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Josephson and proximity effects on the surface of a topological insulator
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We investigate Josephson and proximity effects on the surface of a topological insulator on which
superconductors and a ferromagnet are deposited. The superconducting regions are described by the conventional
BCS Hamiltonian, rather than the superconducting Dirac Hamiltonian. Junction interfaces are assumed to be dirty.
We obtain analytical expressions of the Josephson current and the proximity-induced anomalous Green’s function
on the topological insulator. The dependence of the Josephson effect on the junction length, the temperature, the
chemical potential, and the magnetization is discussed. It is also shown that the proximity-induced pairing on
the surface of a topological insulator includes even- and odd-frequency triplet pairings as well as a conventional
s-wave pairing.
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I. INTRODUCTION

The topological insulator offers a new state of matter topo-
logically different from the conventional band insulator.1–6

Edge channels or surface states of the topological insulator
are topologically protected and described by Dirac fermions
at low energies. The nature of the surface Dirac fermion of the
topological insulator manifests itself in interesting phenomena,
such as the quantized magnetoelectric effect,7,8 giant spin
rotation,9 magnetic properties of the surface state,10 magneti-
zation dynamics,11–13 magnetotransport phenomena,14–19 and
the superconducting proximity effect.20–24

There has been a great and increasing interest in topological
insulators attached to superconductors. In particular, Majorana
fermions emerging in these systems have been investigated
intensively.25,26 When superconductor/ferromagnet junctions
are deposited on topological insulators, surface Dirac fermions
acquire a domain wall structure of the mass. At the domain
wall, Majorana fermions emerge as a zero energy bound
state.27,28 Majorana fermions have received much interest from
the viewpoint of fundamental physics and also fault-tolerant
quantum computing due to their exotic properties.25,26 It has
also been shown that Majorana bound states crucially influence
the Josephson effect. The current-phase relation shows 4π

periodicity, i.e., sin(φ/2) with the phase difference across
the junction φ.28–30 In previous works,23–26,28 it was assumed
that the Dirac fermions become superconducting due to the
proximity effect, and the junctions between superconducting
and normal Dirac fermions were considered. In this paper, we
take a different modeling of the same system. We consider the
coupling between conventional superconductors and a topo-
logical insulator, rather than that between superconducting and
normal (or magnetic) Dirac fermions.31–33 Namely, tunneling
between the Schrödinger electrons and the Dirac fermions is
explicitly taken into account. Here, the superconductors are
topologically trivial, and hence, in this setup, no Majorana
fermions appear.

In this paper, we study Josephson and proximity effects on
the surface of a topological insulator on which superconductors
and a ferromagnet are deposited. The superconducting regions
are described by the conventional BCS Hamiltonian rather
than superconducting Dirac electrons. We consider disordered
junction interfaces in contrast to the previous works.23–26,28

We obtain analytical expressions of the Josephson current
and the proximity-induced anomalous Green’s function on the
topological insulator. The dependence of the Josephson effect
on the junction length, the temperature, the chemical potential,
and the magnetization is discussed. It is also shown that the
proximity-induced pairing on the surface of a topological
insulator includes even- and odd-frequency triplet pairings34,35

as well as a conventional s-wave pairing.
Previous works on the Josephson effect on the surface of

a topological insulator are mostly based on the approach that
takes into account only the contribution from the Andreev
bound states.23,24,28 This holds for short junctions with d � ξ ,
where d and ξ are the junction length and the superconducting
coherence length, respectively.36 In this paper, we adopt the
functional integral method,37,38 which is applicable to any
length of the junction,39,40 thus allowing us to study the
asymptotic behavior of the Josephson current for d → ∞.

II. FORMULATION

We consider superconductor/topological insula-
tor/superconductor junctions where a ferromagnet is also
attached to the topological insulator, as shown in Fig. 1(a).
Junctions without the ferromagnetic region [Fig. 1(b)] can be
considered just by setting the exchange field to zero in the fer-
romagnetic region. The total Hamiltonian of the system reads

H = HL + HR + HM + HT , (1)

where20,40

HL(R) =
∑
kL(R)

φ
†
kL(R)

ξkL(R)σ0 ⊗ τ3φkL(R)

+
∑
kL(R)

φ
†
kL(R)

[�e−iϕL(R)τ3σ0 ⊗ τ1]φkL(R)
, (2)

HM =
∑

k

φ
†
k[h̄vF (kyσ

x − kxσ
y) ⊗ τ3 + m · σ ⊗ τ0

−μσ0 ⊗ τ3]φk, (3)

HT =
∑
k,kL

φ
†
kL

[tei(k−kL)·rLσ0 ⊗ τ3]φk

+
∑
k,kR

φ
†
kR

[tei(k−kR )·rRσ0 ⊗ τ3]φk + H.c., (4)
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FIG. 1. (Color online) Schematic of the model.

with ξkL(R) = h̄2k2
L(R)

2m
− μL(R) and φ

†
kL(R)

= (c†kL(R)↑,c
†
kL(R)↓,

ic−kL(R)↓, − ic−kL(R)↑). Here, � and ϕL(R) are the magnitude of
the gap function and the phase of the left (right) superconduc-
tor, respectively. Also, m is the exchange field, and σ and τ are
Pauli matrices in spin and Nambu spaces, respectively. HL(R)

represents the Hamiltonian on the left (right) superconductor,
while HM is the Dirac Hamiltonian with the exchange field.
Note that the superconductors are described by the Schrödinger
electrons and are topologically trivial. Hence, in this setup, no
Majorana fermions emerge.41 HT is the tunneling Hamiltonian
between the superconductors and the surface of the topological
insulator, which is treated as a perturbation. rL(R) is the position
of the interface between the left (right) superconductor and the
topological insulator. We consider the incoherent tunneling
model where the spin is conserved but the momentum is not
conserved upon tunneling at the interface. This modeling is ap-
plicable to junctions with imperfect dirty insulating barriers.42

In real space representation, the tunneling matrix element reads
tδ(r − rL(R)). The average of the position vectors is assumed
to give 〈|rR − rL|〉 = d.40 The calculated results are averaged
over the positions of rL and rR at the interfaces.

The partition function is then given by

Z =
∫

Dψ̄ Dψ exp

[
−

∑
{k}

ψ̄
(−G−1

0 + T̂
)
ψ

]
, (5)

where ψ̄ = (φ̄kL
,φ̄k,φ̄kR

). G0 is the bulk Green’s function
while T̂ is a tunneling matrix. See the Appendix for their
explicit forms. The free energy of the system can be calculated
as F = −T ln Z, where T is the temperature of the system.
The leading contribution to the Josephson current is given by
the fourth order with respect to the tunneling Hamiltonian (see
the Appendix for the details of the calculation). The Josephson
current is then calculated as

I = −2e

h̄

∂F

∂ϕ
= −4e

h̄
T t4 sin(ϕ + 2myd/h̄vF )

∑
ωn

(νV �)2

ω2
n + �2

× [|h̄vF kF |2|K1(kF d)|2 − (
ω2

n + μ2 − m2
z

)|K0(kF d)|2],
(6)

where ν, V , ωn, and Kν(z) (ν = 0,1) are, respectively,
the density of states at the Fermi level, the area of the
surface of the topological insulator sandwiched between
the superconductors, the fermionic Matsubara frequency,
and the modified Bessel function. Also, kF is defined by
h̄vF kF = √

(ωn − iμ)2 + m2
z and the branch is taken so that

RekF > 0. Here, ϕ = ϕR − ϕL is the phase difference across
the junction. It is seen that the Josephson effect is independent
of mx , and my shifts the phase difference.23,24

The critical current IC can be written as

−eICR

TC

= T

TC

(
d

h̄vF

)2 ∑
ωn

�2

ω2
n + �2

[|h̄vF kF |2|K1(kF d)|2

− (
ω2

n + μ2 − m2
z

)|K0(kF d)|2], (7)

where TC is the superconducting transition temperature and

R−1 = 4e2

h̄

(
t2V ν

d

)2

. (8)

III. RESULTS

A. Josephson effect

In what follows, we will study the critical Josephson current
using Eq. (7). We consider a temperature dependence of the
gap of the BCS type modeled by43

�(T ) = �(0) tanh(1.74
√

TC/T − 1). (9)

1. The effect of the exchange field

Here, let us study the effect of the exchange field. As seen
from Eq. (7), the Josephson effect is independent of mx , and
my shifts the phase difference. Since the in-plane exchange
field corresponds to the shift of the momentum,14 the effect of
the in-plane exchange field can be reduced to the phase factor
[which can be seen by proper transformations in Eq. (A8)],
and hence we find the phase shift proportional to my .

To see the effect of the z component of the exchange field,
mz, we plot the dependence of the critical Josephson current
on mz in Fig. 2 for T/TC = 0.1, d/ξ = 1, and μ/TC = 100,
where ξ = h̄vF /TC is the superconducting coherence length.
With increasing mz, IC increases, and for mz > μ, the current
is strongly suppressed. This is because for mz > μ, the Fermi
level lies inside the mass gap and hence the surface state of the

FIG. 2. Critical Josephson current as a function of mz for
T/TC = 0.1, d/ξ = 1, and μ/TC = 100.
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(a)

(b)

FIG. 3. Critical Josephson current as a function of temperature
of the system with mz = 0 and μ/TC = 100 for (a) d/ξ = 0.1 and
(b) d/ξ = 5.

topological insulator is no longer metallic. Note that the the
surface spectrum is given by EM = ±√

k2 + m2
z ± μ (here we

set mx = my = 0 for simplicity). Also, it should be noted that
since the superconductors are topologically trivial, there is no
edge state or Majorana bound state. This is in stark contrast to
similar junctions where superconducting regions are described
by Dirac fermions: there, the Majorana bound state can carry
the Josephson current.23,24,28

2. Superconductor/topological insulator/superconductor junction

Now, we will investigate the Josephson junction charac-
teristics. Since the effects of the exchange field have been
clarified, here let us consider the junction with m = 0. This
corresponds to the junction illustrated in Fig. 1(b).

Figure 3 depicts the T dependence of the critical Josephson
current with μ/TC = 100 for (a) d/ξ = 0.1 and (b) d/ξ = 5.
For short normal segment d/ξ = 0.1, the behavior is similar
to that of the conventional Josephson junctions through an
insulating barrier, i.e., tanh(�/2T ).44 For large d, the critical
current shows an exponential decay. This can also be obtained
as follows. Using the asymptotic form of the modified Bessel
function for |z| 
 1:

Kν(z) ∼
√

π

2z
e−z

[
1 + (4ν2 − 1)

8z
+ · · ·

]
(10)

for mz = 0, T d/h̄vF 
 1, and μ 
 T , we have

−eICR

TC

∼ 1

2μTC

(πT �)2

(πT )2 + �2
e−2πT d/h̄vF . (11)

Notice that the n = 0 component in the Matsubara frequen-
cies has a dominant contribution to the Josephson current.
This form shows a typical exponential decay of the critical
Josephson current for T d/h̄vF 
 1: the asymptotic behavior
of the Josephson current (the exponential decay) has the same
form as that governed by the Schrödinger electrons.40,45

FIG. 4. (Color online) Critical Josephson current as a function of
the distance between the superconductors d for mz = 0, μ/TC = 100,
and several temperatures.

In Fig. 4, we show the d dependence of the critical
Josephson current for μ/TC = 100 and several temperatures.
For large d or at high temperature, we see an exponential decay
of the critical Josephson current. This is also consistent with
the above analytical expression.

Figure 5 shows the μ dependence of the critical Josephson
current for T/TC = 0.1 and several d. It is found that with
the increase of μ, the critical current decreases monotonically.
This is because the proximity effect is suppressed by increasing
the chemical potential μ, as will be shown in Eq. (17). For large
d, the Josephson current is inversely proportional to the chemi-
cal potential, as seen from Eq. (11). Experimentally, the chem-
ical potential can be tuned by chemical doping47 or gating.48

Recently, Josephson supercurrent through a topological
insulator surface state has been observed.46 The dependence on
T and d shown in Figs. 3 and 4 is qualitatively consistent with
the experimental data. A quantitative difference would come
from the fact that the bulk states of the topological insulator
also contribute to the Josephson current because the chemical
potential of the sample used in Ref. 46 probably crosses the
bulk bands.

B. Proximity effect

In this subsection, we will investigate the proximity effect
in a topological insulator/s-wave superconductor junction.
The proximity effect in this junction has been investigated
in Refs. 31–33. The tunneling between the superconductor

FIG. 5. (Color online) Critical Josephson current as a function of
the chemical potential μ for mz = 0, T/TC = 0.1, and several d .

075410-3



TAKEHITO YOKOYAMA PHYSICAL REVIEW B 86, 075410 (2012)

and a bulk topological insulator has been considered, and the
validity of the Fu-Kane model has been discussed, based on
mostly numerical approaches.31–33

Here, we consider the tunneling between the superconduc-
tor and the surface of the topological insulator. Using the
functional integral method, we derive analytical expressions
of the proximity-induced anomalous Green’s functions on the
topological insulator.

Now, let us consider superconductor/topological insulator
bilayer junctions. To do so, let us remove the degree of freedom
of the right superconductor from the above formulation (see
also the Appendix). Without loss of generality, we can set
ϕL = 0 and rL = 0. The Green functions can be calculated as

G =
∫

Dψ̄ Dψ ψψ̄ exp

[
−

∑
{k}

ψ̄
(−G−1

0 + T̂
)
ψ

]
, (12)

where ψ̄ = (φ̄kL
,φ̄k ). Performing the functional integral, we

have

G = (
G−1

0 − T̂
)−1 = G0

∑
n

(T̂ G0)n, (13)

where

G =
(

G′
L 0

0 G′
M

)
, G0 =

(
GL 0

0 GM

)
,

T̂ =
(

0 T12

T21 0

)
. (14)

The leading contribution is given by the second order with
respect to the tunneling matrix. The anomalous Green’s
function on the surface of the topological insulator f ′

M in the
second order in t can be represented as

f ′
M = −t2gM (k,ωn)ḡM (k,ωn)

∑
kL

fL(kL,ωn) (15)

= πν�t2√
ω2

n + �2

−[
ω2

n + μ2 + (h̄vF k)2
] + m2 − 2μh̄vF k⊥ · σ + 2iωnm · σ + 2ih̄vF (k⊥ × m) · σ[

(iωn + μ)2 − (h̄vF )2
{
(ky + mx)2 + (kx − my)2

} − m2
z

][
(iωn − μ)2 − (h̄vF )2{(ky − mx)2 + (kx + my)2} − m2

z

]
(16)

with k⊥ = (ky, − kx,0). Here, spin-singlet pairing is propor-
tional to the unit matrix in spin space while spin-triplet pairing
is proportional to the Pauli matrix σ . Therefore, it is seen that
both singlet and triplet pairings are induced on the surface of
the topological insulator. The generation of the triplet pairing
reflects the symmetry breaking in spin space.49 In particular,
for m = 0, we have

f ′
M = πν�t2√

ω2
n + �2

× −[
ω2

n + μ2 + (h̄vF k)2
] − 2μh̄vF k⊥ · σ(

ω2
n + μ2

)2 + (h̄vF k)4 + 2(h̄vF k)2
(
ω2

n − μ2
) .

(17)

We see that in the limit of μ → ∞, we have f ′
M → 0. This

explains the suppression of the Josephson current with μ in
Fig. 5. It is also found that even in the absence of the exchange

field, triplet pairing is induced on the surface if μ �= 0, which
is consistent with Refs. 31 and 32 (see also Ref. 50). In
previous works, it was assumed that by attaching an s-wave
superconductor to a topological insulator, the same s-wave
superconductivity is induced on the surface.23–26,28 Here, we
find that not only s-wave singlet superconductivity but, in
general, triplet p-wave superconductivity is also induced on
the surface of the topological insulator.31,32 Also, we assume
here clean surface states on the topological insulator. If
the surface is in the diffusive regime, it is expected that
odd-frequency triplet s-wave superconductivity is induced on
the topological insulator.51

Let us focus on the case with μ = 0 but finite exchange
field. The anomalous Green’s function then becomes

f ′
M = F (kx,ky,ωn)

[−ω2
n − (h̄vF k)2 + m2 + 2iωnm · σ

+ 2ih̄vF (k⊥ × m) · σ
]
, (18)

F (kx,ky,ωn) = πν�t2√
ω2

n + �2

1[
ω2

n + (h̄vF )2{(ky + mx)2 + (kx − my)2} + m2
z

][
ω2

n + (h̄vF )2{(ky − mx)2 + (kx + my)2} + m2
z

] .

(19)

Note that F (kx,ky,ωn) is an even function of
k [=(kx,ky,0)] and ωn. We find that the component
proportional to −ω2

n − (h̄vF k)2 + m2 represents a singlet
s-wave superconductivity, while that proportional to

2iωnm · σ is triplet and odd in ωn, namely odd-frequency
triplet s-wave pairing.34,35 The component proportional
to 2i(k⊥ × m) · σ corresponds to a triplet p-wave
superconductivity.
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IV. SUMMARY

In this paper, we have investigated Josephson and proximity
effects on the surface of a topological insulator on which
superconductors and a ferromagnet are deposited. We have
described the superconducting regions by the conventional
BCS Hamiltonian rather than the superconducting Dirac
Hamiltonian. We have presented analytical expressions of
the Josephson current and the proximity-induced anomalous
Green’s function on the topological insulator. The dependence
of the Josephson effect on the junction length, the temperature,
the chemical potential, and the magnetization has been
discussed. It has also been shown that the proximity-induced
pairing on the surface of a topological insulator includes even-
and odd-frequency triplet pairings as well as a conventional
s-wave pairing.
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APPENDIX: CALCULATION OF THE FREE ENERGY

In this appendix, we present the details of the calculation
of the free energy of the junctions. The unperturbed Green’s
function G0 is represented by a 12 × 12 matrix as

G−1
0 =

⎛
⎜⎝

G−1
L 0 0

0 G−1
M 0

0 0 G−1
R

⎞
⎟⎠ , (A1)

GL(R) = − iωnσ0 ⊗ τ0 + ξkL(R)σ0 ⊗ τ3 + �e−iϕL(R)τ3σ0 ⊗ τ1

ω2
n + ξ 2

kL(R)
+ �2

≡
(

gL(R) fL(R)

f̄L(R) ḡL(R)

)
, (A2)

GM =
(

iωn+μ+h̄vF (ky+mx )σx−h̄vF (kx−my )σy+mzσ
z

(iωn+μ)2−(h̄vF )2{(ky+mx )2+(kx−my )2}−m2
z

0

0 iωn−μ−h̄vF (ky−mx )σx+h̄vF (kx+my )σy+mzσ
z

(iωn−μ)2−(h̄vF )2{(ky−mx )2+(kx+my )2}−m2
z

)
≡

(
gM 0

0 ḡM

)
. (A3)

By performing the functional integral, we have the free energy of the junctions of the form

F = −T ln Z = −T Tr ln
[−G−1

0 + T̂
]
, (A4)

where T̂ is the tunneling matrix given by

T̂ =

⎛
⎜⎝

0 T12 0

T21 0 T23

0 T32 0

⎞
⎟⎠ (A5)

with T12 = tei(k−kL)·rLσ0 ⊗ τ3 = T ∗
21 and T23 = tei(kR−k)·rRσ0 ⊗ τ3 = T ∗

32.
The leading contribution is given by the fourth order with respect to the tunneling element, which is calculated as

F ≈ −T

4
Tr(G0T̂ )4 (A6)

= −T Tr
∑

kL,k,kR,k′,ωn

GL(kL,ωn)T12GM (k,ωn)T23GR(kR,ωn)T32GM (k′,ωn)T21 (A7)

= 2T t4Tr Re

⎡
⎣ ∑

kL,k,kR,k′,ωn

ei(k−k′)·(rR−rL)fL(kL,ωn)ḡM (k,ωn)f̄R(kR,ωn)gM (k′,ωn)

⎤
⎦ (A8)

= −2T t4 cos(ϕ + 2myd/h̄vF )
∑
ωn

(νV �)2

ω2
n + �2

[|h̄vF kF |2|K1(kF d)|2 − (
ω2

n + μ2 − m2
z

)|K0(kF d)|2]. (A9)

Here, we have used the following relations:

J0(x) = 1

2π

∫ 2π

0
eix cos ϕdϕ, K0(ak) =

∫ ∞

0

xJ0(ax)

x2 + k2
dx, K1(x) = − d

dx
K0(x) (A10)

for a > 0 and Rek > 0, where J0(x) is the Bessel function.
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