for the longitudinal
conductivity only allow for transitions between like-colored
bands.42 The transitions must be vertical as the photon is a
momentum q ∼ 0 probe. At charge neutrality, the minimum
interband transition that is not Pauli blocked is then 2γ and
intraband transitions can also now occur due to the Fermi level
being located away from the Dirac point of the monolayer
band, this latter feature is not present in previous work.42

This emphasizes that knowledge of the band structure as
shown in Fig. 2 is insufficient (or may be misleading) to the
determination of the allowed absorption transitions and that
the matrix elements, which know about effects of chirality and
bonding/antibonding, are important as well.

For finite chemical potential, the Drude persists but now
there are two pieces to the interband absorption, which onset
at 2|γ − μ| and 2(γ + μ). The behavior is different for μ < γ

versus μ > γ . For the case of μ < γ , the Drude conductivity
remains completely unchanged and its weight is set by the
value of γ . The interband edge that was at 2γ in the μ = 0
case is now split into two edges moving to lower and higher
frequency and associated with the onset of allowed transitions
for a single monolayer band structure shifted up or down by
γ , respectively. This is emphasized by the AA-stacked band
structure shown in the inset of Fig. 3(a) where transitions can
only occur within the same colored bands. For the monolayer
dispersion shifted down by γ (blue bands) the lowest interband
transition from an occupied state to an unoccupied state occurs
at 
 = 2(γ + μ). For the monolayer dispersion shifted up by
γ (red bands), the lowest transition between cones occurs at
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(a)

(b)

FIG. 3. (Color online) (a) Real part of the longitudinal frequency-
dependent optical conductivity σxx(
) of AA-stacked bilayer
graphene normalized to that of a single graphene sheet for the case of
μ < γ . Onset of absorption at 2|γ − μ| and 2(γ + μ) correspond to
the availability of allowed transitions within the AA band structure
shown in the inset. Inset: Low energy band structure around the
K point for the case of μ < γ . Transitions can only occur within
the same colored bands. For the blue bands, the lowest transition
between the upper and lower cones occurs at 
 = 2(γ + μ), shown
by the blue arrow, and for the red bands, the lowest transition between
cones occurs at 
 = 2(γ − μ), shown by the red arrow. Below these
frequencies, only intraband transitions within the same cone for states
about the chemical potential occur. (b) The case of μ > γ .


 = 2|γ − μ|. Thus at low enough energy, the finite frequency
conductivity displays the universal background absorption of
a monolayer σ0 but at higher frequency there is a step up to
a flat universal background at 2σ0 and the transition between
these steps is tunable with the charge doping.

For the case of μ = γ as shown in Fig. 3(b), the lower edge
has disappeared and there is a background conductivity of
σ0 for 
 < 4γ and 2σ0 for 
 > 4γ . However, in this case
the Drude component still remains at very low frequency.

For μ > γ as shown in Fig. 3(b), the lower edge reappears,
showing the double step in universal conductivity value and
now both edges move to higher frequency with increased
μ. As the area of the conductivity is conserved, the lost
weight at finite frequency is found in the Drude, which now
increases with μ as one finds in the monolayer case. These
characteristic features of the AA-stacked bilayer are quite
different from the case of Bernal stacking35 and are not
at all the expectation of twice the monolayer conductivity
either. The presence of the Drude at charge neutrality in
the AA-stacked case is different from the monolayer and
AB-stacked bilayer where no such feature exists for μ = 0.
These special features of AA-stacked graphene might prove
useful for applications where optical response is tuned by
doping (or gating) to be like a switch with three settings:
off or 0, on at half setting (σ0), and on at full setting (2σ0).
Use of tuning by gating has been demonstrated for graphene
terahertz modulators where the intraband transitions are used
in this case.58 Another significance of the result is that for
the spectral range between 2|μ − γ | and 2(γ + μ), one might
not be able to separate monolayer from AA-stacked bilayers
by optics alone. Overall, the dynamical conductivity is quite
distinct from that of AB-stacked bilayer where no such steps
occur and the conductivity is not flat in the low-frequency
spectral range.34,35

These results are embodied by a closed algebraic formula
for the real part of the longitudinal conductivity for AA bilayer,
which can be derived at zero temperature from Eq. (13),

σxx(
)

σ0
= 8 δ(
) max(μ,γ ) + �[
 − 2|μ − γ |]

+�[
 − 2(μ + γ )]. (20)

If the δ function here is replaced by a Lorentzian with
broadening of 2η, then this formula gives an excellent
representation of the numerical results in Fig. 3. It is also
possible to derive an expression for the imaginary part of the
longitudinal conductivity, which is Kramers-Kronig-related to
Eq. (20) by the relation

σ ′′(
) = −2


π
P

∫ ∞

0

σ ′(ω)

ω2 − 
2
dω (21)

with σ ′(ω), the real part of the conductivity given by Eq. (20).
Hence,

σ ′′
xx(
)

σ0
= 8

π

max(γ,μ) + 1

π

[
ln

∣∣∣∣
 − 2|γ − μ|

 + 2|γ − μ|

∣∣∣∣
+ ln

∣∣∣∣
 − 2(γ + μ)


 + 2(γ + μ)

∣∣∣∣
]
. (22)

If δ(
) in the real part is replaced by a Lorentzian form
as we have discussed, then instead of the Kramers-Kronig
transformation of δ(
) to 1/(π
), we have �/[π (
2 + �2)]
transforming to 
/[π (
2 + �2)] where � = 2η represents
the transport scattering rate rather than the quasiparticle
scattering rate η that enters the broadened spectral functions
A(k,ω).

The issue of optical spectral weight redistribution with
variation in chemical potential can be addressed globally by

075439-5



C. J. TABERT AND E. J. NICOL PHYSICAL REVIEW B 86, 075439 (2012)

(a)

(b)

FIG. 4. (Color online) Partial optical sum I (
) in units of γ

for various values of chemical potential with (a) μ < γ and (b)
μ > γ . Inset: The evolution of the positive frequency spectral
weight W, found under half the delta function in the analytic
solution for the conductivity, Eq. (20) as a function of chemical
potential.

introducing the partial optical sum

I (
) =
∫ 


0+

σ (ω)

σ0
dω, (23)

which is defined as the area under the conductivity graph up
to energy 
. For the real part of the longitudinal conductivity,
I (
) is shown for various values of μ/γ in Fig. 4. In all cases,
at sufficiently high frequency the integrated spectral weight
returns to the μ = 0 value [solid black curve of Fig. 4(a)].
The inset of Fig. 4 shows the spectral weight of the δ function
in the analytic solution, Eq. (20), where we have taken only
half the weight of the δ function as only half the function is
present for positive frequency. The functions converge to the
μ = 0 case at frequencies above 
 = 2(γ + μ) once most of
the spectral weight from the Drude contribution is integrated

FIG. 5. (Color online) (a) Real part of the perpendicular con-
ductivity for AA-stacked bilayer graphene for various values of μ.
The perpendicular conductivity is negligible everywhere except near

 = 2 γ where there is a sharp peak (note the axes of this plot). Here,
the transport scattering rate is � = 2η, where η = 0.01γ in all of our
numerical work. (b) Real part of the perpendicular conductivity for
AB-stacked bilayer graphene. A strong peak occurs at γ for finite μ

and an absorption edge occurs at 2 max(μ,γ ).

as well as the contribution from the interband edges. These
curves once again provide an interesting differentiation
between the μ < γ regime, where the Drude weight remains
the same and the lower-energy kink moves to lower 
, and the
μ > γ case where the low-frequency part of the partial sum
increases with μ and the low-energy kink moves to higher 
.
In principle, such a quantity could allow for an experimental
determination of γ based on the transition from the behavior
of one regime to the other.

Turning to the perpendicular conductivity, we show the
response for the AA- and AB-stacked bilayer in Fig. 5. The
AA-stacked graphene has a strong absorption associated with
2γ , which is finite at charge neutrality and increases with
doping. It is also possible to derive a closed form algebraic
formula for the perpendicular conductivity. For AA stacking
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we obtain

σzz(
)

σ⊥0
= 4

γ
δ(
 − 2 γ )[(γ − μ)2�(γ − μ) + 2γμ] (24)

and by Kramers-Kronig transformation

σ ′′
zz(
)

σ⊥0
= 8


γπ (
2 − 4γ 2)
[(γ − μ)2�(γ − μ) + 2γμ],

(25)

for the real and imaginary parts, respectively, where σ⊥0 =
(e2/4h̄)(γ d/h̄ vF )2. The physics of this case is as follows.
For in-plane conductivity, charge carriers must hop from
one sublattice to the other to produce a current, thus in the
absorption process, interband transitions are between two
bands, each of which reflects the two sublattices by having
different chirality label. Hence the transitions shown in the
inset of Fig. 3(a) are between two cones, which have opposite
chirality but the same bonding or antibonding wave functions.
However, for the interlayer current in the AA-stacked case, the
carriers hop between the A(B)-sublattice of one plane to the
A(B)-sublattice of the other plane and as a result absorptive
transitions for this form of transport will only occur between
bands of the same chirality but different bonding, which in
reference to the inset of Fig. 3(a) would be vertical arrows
connecting the parallel bands in this case. As these arrows are
always of length 2γ , there is only one very strong absorption
peak at 2γ .

Similar analytical results for AB stacking at finite doping
are, to our knowledge, not in the literature and so we will
provide it here for comparison (the equivalent form for AB-
stacked in-plane conductivity has been given previously in
the literature).35,37 Some numerical work along with some
analytical analysis has been done previously and our results
are in agreement with those works.36,59 In particular, Ando and
Koshino considered polarization effects,59 which we do not
include here. The AB-stacked perpendicular response seen in
Fig. 5(b) is quite different from the AA case. Absorption occurs
at all frequencies but is on the scale of σ⊥0. An absorption edge
occurs at 2γ similar to the AA case, although it is weaker by
comparison and continues on to higher frequency as it results
from transitions between the lowest- and highest-energy bands
of the AB case in Fig. 2, which are the bonding and antibonding
bands of the A-B dimer strongly coupled by hopping γ .15

Moreover, absorption is seen at all frequencies and at finite
doping a very strong peak occurs at γ much as is seen in the
in-plane conductivity for the AB-stacked bilayer.35 It is not
entirely surprising that the perpendicular conductivity displays
elements of the in-plane conductivity with the same physical
origin.35 The lower-energy bands represent hopping between
the nondimer A and B sites in the two planes, which must
occur by first hopping in the plane to the neighbor site, which
is part of a dimer, hopping up the dimer bond and then over
to the nondimered site in the second plane.15 The AA-stacked
case does not have this element. For AB stacking, we derive
an analytic formula for the perpendicular conductivity, which
is

σzz(
)

σ⊥0
=

[



2(
 + γ )
+ 


2(
 − γ )
�(
 − 2γ )

]
�(
 − 2μ) + c(μ)δ(
 − γ ), (26)

where

c(μ) = μ(γ + μ)

γ
− γ

2
ln

2μ + γ

γ

+
[
μ(γ − μ)

γ
+ γ

2
ln

2μ − γ

γ

]
�(μ − γ ). (27)

This formula also agrees quite well with the numerical
work shown in Fig. 5(b) for various values of the chemical
potential, provided the δ function is rewritten as a Lorentzian
with broadening of � = 2η. The expression for the imaginary
part is given as

σ ′′
zz(
)

σ⊥0
= 2


π (
2 − γ 2)
c(μ)

+ 


2π

[
1


 − γ
ln

∣∣∣∣2max(γ,μ) − 


2μ + 


∣∣∣∣
− 1


 + γ
ln

∣∣∣∣2max(γ,μ) + 


2μ − 


∣∣∣∣
+ 2γ


2 − γ 2
ln

∣∣∣∣ 2μ + γ

2max(μ,γ ) − γ

∣∣∣∣
]
, (28)

where c(μ) is given by Eq. (27).
We can also examine the effect of adding a bias between

the two layers. To do this, we need to include an additional
term in our Hamiltonian given by Eq. (1) of the form35

H ′ = 1

2
�

∑
n

(
a
†
1na1n + b

†
1n+δ1

b1n+δ1

)

− 1

2
�

∑
n

(
a
†
2na2n + b

†
2n+δ1

b2n+δ1

)
. (29)

This bias raises the energy on the lower plane by +�/2 and
lowers the energy on the upper plane by −�/2 providing an
overall bias of �. For the case of AB stacking, this introduces a
gap in the energy dispersion56 and provides interesting features
to the conductivity.35 For AA-stacked bilayer, this gives the
energy dispersion εα(k) = ±[ε + (−)α

√
γ 2 + �2/4], where

α = 1 and 2. We can see that this is equivalent to a
renormalization of the interlayer hopping parameter of the
unbiased system to a value γ ′ such that γ ′ =

√
γ 2 + �2/4 and

will therefore introduce no new features into the conductivity.

IV. CONDUCTIVITY OF AN AAA-STACKED TRILAYER

These ideas can also be extended to trilayer graphene. For
the case of AAA-stacked trilayer graphene, where A (B) sites
in each layer are stacked directly in line with the corresponding
sites in the other layers, our Hamiltonian now becomes

H = −t
∑
i,n,δ

(b†i n+δai n + H.c.) + γ
∑

n

(a†
2 na1 n + b

†
2 nb1 n

+ a
†
3 na2 n + b

†
3 nb2 n + H.c.), (30)

where i = 1, 2, 3 indexes each of the three layers. Here,
we allow the usual nearest-neighbor intralayer hopping t and
interlayer hopping γ between the neighboring planes; again,
we have ignored hopping from an A (B) site in one layer
to a B (A) site in another layer as well as hopping from an
A1 (B1) site to an A3 (B3) site as these hopping energies are
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very small.55 Transforming to k space, we obtain the following
matrix representation:

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 γ f (k)

0 0 0 γ f ∗(k) γ

0 0 0 f (k) γ 0

0 γ f ∗(k) 0 0 0

γ f (k) γ 0 0 0

f ∗(k) γ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(31)

where we have used the eigenvector � =
(a1 k,b2 k,a3 k,b3 k,a2 k,b1 k). Reflecting the fact that we
now have six atoms per unit cell, we obtain the following six
energy bands:

ε(k) = ±|f (k)|, ±[|f (k)| −
√

2γ ], ±[|f (k)| +
√

2γ ],

(32)

where |f (k)| is the energy dispersion of monolayer graphene,
equal to ε = h̄vF k at low energy. The first two bands, ±ε, are
the original graphene bands, the second two bands, indexed
±ε1(k), and final two bands, indexed ±ε2(k), are monolayer
bands shifted by ∓√

2γ , respectively. A plot of the band
structure can be seen in the inset of Fig. 6. From this, we see
that the trilayer is like the sum of a monolayer and a bilayer
with an interlayer hopping of

√
2γ .

Using the same formalism as before, we can derive an
expression for the real part of the zero temperature longitudinal
conductivity in terms of the spectral functions; we obtain

σxx(
) = Nf e2

2


∫ μ

μ−


dω

2π

∫
d2k

(2π )2
2v2

F [2A11(ω + 
)A11(ω)

+ 2A13(ω + 
)A13(ω) + 4A15(ω + 
)A15(ω)

+A22(ω + 
)A22(ω)], (33)

0 1 2 3 4 5 6 7 8 9
Ω/γ

0

1

2

3

4

σ xx
(Ω

)/
σ ο

µ/γ=0
µ/γ=0.5
µ/γ=1
µ/γ=1.2

ε/
γ

ℏvFkx/γ

-4

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3

µ

2(√2γ+µ)

2(√2γ-µ)

2µ

FIG. 6. (Color online) Conductivity for AAA-stacked trilayer
graphene. Interband absorption edges appear at 
 = 2μ, 2|√2γ −
μ| and 2(

√
2γ + μ). These transitions are shown on the band structure

given in the inset.

where

A11 = π

4
[2δ(ω − ε) + 2δ(ω + ε) + δ(ω − ε1)

+ δ(ω + ε1) + δ(ω − ε2) + δ(ω + ε2)], (34)

A13 = π

4
[−2δ(ω − ε) − 2δ(ω + ε) + δ(ω − ε1)

+ δ(ω + ε1) + δ(ω − ε2) + δ(ω + ε2)], (35)

A15 =
√

2π

4
[−δ(ω − ε1) + δ(ω + ε1)

+ δ(ω − ε2) − δ(ω + ε2)], (36)

and

A22 = π

2
[δ(ω − ε1) + δ(ω + ε1)

+ δ(ω − ε2) + δ(ω + ε2)]. (37)

Several numerical curves for the conductivity can be seen
in Fig. 6. For finite μ, there are three steps in the conductivity
each of value σ0, leading to a constant background at high
frequency equal to three times that of a single sheet, reflecting
the trilayer nature of the system. In each case, there is always
an absorption edges at 
 = 2μ. The other two edges occur
at 2|μ − √

2γ | and 2(μ + √
2γ ), where the former decreases

with increasing μ for μ <
√

2γ and then increases for μ >√
2γ , while the latter always increases with μ. This is a similar

pattern to the AA-stacked case and so the combination of the
above confirms that the trilayer acts as the sum of a monolayer
plus bilayer. Even at μ = 0, the flat background of σ0, due to
monolayer behavior, is added to the unusual Drude plus 2σ0

interband behavior of the μ = 0 bilayer shown in Fig. 3, but for
effective interlayer hopping of

√
2γ . The ability to tune the flat

background in the IR spectral region from 0 → 3σ0 in steps of
σ0 by changing the doping is an interesting feature that could
possibly be of some advantage to technological applications.

Given Eq. (33), an analytical expression for σxx of AAA-
stacked trilayer graphene may be written down. It has the
expected form

σxx(
)

σ0
= 4δ(
)[2 max(μ,

√
2γ ) + μ] + �[
 − 2μ]

+�[
 − 2(μ +
√

2γ )] + �[
 − 2|μ −
√

2γ |],
(38)

which stresses the existence of three decoupled and shifted
monolayer dispersions where interband transitions are only
permitted between the corresponding cones shown in the inset
of Fig. 6.

The imaginary part is again found by applying Eq. (21) to
Eq. (38). It is

σ ′′
xx(
)

σ0

= 4

π

[2max(μ,

√
2γ ) + μ] + 1

π
ln

∣∣∣∣
 − 2μ


 + 2μ

∣∣∣∣
+ 1

π
ln

∣∣∣∣
 − 2(μ + √
2γ )


 + 2(μ + √
2γ )

∣∣∣∣ + 1

π
ln

∣∣∣∣
 − 2(μ − √
2γ )


 + 2(μ − √
2γ )

∣∣∣∣.
(39)
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V. AA STACKING WITH SPIN-ORBIT COUPLING

Finally, to cover a variety of possible scenarios, we examine
the effect of spin-orbit coupling (SOC) on AA-stacked bilayer
graphene. Such effects in AA- and AB-stacked bilayers were
considered by Prada et al.43 in the context of studying systems
that may manifest a topological insulating phase. These
authors have studied both the case of SOC in both planes and
SOC in only one plane, the latter case taken to be a toy model
for spin-orbit proximity effect. For our purpose here, these
considerations illustrate the generic features of opening energy
gaps in the AA-stacked band structure at k = 0 and at the
charge neutrality point. Recall from our previous discussion
that biasing the bilayer does not open a gap in the AA-stacked
case as it does in the AB-stacked case, but SOC will do so.

For a single sheet of graphene including SOC, the tight
binding Hamiltonian is60

Ĥ 0
τz,sz

=
(

�τzsz f (k)

f ∗(k) −�τzsz

)
, (40)

where, in the continuum limit, f (k) = h̄vF (τzkx − iky) and
� = 3

√
3tso, with tso, the next-nearest-neighbor hopping

amplitude. τz = ±1 for the Dirac points K and K ′ and sz = ±1
corresponding to the up/down spin component perpendicular
to the graphene sheet.43 With this, the Hamiltonian for the
AA-stacked bilayer is

Ĥτz,sz
=

(
Ĥ 0

1 τz,sz
Ĥ⊥

Ĥ⊥ Ĥ 0
2 τz,sz

)
, (41)

where we have used the eigenvector � = (a1k,b1k,a2k,b2k).
When dealing with the case of SOC in both layers, both Ĥ 0

1 τz,sz

and Ĥ 0
2 τz,sz

are given by Eq. (40) and Ĥ⊥ is the coupling
between the layers, again taken to be

Ĥ⊥ =
(

γ 0

0 γ

)
(42)

for AA stacking. Eq. (41) gives the four energy bands43

εα(k) = ±(
√

ε2 + �2 + (−)αγ ), (43)

where α = 1 and 2. These are illustrated in the inset of Fig. 7(b)
for a particular K point.

While we are interested in σxx , we will forgo providing the
explicit details of the calculation as they can be developed
by following the procedure already outlined earlier. The
expression for σxx(
) given in Eq. (10) can still be used.
However, in lieu of the degeneracy factor Nf , a sum over
τz and sz should be taken when using Eq. (41) to calculate
the Green’s function. Our velocity operator v̂x written in the
basis used for this section can be evaluated as before from
h̄v̂x = ∂Ĥ/∂kx .

The effect on the real part of the longitudinal conductivity
of AA-stacked bilayer graphene when SOC is present in both
layers can be seen in Fig. 7 for the case of (a) μ = 0 and
(b) μ = 0.5γ . The two shifted monolayer dispersions in the
band structure are now gapped by 2� about ±γ (see inset of
Fig. 7). For μ = 0 and � < γ , as shown in Fig. 7(a), there is
the usual Drude conductivity and a jump at 2γ as in the case
of no SOC. However, the shape of this jump is typical of a

FIG. 7. (Color online) Conductivity σxx(
) versus 
/γ for the
case with SOC in both layers. (a) μ = 0 and �/γ = 0, 0.75 and
1.2 in each layer. (b) The case of finite doping with μ = 0.5γ and
� = 0.75γ with that for � = 0 shown for comparison. The inset
shows the band structure for this case and the transitions that occur
to give the absorption edges seen in the main frame.

gapped electronic spectrum, which gives rise to a discontinuity
in the electronic density of states. Indeed for the monolayer
of graphene, such behavior has been calculated.26 As the
frequency increases the usual bilayer background is recovered.
The features of the conductivity show that, as in the case of
no SOC, transitions are only allowed within each decoupled
(like-colored) monolayer band. For the case of � > γ , we no
longer have the Drude contribution as no states, and therefore
no transitions, are available at zero energy. The peak in the
conductivity now occurs at 2� and again we can see that
we obtain the usual background conductivity for significantly
high frequency. We have chosen our values for �/γ to
be in keeping with the parameters used by Prada et al.,43

however, in graphene the intrinsic SOC gap is ∼10−3 meV
and hence �/γ ∼ 10−5. Nonetheless, we have chosen this
model to indicate the effect of energy gaps appearing in the
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band structure. Indeed, other graphene-like systems are now
being studied that have much larger predicted SOC gaps,
such as silicene (∼1.5 meV) and germanene (∼25 meV),
which can be further tuned by strain or perpendicular electric
field.61,62 Likewise, a varying mass gap of up to ∼150 meV has
been found in the three-dimensional (3D) topological insulator
TlBi(S1−xSex)2 by Sato et al.63 and the SOC gap in monolayer
MoS2 and other group-VI dichalcogenides is on the order of
1.5 − 1.8 eV.64 Consequently, the results of this section may
be very relevant to future developments in these graphene-like
systems.

In Fig. 7(b), the effect of finite doping is considered in
comparison with the case of no SOC. For small enough �, the
SOC curve will track the one without SOC with the exception
that there is a peak at each absorption edge reflecting the
energy gaps in the band structure at k = 0. If � > |γ − μ|,
the edge will be at 2� rather than at 2|γ − μ|, and likewise
for � > γ + μ, there will be only one jump at 2�. A Drude
contribution remains provided that � < γ + μ. The behavior
of the absorption with doping reflects possible transitions
between the original shifted monolayer bands subject to the
opening of a gap. Mixing between these two monolayer-type
bands does not occur. This is illustrated in the inset of
Fig. 7(b). The behavior embodied by these figures can be
derived analytically and we find it to be

σxx(
) = σ̃xx(
,|γ − μ|) + σ̃xx(
,γ + μ), (44)

with

σ̃xx(
,ϒ)

σ0
= 4

(ϒ2 − �2)

ϒ
δ(
)�(ϒ − �) +

[
1 +

(
2�




)2]
�[
 − 2 max(ϒ,�)], (45)

where this last expression is the conductivity for massive
Dirac quasiparticles.26,65 This formula is in good agreement
with the numerical work. Note that for the longitudinal
optical conductivity there is a conservation of spectral weight
upon introducing a finite μ and finite �. The corresponding
imaginary conductivity is given by

σ ′′
xx(
) = σ̃ ′′

xx(
,|γ − μ|) + σ̃ ′′
xx(
,γ + μ), (46)

where
σ̃ ′′

xx(
,ϒ)

σ0

= 4

π


ϒ2 − �2

ϒ
�(ϒ − �) + 1

π
ln

∣∣∣∣
 − 2max(ϒ,�)


 + 2max(ϒ,�)

∣∣∣∣
+ 4�2

π


[
1

max(ϒ,�)
+ 1



ln

∣∣∣∣
 − 2max(ϒ,�)


 + 2max(ϒ,�)

∣∣∣∣
]
. (47)

If we only keep SOC in one layer, one of the diagonal
elements of our Hamiltonian given by Eq. (41) becomes

Ĥτz,sz
=

(
0 f (k)

f ∗(k) 0

)
(48)

and the four energy bands become43

εα(k) = ±
√

ε2 + γ 2 + �2

2
+ (−)α

√
4ε2γ 2 + γ 2�2 + �4

4
,

(49)

(a)

(b)

FIG. 8. (Color online) Conductivity for the case of SOC in one
layer only and the doping set to charge neutrality. The value of � in
the one layer is (a) � = 0.5γ and (b) � = 1.2γ . The band structure
for each case is shown as an inset.

where α = 1 or 2. The conductivity for this case can be seen in
Figs. 8 and 9 for the case of μ = 0 and finite μ, respectively.
The band structure is plotted in the insets of Figs. 8(a) and 8(b)
for � = 0.5γ and � = 1.2γ , respectively. The key energy
levels labeled in the insets are given by

Eαε =

√√√√
ε̃2 + 1 + �̃2

2
+ (−)α

√
4ε̃2 + �̃2 + �̃4

4
, (50)

where �̃ = �/γ and ε̃ = ε/γ . Gaps now appear about zero
energy and about ±γ .

The shape of the optical curves reveals that transitions
are now allowed between every band unlike in the previous
case with SOC in both layers. In Fig. 8, a strong absorption
is seen at 2E1γ (see label in inset to the figure), which is
∼� at small values of �. The sharpness and strength of this
absorption feature is due to the existence of a square root
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(a)

(b)

FIG. 9. (Color online) As for Fig. 8 but for finite doping as
indicated in the legends. The SOC is only in one of the two layers
with value (a) � = 0.5γ and (b) � = 1.2γ .

singularity in the electronic density of states at half this energy
or ∼�/2. This feature has replaced the Drude absorption due
to the gap about zero energy, but very little else changes
in Fig. 8(a) from the no-SOC case for small � < γ . For
� > γ shown in Fig. 8(b), further structure appears which
can be traced to various transitions in the band structure as
has been labeled in the inset. While the behavior is relatively
simple for μ = 0, for finite μ it is much more complicated.
Figures 9(a) and 9(b) shows the case for � = 0.5γ and
� = 1.2γ , respectively, where μ is varied through key parts
of the band structure [refer to the insets of Fig. 8]. While the
high-frequency behavior is similar to what we have seen for
no SOC with an interband absorption edge tracking 2(γ + μ),
the low-frequency behavior is very structured. Notable is that
the feature at 2E1γ (or ∼� for small �) is quickly suppressed
by Pauli blocking at finite μ and there appears to be a deep
absorption minimum just on or after 
 = 2γ . Comparing
this figure with Fig. 3 shows that for each value of μ the
underlying structure of the double step for the AA-stacked

case with � = 0 is retained, while the low-frequency behavior
oscillates about the � = 0 case. The governing behavior
still appears to be dominated by the decoupled monolayer
bands, however, the complicated structure arising from various
interband transitions within the different bands is reminiscent
of what is found in Bernal-stacked bilayer graphene for finite
μ and an asymmetry gap,35 which gives rise to similar looking
(but not quite the same) band structure. We do not have an
analytic form for this complex behavior and one must rely on
an examination of the optical transitions available in the band
structure to identify the detailed structure. However, it is clear
that the case of SOC in only one plane is quite different from
that where SOC is in both planes.

VI. CONCLUSION

We have examined the dynamical conductivity for AA-
stacked bilayer graphene. The behavior is not simply a case
of doubling the conductivity of a graphene monolayer. Indeed
the interlayer hopping γ must appear as an important energy
scale. In contrast to the monolayer, which is constant at all
frequencies for charge neutrality, the bilayer exhibits a Drude
conductivity and absorption is Pauli blocked for frequencies
less than 2γ . At finite doping, a double step occurs in the
interband absorption with onset for each step at |γ − μ| and
γ + μ and the behavior is nonmonotonic in μ as a result.
The perpendicular response is completely centered on 2γ

with the absorption peak being very significant at all dopings
and increasing with doping. This is unlike the behavior seen
in AB-stacked bilayer graphene. Applying a bias across the
bilayer does not open an energy gap in the band structure
but merely renormalizes the effective interlayer hopping to a
greater value. The conductivity of the trilayer exhibits three
absorption edges leading to a flat conductivity background,
which steps up through σ0 to 3σ0. The conductivity in this case
is clearly seen to be a sum of that due to a monolayer added
to that of a bilayer with interlayer hopping

√
2γ . Including

spin-orbit coupling in each layer of the AA-stacked bilayer
leads to double-step behavior where the absorption edges show
a peak due to a gap of 2� in the band structure and the
location is set by an interplay between the energy scales of
chemical potential μ, γ , and �. With spin-orbit coupling in
only one plane, an absorption peak is found at about � and very
complicated structure as a function of frequency results at finite
μ although there remains a remnant of the underlying structure
of simple AA-stacked bilayer conductivity. As experimental
isolation of AA-stacked graphene has been reported and
interest in topological insulators with spin-orbit coupling is
high, this study may be timely for future work in these areas.
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