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Strong chiral optical response from planar arrays of subwavelength metallic structures supporting
surface plasmon resonances
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A strong differential response in the scattering of left and right circularly polarized light from surface plasmons
in planar metal nanostructures is investigated theoretically and experimentally. We show that a strong chiral optical
response can be obtained by an interference effect arising from a combination of resonance phase shifts in the
metal structures and phase shifts associated with the rotation of the electric field vector. The effect is modeled
using an analytical theory of localized surface plasmon resonances which predicts a maximum in the chiral
response when the nanostructure exhibits at least two resonant modes, separated in frequency by �/

√
3, where

� is the FWHM of the resonance, and when the angle between the dipole moments of the modes is oriented at
45 degrees. The predictions of the model agree well with numerical simulations based on the finite-difference
time-domain method. The interference effect is demonstrated by optical measurements on planar metamaterials
consisting of subwavelength arrays of gold rods. The effect is not related to optical activity, circular dichroism,
diffraction, or phase shifts on propagation. The failure to satisfy the conditions for interference explains why
some geometrically chiral structures show little or no differential scattering with circularly polarized incident
light. This work provides criteria for designing new plasmonic nanostructures with strong chiral optical response.
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I. INTRODUCTION

Chiral symmetry refers to a certain handedness in geometry
such that a chiral object and its mirror image cannot be rotated
or translated to align perfectly. Light itself can be chiral
and a measure of optical chirality was recently introduced1,2

that changes sign from left circular polarization (LCP) to
right circular polarization (RCP). There has been interest
in using localized surface plasmon resonances in metallic
nanostructures to create nanoscale thin films with a high
sensitivity to the chirality of light.3–14 In many cases, the thin
films consist of subwavelength arrays of structures that are
nondiffracting. In this regard the subwavelength unit acts as a
meta-atom and the thin film is described as a metamaterial.

The geometric requirements of nanostructures to exhibit a
strong response to optical chirality are not well understood.
The structures shown in Figs. 1(a)–1(c) have obvious geomet-
ric chirality but, when arrayed on a surface, exhibit little or
no chiral optical response.5–7,9,10 However, the structures in
Figs. 1(d)–1(f) have less obvious chirality but demonstrate a
range of responses, some of them large.3,4,8,13,14 The question
arises as to what features are required of the meta-atom to scat-
ter light with RCP differently from LCP. It has been discussed
that true optical activity (OA) or circular dichroism (CD)
requires certain symmetry properties that are not satisfied with
thin planar structures.15 Furthermore, OA and CD are usually
associated with magnetic dipole interactions. Here we propose
a mechanism for achieving a strong chiral optical response
from thin metal nanostructures that exploits an asymmetry
in the phase shifts between localized surface plasmon (LSP)
resonances. This mechanism leads to interference between
the light scattered from the LSPs resulting in constructive or
destructive interference in the far field that depends on the
chirality of the incident light. The effect is purely electrical
in nature and is not related to OA or CD and can arise
in subwavelength planar structures. The interference arises

from phase shifts at the subwavelength scale and differs
from diffraction associated with periodic structures and from
interference effects arising from phase shifts on propagation.

In Sec. II we begin with a qualitative discussion of how
the phases of LSP resonances can be manipulated to scatter
light depending on the state of circular polarization. We show
that two phase shift mechanisms combine in an asymmetrical
fashion to create chiral-sensitive scattering. An approximate
analytical model of surface plasmon resonances is used to
derive the conditions necessary to maximize the chiral optical
response. The conditions relate the interference effect to the
phase shifts associated with the LSP resonances and to the
orientations of their dipole moments. In Sec. III we describe
the numerical solutions to the full Maxwell equations applied
to an example system consisting of two gold nanorods. The
simulations show excellent agreement with the analytical
model. Demonstrations of the interference effect based on
optical experiments on metamaterials are also presented. A
discussion of the results and their implication in terms of
previous experiments on metal nanostructures is given in
Sec. IV.

II. THEORY

In this section we examine the interaction of circularly
polarized light with an arbitrary collection of interacting metal
nanostructures supporting LSP resonances. We begin with a
qualitative discussion of how a metal nanostructure can be
configured to scatter light depending on its chirality and then
we use an analytical model of LSP resonances to quantify the
effect.

A. Far-field interference arising from LSP resonances

Surface plasmons are charge oscillations excited by light
on the surface of a metal. At a particular excitation frequency,
the charge oscillation forms a standing wave over the metal
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FIG. 1. Examples of planar plasmonic nanostructures that exhibit
geometric chirality but varying degrees of optical chirality: (a)–(c)
these structures have been shown to have no chiral optical response;
(d)–(f) these structures are not obviously chiral but show quite strong
differential response to left and right circularly polarized light.

surface, which is described as a localized surface plasmon
resonance. The distribution of charge depends strongly on the
geometry of the nanostructure and can be represented by a
large number of multipoles (such as dipoles, quadrupoles, etc.).
In the far field, the light scattering depends predominantly
on the dipole moment of this distribution, particularly for
subwavelength structures resonating at the fundamental mode.
This allows us to focus on the dipole moment of this mode with
regard to scattering in the far field and the interaction between
the incident light and the metal nanostructures.

To understand the interference effect, we consider a metal
structure that supports two LSP modes with dipole moments
that are not parallel. An example of such a structure is shown
in Fig. 2 where the LSP modes are misaligned by an angle
of about π/4. We consider circularly polarized incident light
where the electric field vector rotates in the plane of the metal
structure. At one moment the field aligns with the dipole
moment of one mode and then, at a later time, aligns with the
dipole moment of the other mode. This induces a phase shift
between the LSP resonances, shown as the dashed curves in
Fig. 2. We refer to this as the rotation-induced phase shift. On
changing the chirality of the light (that is from LCP to RCP),
the direction of rotation of the electric field vector reverses,
changing the sign of the phase shift between the modes. In
the far field this would produce no effect since the intensity
depends only on the magnitude of the phase difference.

However, the LSP resonances themselves may have a
phase shift relative to the incident light that is determined by
their resonance frequency. This phase shift is small when the
frequency of the incident light is well below the LSP resonance
frequency; it passes through π/2 as the frequencies coincide
and then approaches π as the incident frequency becomes
large. Importantly, the resonance phases are independent of
the chirality of the light. The resonance phase shift and the
rotation-induced phase shift combine to determine the final
phase of each LSP resonance. The oscillations that include
both phase shift effects are shown by the solid lines in Fig. 2.
The phase difference �φ between these two oscillations
controls the degree of interference and changes with the
chirality of the incident light. By a suitable orientation of
LSP dipole moments and an appropriate adjustment of their
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FIG. 2. (Color online) Diagrams showing the oscillations of two
LSP modes relative to the incident field for (a) LCP and (b) RCP. The
colors represent the two different LSP modes and the white arrows on
the structures indicate the orientations of the LSP dipole moments.
The dashed curves in the graphs show the LSP oscillations with time,
in units of ωt , excluding the resonance phase shifts. The relative
phases of the oscillations change sign with incident light changing
from LCP to RCP. The solid lines include the phase differences due
to the resonances (mode 1: φ1

r = π/4; mode 2: φ2
r = 3π/4). The

combined phase difference �φ determines the amplitude of the sum
of the oscillations that affects the intensity in the far field.

resonance frequencies, the light scattered into the far field from
two LSP modes can interfere constructively or destructively,
depending on the chirality of the light.

B. Analytical model

To quantify the interference effect, we use an analytical
model for an arbitrary collection of interacting plasmonic
nanostructures. This model has been used previously to study
different plasmonic systems.16–20 The response to the incident
light field is modeled in terms of sums over the optically
resonant modes—these are the LSP resonances16 excited by
an incident light field E0 exp(−iωt). The model uses an
eigenmode expansion for the self-consistent surface charge
distribution, based on the electrostatic approximation, and
is applicable to systems much smaller than the wavelength
of light (Rayleigh limit). In this limit we ignore the phase
delays due to wave propagation, which decouples the electric
and magnetic fields. Even with this approximation, the model
is capable of describing complex LSP resonances involving
high-order multipoles21 as well as the resonance shifts arising
from coupling between the LSP modes in ensembles of
metal nanostructures.16,18,20 We emphasise that the excitation
of a complex LSP resonance by an incident plane wave is
predominantly through the dipole moment of the resonance,
and the subsequent scattering of light is also determined by
the dipole moment.

The strength of the LSP excitation is described by an
amplitude ak

r (ω) where the subscript r references the different
nanostructures and the superscript k references the different
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LSP resonances. The excitation amplitude can be written as18

ak
r (ω) = f k

r (ω)pk
r · E0 ≈ − Ak

r pk
r · E0

ω − ωk
r + i�k

r /2
, (1)

where E0 is constant over the surface of the nanostructure.
The vector pk

r is proportional to the dipole moment of the
resonant mode17 and differs from the true dipole moment p
by a scale factor. The resonance factor f k

r (ω) is related to the
polarizability per unit volume of the structure. This factor is
approximated by a term involving the resonance frequency ωk

r

of the mode and a loss term �k
r that arises from a Drude model

of the metal permittivity.18 It is useful to show the phase φk
r of

the resonance explicitly: f k
r = |f k

r | exp(iφk
r ).

Note that Eq. (1) is applicable to metallic nanostructures
of any complexity, such as one that is composed of a number
of separate components. Although the components each have
particular LSP resonances, when in close proximity there is
an interaction between them mediated by the electric fields
from the surface charges. The interaction alters both the
resonant modes of the ensemble and the distributions of
surface charges.16 This is often referred to as hybridization
of the LSP modes.22 However, the hybridized modes also have
well defined resonances23 that, again, can be represented by
excitation amplitudes of the form in Eq. (1). In this regard the
meta-atom may consist of a number of separate subwavelength
metal structures that interact with one another. We shall exploit
this property to demonstrate the dependence of the chiral
optical response on the LSP resonances.

At the subwavelength scale the interaction of a metal
nanostructure with light is dominated by the dipole moment of
the LSP resonance. The time-averaged power per solid angle
radiated in the far-field direction n̂ by a scatterer with dipole
moment p can be written in the form

dP

d�
= ck4

32π2ε0
(n̂ × p) · (n̂ × p∗), (2)

where c is the speed of light in vacuum, k is the wave number
of the radiation, and ε0 is the permittivity of space.24 Here p∗
is the complex conjugate of p; the dipole moment is a complex
quantity because its oscillations with time are shifted in phase
relative to the incident light.

To understand how the plasmonic nanostructure responds
to circularly polarized light, we locate the structure on
the x-y plane [Fig. 3(a)]. With circularly polarized light
incident from above, propagating in the −ẑ direction, the
electric field vector is uniform over the x-y plane and
rotates in time according to E(t) = E0(x̂ cos ωt ± ŷ sin ωt).
The ± sign determines whether the light has LCP (−) or
RCP (+). This can be represented in the usual way with
complex numbers, E0 = E0(x̂ ± iŷ). Using a standard vector
identity, the term in Eq. (2) involving the dipole moments
can be written as (n̂ × p) · (n̂ × p∗) = p · p∗ − (n̂ · p)(n̂ · p∗).
The dipole moment of the nanostructure is given by a sum
over the dipole moments of the individual LSP modes p =∑

k ak
r (ω)pk

r . We write the dipole moment of mode k as
pk

r = pk
z ẑ + pk

xy(cos θk
r x̂ + sin θk

r ŷ) with a projection pk
xy in

the x-y plane oriented with angle θk
r [see Fig. 3(b)]. The

unit vector in the direction of observation can be resolved
into components n̂ = cos ξ ẑ + sin ξ (cos ψx̂ + sin ψŷ) so that
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FIG. 3. (Color online) The geometry used in the analytical model.
(a) The metal structure on the x-y plane showing the circularly
polarized incident light and the direction of the scattered light.
(b) A representation of two LSP modes on a single metal nanos-
tructure showing the directions of the dipole moments. The color
indicates the relative surface charge of each mode. Note that the LSP
dipole moments may not be parallel to the structural features.

n̂ · pk
r = cos ξpk

z + sin ξ cos(θk
r − ψ)pk

xy . When placed into
Eq. (2), the terms involving the vector cross products take
the form (n̂ × pk

r ) · (n̂ × pj
r ) = pk

xyp
j
xy(cos(θk

r − θ
j
r ) + 2N

kj
r )

where N
kj
r accounts for off-axis scattering. This is defined by

2Nkj
r pk

xyp
j
xy

= pk
zp

j
z sin2 ξ − pk

xyp
j
xy sin2 ξ cos

(
θk
r − ψ

)
cos

(
θj
r − ψ

)

− 1
2 sin 2ξ

(
pk

xyp
j
z cos

(
θk
r − ψ

) + pj
xyp

k
z cos

(
θj
r − ψ

))
.

(3)

For scattering normal to the x-y plane, ξ = 0 so that
N

kj
r = 0. With circular polarization, the excitation ampli-

tude (1) involves the term pk
r · E0 = pk

xyE0 exp(±iθk
r ). Since

the dipole moment p is given by a sum over the reso-
nant modes, then Eq. (2) will contain products of sums
involving the excitation amplitudes of the form ak

r a
j∗
r =

pk
xyp

j
xyE

2
0 |f k

r ||f j
r | exp[i(φk

r − φ
j
r ) ± i(θk

r − θ
j
r )]. By includ-

ing pairs of terms in the sum with k and j interchanged, we
can write the scattered power in the form

dP

d�
= ck4E2

0

32π2ε0

∑

k

∑

j�k

(
pk

xyp
j
xy

)2∣∣f k
r

∣∣∣∣f j
r

∣∣{ cos
(
φk

r − φj
r

)

× [
1 + cos 2

(
θk
r − θj

r

) + Nkj
r cos

(
θk
r − θj

r

)]

∓ sin
(
φk

r − φj
r

)[
sin 2

(
θk
r − θj

r

)+ Nkj
r sin

(
θk
r − θj

r

)]}
.

(4)

The last term in this expression depends on the sign of the
circular polarization and therefore is the key factor that controls
whether or not the scattering is sensitive to the chirality of the
incident light. It depends on the phase differences φk

r − φ
j
r

between pairs of resonant LSP modes k and j and it depends
on the angle θk

r − θ
j
r between the projections of the dipole

moments of the modes in the x-y plane (this is the plane
perpendicular to the direction of propagation of the incident
light).

075428-3



F. EFTEKHARI AND T. J. DAVIS PHYSICAL REVIEW B 86, 075428 (2012)

C. Factors affecting chiral optical response

From our analysis above, there are two main factors that
affect the response of the nanostructure to the chirality of
the incident light. We first consider the effect of the phase
differences between the LSP modes.

It is clear from Eq. (4) that a nanostructure with a
single resonant mode will not distinguish between LCP and
RCP, irrespective of its shape, since sin(φk

r − φk
r ) = 0. This

statement is based on our derivation within the electrostatic
approximation and may be invalid if retardation (propagation
phase delay) or magnetic effects are important. In addition the
resonant modes cannot have the same frequency—that is, the
modes cannot be degenerate—otherwise the phase difference
between them is again zero.

The maximum response to optical chirality occurs when
|f k

r ||f j
r | sin(φk

r − φ
j
r ) is a maximum. From the definition of

f k
r in Eq. (1) we can write

∣∣f k
r

∣∣∣∣f j
r

∣∣ sin
(
φk

r − φj
r

)

≈ Ak
rA

j
r

[
�

j
r

(
ω − ωk

r

) − �k
r

(
ω − ω

j
r

)]

2
[(

ω − ω
j
r

)2 + �
j2
r /4

][(
ω − ωk

r

)2 + �k2
r /4

] . (5)

The applied frequency that maximizes Eq. (5) is found by
taking a derivative with respect to ω, setting the resulting
expression to zero, and then solving for ω. This leads to
a complicated equation. A more useful result is obtained
with the further approximation �k

r ≈ �
j
r = �. Then it is

straightforward to show there are three solutions for the applied
frequency that lead to extrema in the differential response. A
local minimum occurs at frequency ω = ω

kj
av and two maxima

occur at ω = ω
kj
av ± [(ωkj

dif)
2 − �2]1/2/2. In this expression

ω
kj
av = (ωk

r + ω
j
r )/2 is the average of the two resonances and

ω
kj

dif = ωk
r − ω

j
r is the difference. The two maxima merge

with the minimum when |ωkj

dif| < � where the term in the
square root becomes negative. When this occurs, the optimum
applied frequency is at ω = ω

kj
av which is the average of the

two resonances. When this optimum frequency is placed into
Eq. (5) and the derivative taken with respect to ω

kj

dif, we find
that the maximum optical chiral response occurs where the
two resonances are separated by |ωkj

dif| = �/
√

3. The loss term
� is the full width at half maximum of each resonance. In
Fig. 4(a) we have evaluated |f k

r ||f j
r | sin(φk

r − φ
j
r ) as a function

of frequency for different resonance separations. This shows
the two maxima and the minimum which merge and form a
single peak, for the conditions as predicted.

The differential response to LCP and RCP also depends
on the relative orientation θk

r − θ
j
r of the dipole moments

of the modes. With the observation direction normal to the
plane of the polarization, N

kj
r = 0, the structure will be

sensitive to the chirality of the light when sin 2(θk
r − θ

j
r ) �= 0,

implying that the dipole moments of the modes cannot be
parallel or perpendicular. Our theory predicts a maximum
differential response occurs when θk

r − θ
j
r = π/4. This is

a trade-off between maximizing the rotation-induced phase
difference between the modes, which would occur at π/2, and
maximizing the interference between the scattered light, which
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FIG. 4. (Color online) (a) The term |f k
r ||f j

r | sin(φk
r − φj

r ) as
a function of normalized frequency (ω − ωk

r )/� for a range of
resonance differences (ωk

r − ωj
r )/�. The optimum frequency differ-

ence (solid line) occurs for (ωk
r − ωj

r )/� = 1/
√

3 ≈ 0.58. (b) The
two nanorods used in the FDTD simulation, representing a single
meta-atom. Both nanorods are 25 nm wide, 20 nm thick, and made
from gold embedded in a medium with permittivity ε = 2. Nanorod
1 is 75 nm long with an orientation fixed at θ1

1 = 90◦ and the length
of nanorod 2 was varied. (c) The scattering intensity difference
calculated using FDTD for different resonances of nanorod 2 with
θ 2

1 = 45◦. The resonances were altered by changing its length: 60, 65,
66.5, 68, and 70 nm. (d) The calculated dependence of the scattering
intensity difference on θ2

1 with nanorod 2, l2 = 66.5 nm.

occurs when the electric field vectors are parallel and therefore
requires the LSP modes to be parallel.

III. EXPERIMENTS

As shown above, we have reduced the problem of creating
a structure with a strong chiral optical response to two simple
criteria involving the orientation of the dipole moments of
the LSP modes and the phase differences between their
oscillations. These relationships apply irrespective of the shape
or complexity of the metal nanostructures. However, for the
analysis to be valid the structures must be smaller than the
wavelength of light and must not involve magnetic effects.
Since the analytical model is approximate, in that it is based on
an electrostatic condition, we compare the predictions against
numerical solutions to the full Maxwell equations using a
finite-difference time-domain (FDTD) simulation. We also
demonstrate the interference effect with optical measurements
on metamaterials consisting of arrays of gold rods fabricated
on a glass substrate.

A. Numerical simulation

In this simulation the meta-atom consists of a pair of
gold nanorods, shown in Fig. 4(b) with each rod exhibiting a
single LSP resonance in the wavelength range of interest. This
configuration has been proposed by Chigrin et al.13,14 If the
interaction between the LSPs is small, the LSP resonance on

075428-4



STRONG CHIRAL OPTICAL RESPONSE FROM PLANAR . . . PHYSICAL REVIEW B 86, 075428 (2012)

each rod will represent a resonant mode of the meta-atom and
the mode frequencies will depend on the length of each rod.
Furthermore the mode dipole moment will be approximately
parallel to the resonating rod; the dipole direction changes with
the rod orientation.

Using the FDTD method, we calculated the difference
in the scattered intensities for LCP and RCP to measure
the differential response, corresponding to the last term in
Eq. (4). A Lorentz model of permittivity was used for the gold
where the model parameters were adjusted to give good fits to
experimental permittivity data in the wavelength range 500 nm
to 3 microns. The results of the calculations of the transmitted
intensity associated with a single meta-atom are shown in
Figs. 4(c)–4(d). In Fig. 4(c) the nanorod orientation was fixed
at 45◦ but the length of the second rod was increased to change
its resonance frequency. The curves show the same double
peak as in our analytical model [Fig. 4(a)] which merges near
ω2

1 − ω1
1 = �. The peak of the spectrum reaches a maximum

close to the predicted value of |ω12
dif|/� = 1/

√
3. Figure 4(d)

shows the effect of changes in orientation, calculated with
|ω12

dif|/� = 0.44. We find the maximum differential response
occurs for θ1

r − θ2
r = 45◦, also in agreement with our ana-

lytical model. This differs from the numerical simulations of
Chigrin, Zhukovski, and Kremers13,14 who found that two rods
resonating at radio frequencies produced a maximum circular
dichroism when θ1

r − θ2
r = 22.5◦. However, as we discuss

below, the effect we are measuring is based on interference
and does not involve optical activity or circular dichroism.

B. Optical measurements on planar metamaterials

To demonstrate the interference effects predicted by
the model, we performed optical experiments on planar
metamaterials consisting of arrays of gold nanorods fabricated
on glass, as in Fig. 5(a). The arrays were subwavelength with
a periodicity of 250 nm. The optical experiments were carried
out on a Nikon Ti-Eclipse inverted microscope using a tungsten
filament white light source. The light was collimated and
passed through a linear polarizer and a broadband quarter-wave
plate to control the polarization state. The light transmitted
through the metamaterial was collected with a ×40 lens and
analyzed in a spectrometer. The light transmitted through the
glass substrate in the absence of the metamaterial was also
analysed to provide flat-field calibration data.

As with the FDTD simulation, the length l2 of the second
rod was varied to alter its resonance frequency and arrays of
nanorod pairs were fabricated with different angles between
them. For comparison, we also fabricated arrays of the
individual rods. The extinction E = 1 − T related to the
transmittance T is shown in Fig. 5(b) for each of the arrays
of individual rods under two orthogonal states of linear
polarization. The longitudinal modes of the two sets of rods
have resonances at 720 and 660 nm. There is also a transverse
resonance at 560 nm due to LSP excitation across the width of
each rod.

Measurements of the differential extinction for arrays of
nanorod pairs (l1 = 100 nm and l2 = 80 nm) with angles
between them varying from 0 to 90 degrees are shown in
Fig. 5(c). These data show the increase in chiral optical
response as the angle approaches 45 degrees, with a maximum
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FIG. 5. (Color online) (a) An SEM image of the ebeam resist
pattern on a gold film prior to etching. After etching the exposed gold
is removed leaving gold nanorods in the same pattern as the resist.
(b) The extinction spectra from arrays of single nanorods obtained
with linearly polarized light parallel and perpendicular to the long
axes of the rods. Nanorod 1 is 100 nm long and nanorod 2 is 80 nm
long. Both sets of rods are 30 nm thick and 40 nm wide (c) The
difference in the extinction for LCP and RCP for sets of nanorods
with rod 2 at different angles. (d) The difference in the extinction for
sets of rods with nanorod 2 lengths of 60, 70, 80, 90, and 100 nm.
This shifts the resonances so that the relative frequency differences
are 0.92, 0.74, 0.33, −0.16, and −0.22 respectively.

occurring at 54 degrees, close to the predictions of our
analytical model and the FDTD simulations [compare with
Fig. 4(d)]. The chiral optical response associated with the
transverse resonances is also seen in this figure.

The experimental results on the arrays with nanorod pairs
oriented at 45 degrees, but with the length of nanorod 2 varied
from l2 = 60 nm to l2 = 100 nm in steps of 10 nm, are shown
in Fig. 5(d). Again, we observe the peak around 700 nm
increasing with l2, reaching a maximum between l2 = 70 nm
and l2 = 80 nm [close to (ω2

1 − ω1
1)/� = 1/

√
3] and then

decreasing again. This behavior is predicted by the analytical
model and also appeared in the data from the FDTD simulation.
The change in sign of the differential extinction for rod 2 of
length close to that of rod 1 is probably due to coupling of the
LSP modes as the rod length increases, leading to hybridization
of the modes.18 This changes the orientations of the dipole mo-
ments of the modes relative to the orientations of the rods and
also alters the mode frequencies. The double peak predicted
by the model and the FDTD simulations is not seen in the
experiment but may be obscured by the transverse resonance.

To compare the theoretical model with the FDTD numerical
simulations (Fig. 4) and the experimental results (Fig. 5),
we have extracted data for the differential extinction as
functions of angle θ1

1 − θ2
1 [Fig. 6(a)] and as functions of the

normalized difference between the resonance frequencies of
the modes (ω2

1 − ω1
1)/� [Fig. 6(b)]. In Fig. 6(a), the peak
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FIG. 6. (Color online) The normalized peak extinction differ-
ences associated with left and right circularly polarized light as
functions of (a) nanorod angle and (b) resonance difference, as
obtained from FDTD numerical simulations (circles), experimental
results (triangles), and theory (solid line). The size of the triangles
relates to the approximate errors in the measurements.

differential extinction values were normalized against their
values at θ1

1 − θ2
1 = 45◦ and then plotted against angle. The

theoretical prediction obtained from Eq. (4) is sin 2(θ1
1 − θ2

1 ).
We observe excellent agreement between theory, simulations,
and experiment, apart from the experimental value at 54
degrees that appears as an outlier compared to the rest of
the data. The origin of this is unknown.

In Fig. 6(b), the peak differential extinction from the
experimental data, and the differential extinction at the average
of the two resonances from the FDTD data, are compared with
the theoretical model. Again, the data have been normalized,
this time to their values closest to (ω2

1 − ω1
1)/� = 1/

√
3.

The theoretical curve is found from Eq. (5) by setting
�1

1 = �2
1 = � and the applied frequency to the average of the

two resonances ω = (ω1
1 + ω2

1)/2. This yields a theoretical
curve given by x/(x2 + 1)2 where x = (ω2

1 − ω1
1)/�. Again

we see excellent agreement between theory, simulations, and
experiment. Note that the theoretical curves have not been
fitted to any parameters, other than a scale factor of 16/3

√
3

to normalize the curve in Fig. 6(b).

IV. DISCUSSION

In the previous sections we have demonstrated a chiral op-
tical response arising from interference effects associated with
surface plasmons. The results of simulations and experiments
are consistent with our analytical model of LSP resonances. On
this basis we propose that the failure of the planar chiral struc-
tures in Figs. 1(a)–1(c) to respond to optical chirality is due to
a combination of two effects: (1) LSP modes with orthogonal
dipole moments and (2) degenerate modes resulting in zero
phase differences. For example, the symmetry of the structures
in Figs. 1(a) and 1(c) is such that there will be two degenerate
modes with orthogonal dipole moments, so there will be no
contribution to the chiral optical response from interference
effects. The structure in Fig. 1(b) is less symmetric but is likely
to have two nondegenerate but orthogonal modes. We have per-
formed simulations similar to those discussed by Davis et al.18

which confirm this, but the result depends to some degree on
the aspect ratio of the structure. In all cases, these effects are
consequences of the geometric symmetry of the nanostruc-
tures which is broken for the structures in Figs. 1(d)–1(f).

The asymmetry is important to prevent the resonant modes
from being geometrically orthogonal and degenerate.

The extinction difference associated with LCP and RCP,
as measured in our optical experiments, has the appearance
of a large circular dichroism. However there are significant
differences. Inverting the sample so that light is incident from
the opposite direction also inverts the chiral optical response.
The analytical model predicts this sign reversal. Referring to
Eq. (4), a change in the direction of the incident light, so
that −ẑ → +ẑ, is equivalent to inverting all the structures
(or inverting the sample) such that θk

r → π − θk
r whereby

sin(θk
r − θ

j
r ) → − sin(θk

r − θ
j
r ). The sign change inverts the

chiral response. This effect has been observed previously, both
in the microwave region25,26 and in the near-infrared region.15

It is important to note that optically active materials do not
have this property.15

When viewed away from the surface normal, the
interference effect also creates a chiral optical response
for orthogonal but nondegenerate LSP modes. This is
evident in Eq. (3). For example, a thin planar structure
with no dipole moment normal to the surface such that
p

j
z = 0 has N

kj
r = − sin2 ξ cos(θk

r − ψ) cos(θj
r − ψ)/2.

When the LSP modes have orthogonal dipole moments then
sin 2(θk

r − θ
j
r ) = 0 but N

kj
r sin(θk

r − θ
j
r ) �= 0 for ξ > 0. This

leads to a dependence of the scattered power in Eq. (4) on the
chirality of the incident light. The intensity of the scattered
field also appears as CD but is again an interference effect.
Similar effects are observed in subwavelength arrays of
holes27 which are attributed to spatial dispersion.

As we have discussed, the interference effect associated
with the chiral optical response differs from optical activity and
circular dichroism. It is also quite different from interference
associated with diffraction from periodic structures, since it
can occur with structures that are significantly smaller than the
wavelength of light. Furthermore it differs from interference
effects associated with propagation phase shifts, as might
result from double-slit interference. There is no dependence
of the chiral optical response in Eq. (4) that depends on
the propagation distance to the point of observation or on
the separation between the nanostructures. The interference
effect we have described is uniquely related to phase shifts
associated with the resonances of the metal structures and
to phase shifts associated with the rotation of the electric
field vector. This does not imply that all chiral optical effects
associated with plasmonic structures can be attributed to this
interference effect only. Under the appropriate symmetry
conditions true optical activity and circular dichroism can
arise that are not accounted for in our model.

V. CONCLUSION

We have studied the chiral optical response from subwave-
length arrays of metal structures supporting localized surface
plasmon resonances. We have demonstrated that a strong
dependence on the chirality of the incident light can arise from
an interference effect associated with phase shifts in the surface
plasmon modes. An analytical model based on the electrostatic
approximation was used to determine the key factors that affect
the response. The predictions of the model were verified using
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both numerical simulations and experiments on metamaterials
created from subwavelength arrays of gold rods on a glass
substrate. We showed that it is necessary to have at least two
nondegenerate resonant modes and that their dipole moments
must not be parallel or perpendicular. The chiral response is
related to phase differences in the radiation emitted from the
surface plasmons and differs from the response of optically
active materials and other interference effects. Our method

provides criteria for designing new plasmonic nanostructures
with strong chiral optical response.
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