PHYSICAL REVIEW B 86, 075407 (2012)
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The distance dependence and atomic-scale contrast recently observed in nominal contact potential difference
(CPD) signals simultaneously recorded by Kelvin probe force microscopy (KPFM) using noncontact atomic
force microscopy (NCAFM) on defect-free surfaces of insulating as well as semiconducting samples have
stimulated theoretical attempts to explain such effects. Especially in the case of insulators, it is not quite clear
how the applied bias voltage affects electrostatic forces acting on the atomic scale. We attack this problem in two
steps. First, the electrostatics of the macroscopic tip-cantilever-sample system is treated by a finite-difference
method on an adjustable nonuniform mesh. Then the resulting electric field under the tip apex is inserted
into a series of atomistic wavelet-based density functional theory (DFT) calculations. Results are shown for a
realistic neutral but reactive silicon nanoscale tip interacting with a NaCl(001) sample. Bias-dependent forces
and resulting atomic displacements are computed to within an unprecedented accuracy. Theoretical expressions
for amplitude modulation (AM) and frequency modulation (FM) KPFM signals and for the corresponding local
contact potential differences (LCPD) are obtained by combining the macroscopic and atomistic contributions to
the electrostatic force component generated at the voltage modulation frequency, and evaluated for several tip
oscillation amplitudes A up to 10 nm. For A = 0.1 A, the computed LCPD contrast is proportional to the slope of
the atomistic force versus bias in the AM mode and to its derivative with respect to the tip-sample separation in the
FM mode. Being essentially constant over a few volts, this slope is the basic quantity that determines variations
of the atomic-scale LCPD contrast. Already above A = 1 A, the LCPD contrasts in both modes exhibit almost
the same spatial dependence as the slope. In the AM mode, this contrast is approximately proportional to A~!/2,
but remains much weaker than the contrast in the FM mode, which drops somewhat faster as A is increased.
These trends are a consequence of the macroscopic contributions to the KPFM signal, which are stronger in
the AM-mode and especially important if the sample is an insulator even at subnanometer separations where

atomic-scale contrast appears.
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I. INTRODUCTION

Kelvin probe force microscopy (KPFM), which was intro-
duced twenty years ago, > has become an attractive noncontact
technique to determine the electric surface characteristics
of materials. Among many applications, this technique has
been successfully applied for mapping local work function
or surface potential variations along inhomogeneous surfaces
of various materials.>> For a conducting crystal, the work
function corresponds to the energy difference between the
vacuum level outside the surface at a distance large compared
to the lattice spacing, yet small compared to the lateral
dimensions of a homogeneous patch, and the bulk Fermi
level. In this range, which is typical for conventional KPFM
measurements, the potential acting on an electron outside
the surface approaches the local vacuum level and becomes
constant, except in the vicinity of surface steps or patch
boundaries. Differences between local vacuum levels are
solely due to electrostatic contributions, which give rise to
fringing electric fields around such boundaries.®” If the sample
is covered by a thin overlayer of foreign material, the work
function can change owing to electron transfer and structural
relaxation at the interface.® Similar changes can occur at the
surface of a doped semiconductor, owing to band bending
in a subsurface depletion layer. As long as electrochemical
equilibrium occurs the Fermi level is aligned throughout
the sample and with the Fermi level of the back electrode.
However, if the sample is a wide band gap insulator, e.g.,
an alkali halide crystal, this equilibration may require very
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long times, so that the bulk Fermi level is not well defined.
Charge rearrangements and relaxation occur at the interface
with the back electrode and cause an additive shift of the local
vacuum level outside the surface with respect to the Fermi
level of the back electrode. In a real, thick enough insulator
with charged impurities, such a shift will also be affected by
the distribution of spatially separated charged defects at the
interface, the surface and in the bulk of the sample as well as
by their slow diffusion over time.*’

When two separated conducting bodies, e.g., the probe tip
of an atomic force microscope (AFM) and the sample, with
different work functions ¢, and ¢, are connected via back
electrodes, electrons are transferred until the Fermi levels
become aligned. The charged bodies then develop a contact
potential difference (CPD), of Vepp = (¢ — ¢5)/e, where e
is the elementary charge and the sample is grounded. If the
tip is biased at V}, with respect to the sample, a finite electric
field E o V develops in the gap between them and causes
an attractive electrostatic force proportional to V2 where
V =V, — Vepp is their effective potential difference. If the
sample is an insulator the same phenomenon occurs, but ¢
must be referred to the Fermi level of the back-electrode and
is therefore affected by all the above-mentioned shifts, and
so is Vepp. It is then more appropriate to focus attention on
variations of Vipp along the surface rather than on its absolute
value, which is affected by sample preparation.

In KPFM, a signal determined by this electrostatic force
is compensated by applying a DC bias Vj, = Vcpp. For fast
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measurements, the applied bias consists of an ac modulation
voltage with angular frequency w = 27 f in addition to the dc
voltage:

Vi(t) = Vige + Vi cOS 00t (1)

Assuming that the electric response is linear and in-phase with
Ve, the electrostatic force acting on the tip can be decomposed
into three spectral components:

F(t) = Fyc + F, cos wt 4 F, cos 2wt. 2)

The w component of the KPFM signal, which is proportional to
(Vae — Vepp) Vi, 1s selectively detected by a lock-in amplifier
and compensated by a feedback circuit.

CPD variations along a surface can be conveniently
measured together with its topography,” as determined by
noncontact atomic force microscopy (NCAFM). In most state-
of-the-art NCAFM experiments a microfabricated cantilever
with a tip at its free end (typically etched out of doped single-
crystal silicon) oscillates with a constant amplitude A at the
frequency f; of a flexural resonance (usually the fundamental
mode).'*!!" Distance-dependent tip-sample forces cause a
frequency shift A f; which can be very accurately measured
using FM detection (frequency demodulation)'?> and used
for distance control. In combined NCAFM-KPFM, the F,,
component is simultaneously sensed; either the modulated
deflection signal [amplitude modulation (AM)-KPFM'3] or the
modulation of the resonance frequency shift Af; [frequency
modulation (FM)-KPFM'4] is actually detected.'>!® In either
case the amplitude of the signal at the modulation frequency
f is proportional to (Vg — Vepp)Vae. Thus Vepp can be
recorded by continuously adjusting V. so that the modulation
signal vanishes while scanning the tip parallel to the sample
surface at a distance controlled by the (nonmodulated) shift
Afi.'! Both modulation techniques are much faster and
more sensitive than the direct method in which Vcpp is
determined from the extremum of the parabolic Af;(V})
curve measured by slowly sweeping V;, at each measurement
point.'”~2% Potential artifacts of the modulation techniques®'
are avoided in the direct quasistatic method. Because the
scope of this article is primarily theoretical, we don’t further
consider such experimental difficulties, but focus our attention
on still controversial atomic-scale variations of the so-called
local CPD (V. cpp) on large, flat, overall neutral, defect-free
surface areas of crystalline samples. Thus we only briefly
discuss local changes due to charged surface defects®!%-2223
or adsorbates,”?* which have recently attracted considerable
attention, also in theory.zs‘28

Atomic-scale variations of A f| can be detected by NCAFM
on well prepared surfaces in ultrahigh vacuum if the closest
approach distance of the tip is smaller than the lattice
spacing or the spacing between protruding atoms.!® The
contrast in A f; then arises from short-range interatomic forces
which begin to act in that distance range, while cantilever
jump-to-contact is avoided if the total force remains much
smaller than the maximum restoring force kA, k and A
being, respectively, the flexural lever stiffness and oscillation
amplitude.!! Combined NCAFM-KPFM experiments have
proven that FM-KPFM, 82932 45 well as AM-KPFM?33-3>
could detect lateral atomic-scale variations of Vicpp in the
range where Af) exhibits similar variations on surfaces of
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semiconductors, as well as of ionic crystals. Understanding
the connections between the observed contrast in Vi cpp and
the atomic-scale variations of the electrostatic potential just
outside the surface has been a challenging task, especially
on unreconstructed cleavage faces of rocksalt-type crystals.>*
Above a flat homogeneous surface Vi cpp must, in principle,
approach the corresponding Vcepp at somewhat larger tip-
sample separations. In practice, however, this ideal behavior is
often masked by a slow dependence caused by the finite lateral
resolution of surface inhomogeneities, e.g., islands of materials
with different work functions. This effect is less pronounced
in FM- than in AM-KPFM.!332337 Several researchers de-
veloped models and computational schemes based on classical
electrostatics which treated the tip and the sample (sometimes
also the cantilever) as macroscopic bodies in order to interpret
the resolution of KPFM images of inhomogeneous surfaces
on lateral scales of several nanometers and above.**“® On
the other hand, only few authors considered atomistic
nanoscale tip-sample systems, either neglecting!®2° or includ-
ing the macroscopic contributions via simple approximations.
In the first theoretical study of combined NCAFM-KPFM on
an ionic crystal sample,>***’ a formally correct partitioning
was proposed between capacitive and short-range electrostatic
forces induced by the effective macroscopic bias V. This ana-
lytic treatment also provided qualitative insights into the origin
of atomic-scale LCPD contrast, although underestimating
the capacitive force caused a quantitative disagreement with
experimental results as explained in Sec. III A. More reliable
results were obtained for a NaCl(001) sample interacting with
a model tip consisting of a conducting sphere terminated
by a small charged NaCl cluster by allowing local atomic
deformations.*® These atomistic simulations were based on
the SCIFI code,* which has provided detailed insights into
NCAFM on ionic compounds.’®!

In the present work, which is based on separate classical
electrostatics and ab initio calculations, we propose a more
rigorous and accurate approach for coupling interactions acting
on widely different length scales schematically illustrated
in Fig. 1. The macroscopic system treated by classical

FIG. 1. (Color online) Sketch of the AFM setup showing its
macroscopic and microscopic parts on two very different scales.
The macroscopic tip-sample separation is s = z + h, where & is the
nanotip height and z is the nominal distance (without relaxation)
between the apex atom and the sample surface. The macroscopic
electric field E depicted by the black field lines is applied as an
external field to the atomistic subsystem shown in the zoom window.
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electrostatics consists of the probe (cantilever plus tip) and
of a sample described by its bulk dielectric constant. The bias
voltage V), is applied between the probe and the grounded back
electrode, considered as perfect conductors. The microscopic
system consists of a protruding nanotip less than 1 nm away
from a slab of a few sample layers, both treated atomistically
[by density functional theory (DFT) in our case]. Applying
the electric field generated between the macroscopic tip and
sample rather than V; to the microscopic system leads to
an unambiguous definition of Vi cpp on defect free, overall
neutral surfaces of crystalline materials. Corrections that may
be significant if the nanotip is too small or in the presence
of localized charges or strongly polar species are described at
the end of Secs. III A and III B. The outline of this paper
is as follows: in Sec. II, we discuss previous approaches,
then present our own computationally simple, yet flexible
finite-difference (FD) scheme with controlled accuracy to
treat electrostatic tip-sample interactions on macroscopic
and mesoscopic scales. Owing to electric field penetration
into the dielectric sample, the tip shank and the cantilever
significantly affect the capacitive force and its gradient even
at subnanometer tip-surface separations where atomic-scale
contrast appears. We also explain how the influence of the
effective bias V can be included into atomistic calculations,
as well as shortcomings of previous attempts to do so. In
Sec. III, we critically discuss previous atomistic calculations,
as well as experimental evidence for short-range electrostatic
interactions. Density functional calculations for nanoscale
tip-sample systems are then discussed and illustrated for a
realistic Si tip close to a NaCI(001) slab as an example of
current interest. One important result is that the microscopic
short-range force is proportional to V over a few volts; the
corresponding slope is thus the basic quantity that should be
extracted from KPFM measurements. In Sec. IV, expressions
for Vicpp in AM- and FM-KPFM are obtained and evaluated,
first for ultrasmall, then for finite tip oscillation amplitude A.
Their magnitude and dependence on A are explained in detail
in terms of the above-mentioned macroscopic contributions to
the capacitive force. Experimental limitations and evidence for
the predicted trends, as well as desirable measurements are also
briefly discussed. Finally, in Sec. V, the main features of our
approach and of our results are summarized, and conclusions
are drawn, both specific ones for our example as well as more
general ones.

II. MACROSCOPIC ELECTROSTATIC INTERACTION

A. Previous approaches

Calculating the cantilever-tip-sample electrostatic inter-
action is, in fact, an intricate electrostatic boundary-value
problem. One difficulty is due to the distance-dependent
redistribution of the surface charge density on an electrode
at constant bias voltage. A classical electrostatics treatment
of a general system consisting of an arbitrary arrangement
of conducting electrodes in the presence of a distribution of
point charges in between is worked out in Ref. 52. There, the
influence of the external batteries that maintain the electrodes
at constant potentials as well as the polarization of the conduct-
ing electrodes by the charges are determined self-consistently.
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For the model macroscopic system of a semi-infinite sample
and spherical tip, both treated as perfect conductors, exact
expressions for the interaction energy and forces due to the
bias and to polarization of the electrodes by external point
charges were obtained by the analytic method of images and
implemented in the SCIFI code.*’ For more realistic geometries
including tip and cantilever considered in this section, even
without extrinsic charges, the problem is still nontrivial. The
main difficulty is due to the presence of several length scales
determined by the nontrivial shape of the AFM probe. For
a conducting tip represented as a cone with a spherical end
cap above a conducting plane, a simple assumption (constant
electric field along each field line approximated by a circular
arc normal to the surfaces) led to an analytic expression for the
force on the tip.>> Recent numerical calculations®-* showed
that Hudlet’s expression is surprisingly accurate. Somewhat
different analytical expressions and estimates for the lateral
resolution in AM- and FM-KPFM were obtained for similar
probes, also including a tilted cantilever.*' For cylindrical
geometries, many authors proposed numerical schemes based
on the image charge method which is applicable to simple
geometries involving spherical and planar surfaces.”> Thus
Belaidi ef al.*® placed N point charges on the symmetry axis
and determined their positions and strengths by forcing the
potential on the tip surface to be V by a nonlinear least
squares fit. The previously mentioned authors also described
how contributions of the spherical cap, the tip shank and
the cantilever to the macroscopic force lead to characteristic
distance dependencies on scales determined by the geometry
and dimensions of those parts. A linearized version of the
numerical image charge method where the positions of axial
point and line charges were fixed was applied to study tip-shape
effects for conductive and dielectric samples**” and thin films
on conducting substrates,’® also including the influence of
the cantilever.”” It is not known to what extent the boundary
conditions must be satisfied for a given accuracy in the
numerical image method, unlike in the analytic method where
the positions and strengths of the image charges change with
tip-sample separation and the boundary conditions are fully
satisfied (see Appendix B).

A more systematic approach to multi-length-scale problems
is the boundary element method (BEM)**+3_In this method,
the 3D (2D) differential Poisson’s equation is transformed
into 2D (1D) integral (Green’s functions) equations on the
surfaces of conductive or dielectric components, including
CPD discontinuities and surface charges if desired.*> The
accuracy of BEM is controlled by the mesh resolution and is
applicable to complex probe-sample systems, e.g., including
a realistic cantilever.®Y The size of the resulting linear system
of equations is small compared to volumetric discretization
methods. However, because of the memory requirement of
O(N?) to store the fully populated matrix and complexity
of O(N?) to solve the linear equations, BEM has mostly
been applied to systems with a relatively small number
N of grid points, e.g., problems of high symmetry and
homogeneity for which it is feasible to derive the Green’s
function analytically. Somewhat earlier a few authors adapted
Green’s function methods developed for more complex near-
field optics problems to investigate lateral resolution in KPFM
on inhomogeneous samples.***? One advantage of BEM is
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that the LCPD of such samples can be expressed as a 2D
convolution of the CPD and/or of a fixed surface charge
distribution with a point-spread function which depends only
on the relative position of the scanning probe.**34% The
distance-dependent lateral resolution can be quantified by the
width of that function. Moreover, if one assumes that only
one of those distribution is present, its can be determined
by inversion of the BEM matrix upon discretization on the
adjustable BEM mesh.*

Conceptually more straightforward approaches involving
surface elements have been applied to conductive probe
and sample systems. In the simplest one, the tip surface is
approximated as a regular staircase (or, equivalently, as an
array of capacitors in parallel).>**%! More accurate methods
rely on adjustable meshes. Thus the finite element method
(FEM) was used to calculate the electrostatic force acting
on a conical tip,** while a commercial FEM software was
recently applied to simulate a realistic cantilever and tip of
actual shape and dimensions over a conducting flat sample
with a CPD discontinuity.®> More sophisticated software
packages have been used to solve the Poisson’s equation in
the presence of space charges, e.g., for structured samples
involving doped semiconductors.*®%3 Numerical methods that
involve 3D discretization require a very large number of grid
points even if the mesh is carefully adjusted; the computational
box must therefore be truncated at some finite extent.

B. Implementation of finite-difference method

As an alternative we present a finite-difference method
(FDM) on a 3D nonuniform grid which is capable of
dealing with realistic sizes of the cantilever, tip, and sample.
Inhomogeneous metallic and dielectric samples as well as thin
dielectric films on metal substrates, can be straightforwardly
treated with this method. The most attractive feature of our
FDM compared to FEM or BEM computations is its ease
of implementation. Since the electrostatic potential varies
smoothly and slowly at distances far from the tip apex, we
use a grid spacing which increases exponentially away from
this region. Consequently, the number of grid points depends
logarithmically on the truncation lengths, and an extension
of the computational box costs relatively few additional grid
points. It allows us to simulate the cantilever as well as
thick dielectric samples according to their actual sizes in
experiments.

The capacitance C(s) between the probe and the sample
back-electrode depends only on the tip-sample separation s,
provided that their geometries are fixed.** The macroscopic
electrostatic energy due to the effective voltage difference V =
Vi, — Vepp between the conducting tip and back-electrode is
given by U.(s,V) = %C (s)V2. The electrostatic force exerted
on the tip is proportional to the capacitance-gradient C'(s) =
aC/as <0,

Fy(s,V) = _v =+ (%> = —i-lC/(s)V2 <0. 3)
as as /v 2

Similarly, the force-gradient is proportional to C”(s) =

02C/ds*. We emphasize the difference between the total

electrostatic energy U of the macroscopic system and the

capacitive energy U, which leads to the positive sign on the
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RHS of Eq. (3); the reason is restated for convenience in
Appendix A. The electrostatic energy

Us,V) = %/6(r)|V<I>|2dr

can be determined once the electrostatic potential ®(r;s,V) is
known at any point r in space. In general, when the dielectric
constant €(r) varies in space, ® satisfies the generalized form
of Poisson’s equation:

V- [e(r)VO(r)] = —p(r), “

p being the charge density. Minimization of the energy-like
functional

1[¥(r)] = %/e(r)|V\IJ|2dr—/p\Ifdr. 5)

subject to Dirichlet boundary conditions leads to ®, the solu-
tion of the Poisson’s equation Eq. (4) with the same boundary
conditions.” Using a discretized variational approach, we
therefore minimize the functional

1
HANEDY (56,1 VWi — pnwn) Un. 6)

n

On a nonuniform grid, we delimit the volume v, of the volume
element assigned to node n by neighboring nodes. Then, Wy,
Pn» €n, and the electric field —V W, are evaluated at the center
of the volume element by linear interpolation between the
nodes adjacent to n in orthogonal directions. This ensures
that the field is effectively evaluated to second order in the
product of grid spacings and that discontinuities in VW, and
€n at material interfaces are correctly treated. Although the
formalism is general and can be applied to any 3D system on
a judiciously chosen nonuniform 3D orthogonal grid, in the
following examples, we consider a cylindrically symmetric
setup without free charges in order to allow comparison with
most previous computations. In cylindrical coordinates, each
volume element is a truncated tube of height h,(f) with inner and
outer radii r;, r; 11, respectively, and v, = 7 (r; 41 + r,-)hl(.r)h(Z),
hﬁ” =7y —r; and h,(() = 7x4+1 — 2x being respectively the
radial and vertical spacings of the appropriate nonuniform
grid. The radial and vertical components of VW are approx-
imated on the circle of radius r; +0.54" at z; 4+ 0.5h" as
(Wis1x — Wi)/h" and (W01 — W)/ hY. Since the FD
approximation of the electric field is a linear combination of the
potential values on nearest-neighbor nodes, the functional in
Eq. (6) is quadratic and the minimization condition a7 /9, =
0 yields a system of linear equations A® = b where the vector
b describes imposed boundary values and charge distributions.
Because Ampn = 921 /OWnoW, is a sparse symmetric band
matrix, the system can be solved efficiently by an iterative
procedure, which may, however, suffer from conditioning
problems due to the nonuniformity of the grid. For an accurate
solution, a mesh with high enough resolution is required
in regions where ®(r;s,V) varies strongly. We used the
PARDISO package®%® to solve the resulting huge system of
equations. An implementation of our FDM is distributed under
GNU-GPL license as the CAPSOL code.®’

Once ®(r,s,V =1) is determined for several separa-
tions s, the system capacitance is obtained as C(s) =
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FIG. 2. (Color online) (a) Schematic of the macroscopic model AFM probe-sample system with cylindrical symmetry: a 15-nm-high cone
with 15° half-angle terminated by a spherical cap of radius R = 20 nm is attached to a disk of thickness 0.5 pm. The radius of the disk is 35 um
that matches the area of a typical cantilever. The sample is a 1-mm-thick dielectric slab with the relative permittivity € /€y = 5.9 of NaCl. An
effective bias of V = 1 V is applied to the conducting probe while the back electrode at the bottom and the surrounding enclosure of height and
radius 10°R = 20 mm (not shown) are grounded. (b) 2D (r,z) map of the macroscopic electrostatic potential ® normalized to V for the model
system in (a). The white region corresponding to ® = 1 reflects the probe geometry; successive contours differ by 0.01. The sample-vacuum
interface is indicated by the horizontal line at z = 0 and the tip-sample separation is 1 nm. (c) and (d) Zooms into the apex-surface proximity
region in (b) with 1 x 10° and 3 x 10* magnifications, respectively. The staircase shape of the contours reveals the resolution of the nonuniform

mesh at different locations.

[e®|VOPdr =3, € |[V®|2 va. Then a simple second-
order FD approximation is used to evaluate C’(s) and C”(s)
from C(s). The electrostatic force acting on an arbitrary area
S of a conducting part can also be evaluated as

1
Fg = — / o(s)*AdS, (7)
2¢0 Js

where o(s) = —ed®/an is the surface charge density guar-
anteeing that the tip surface is an equipotential, and 7 is the
unit vector normal to the surface element dS. For a system
with cylindrical symmetry, the net force on a part of the probe
delimited by two cylinders of radii r; < r; is vertical and given
by F = meg frrlz |V®|?rdr, however, we prefer to use Eq. (3)
to calculate the total macrosocopic force on the probe. In the
following sections we validate the performance of our FDM by
comparisons with previous results obtained by other methods
for cylindrically symmetric systems. We mainly consider the
macroscopic model system, which is shown schematically in
Fig. 2(a), and is described in the caption. The conducting
probe consists of a conical tip terminated by a spherical cap
of radius R attached to a cantilever modeled as a disk of
the same area as a typical cantilever,’® and the sample by a
thick dielectric slab. Dirichlet boundary conditions are applied
on a very large cylindrical box. Figures 2(b)-2(d) show a
typical computed 2D (r,z) map of the electrostatic potential

normalized to effective potentital V at three magnifications.
Note that the grid spacing changes by six orders of magnitude
(hundredths of nanometer around the tip apex to tens of um
near the box walls). The indented contours reveal the resolution
of the grid at different locations, e.g., R/400 = 0.05 nm in
the gap between tip and sample in this case. Figure 2(d)
clearly shows that for a separation of 1 nm a large fraction
of the voltage drop occurs within the thick dielectric sample.
Whereas the contour spacing between the tip apex and the
surface is constant to a good approximation, it gradually
increases inside the dielectric, in contrast to what occurs in
a parallel plate capacitor. Actually, the capacitance remains
finite for an infinitely thick sample even in the (macroscopic)
contact limit s — 0 (see Appendix B).

C. Convergence and accuracy
1. Grid spacing

We first test our implementation for the problem of a
conducting sphere of radius R separated by s from a semi-
infinite dielectric surface for which an analytic solution of
controllable accuracy is available (see Appendix B). Such a
convergence analysis also yields the parameters needed to
achieve a desired accuracy. Compared to the analytic solution
of the sphere-dielectric system, the convergence with respect

075407-5



ALI SADEGHI et al.

10" — . — :
LA c X
A (0%
A A c”r a
. 102 ;
° A X
o A xX X
2 x X .
8 .08 | 1
10 Lo , , .
0.01 0.02 0.05 0.1
ho/R

FIG. 3. (Color online) Convergence analysis with respect to the
finest grid spacing & for a conducting sphere of radius R in front of a
thick dielectric of relative permittivity € /€y = 5.9. Points computed
by our FDM for the macroscopic capacitance C, the force «C’
and force gradient «C” are compared to the analytic solution for a
semi-infinite dielectric described in Appendix B. The sphere-surface
separation is s = R/20 and the computational box extends to 10°R
in the radial and vertical directions. The straight line in the log-log
plot indicates the expected quadratic error scaling (see text).

to the finest grid spacing ko shows a nearly quadratic error
scaling (see Fig. 3) as is expected for a second-order FDM. In
order to consistently preserve the shape of the tip approximated
by the orthogonal mesh, the tip-sample separation must be
changed in steps of k. Then the errors of the second-order
FD approximations of C’ and C” are quadratic versus Ay,
even if C is known exactly. Once these errors are added to
those of C in the Poisson solver, the overall errors in C’
and C” are larger than the error in C, although they remain
quadratic versus /g, as seen in Fig. 3. The accuracy could be
improved by using higher order FD approximations for the
electric field by using further neighboring points. However, a
corresponding improvement of the approximation of curved
surfaces on the orthogonal FD mesh is then also required.
Note that, for consistency, the surface of the sphere must be
approximated as a staircase with variable step heights and
widths which also change when the grid-spacing is changed.
At larger separations, the error scaling deviates from quadratic
towards linear behavior. Then the absolute value of the error is
small and a larger grid-spacing can be used. The capacitance,
force and force-gradient of our test system at a rather small
separation of s = R /20 can be calculated within a relative error
of 0.005 compared to the analytic solution if 2o = R/100. For
the cantilever-tip-sample system [see Fig. 2(a)] in the next
section, a uniform grid with K =h@D =hy =R /100 is used
around the tip apex up to a distance of twice the tip apex radius
in both radial and vertical directions. Outside this range the
grid becomes gradually coarser with a growth factor of 1.01.

2. Space truncation

A convergence analysis with respect to the size of the
computational cylinder is shown in Fig. 4 for the model system
described in Fig. 2. The capacitance approaches the same
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FIG. 4. (Color online) Convergence analysis with respect to the
radial and vertical extents of the FDM computational box for the
macroscopic system described in the caption of Fig. 2, the tip-sample
separation and finest mesh size being s = R/20 and hy = R/100,
respectively. The normalized capacitance of the system approaches
the same asymptotic value upon increasing the truncation length
in one direction while the other one is sufficiently large and fixed.
Relative deviations with respect to the asymptotic value are shown
in the inset. The arrow indicates the truncation length adopted in
subsequent FDM computations.

asymptotic value when the truncation length in a particular
direction is increased while the other one is kept fixed and
sufficiently large. If the computational box extends to 10°R
in the radial and vertical directions, the relative deviation
of the capacitance from its asymptotic value is only 1077
(as indicated by the arrow in Fig. 4). We use these cutoff
parameters in all subsequent FDM computations reported here.

3. Comparison

In Fig. 5, we compare results obtained by our FDM with
previous accurate BEM computations>* for a system like in
Fig. 2(a) but without the cantilever for a conducting and a
dielectric (¢ /eg = 40) sample. The force and the force-gradient
evaluated by the two methods are in very good agreement for
both kinds of samples. For the conducting sample, Hudlet’s
analytic approximation>® deviates by only a few percent from
the numerical results. In the following section, we show that
the contribution of the cantilever can be quite appreciable for
a dielectric sample.

D. Results

The macroscopic electrostatic force and force-gradient
versus the normalized tip-surface separation s/R for the
system in Fig. 2 are shown in Fig. 6 for three different
geometries: without, with a small, and with a large cantilever
modeled as disks of thickness 0.5 um. The small disk radius is
equal to the width of a typical rectangular AFM cantilever
(20 um) while the total area of the large disk (of radius
35 um) matches the area of the rectangular cantilever. The
presence of the cantilever increases the capacitance and the
electrostatic force. Because the cantilever is more than 10 um
away from the surface, its contribution to the force is often
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FIG. 5. (Color online) Normalized macroscopic electrostatic
force (inset) and force-gradient computed by our FDM vs the
normalized tip separation s/R from a dielectric (¢/€y = 40.0) and
a conducting (¢/€yp = 0o) sample compared to BEM computations
(see Ref. 54) as well as to Hudlet’s approximation (see Ref. 53) in the
second case (see text). The cantilever is absent, as assumed in those
two treatments, but the remaining parameters are as described in the
caption of Fig. 2(a).

considered constant for tip-sample separations smaller than
R, and therefore does not contribute to the force gradient. Our
calculations [see Fig. 6(a)] confirm that this is in fact true
for a conductive sample. In this case, the main contribution
to the force-gradient comes from the spherical cap, as can
be seen from the solid line that corresponds to the analytic
solution for a conducting spherical tip (see Appendix B).
However, the conical shank of the tip and the cantilever affect
the force at large separations, as shown in the inset and noticed
earlier.’$39333% On the other hand, if s /R is small, as shown
in Fig. 6(b) and also emphasized in previous work,’>" over
a thick dielectric sample both the force and the force-gradient
are significantly decreased, owing to field penetration into the
sample.

A quantity of particular relevance in our multiscale ap-
proach is the macroscopic electric field in the vacuum gap
between the spherical tip end and the sample surface which
polarizes the microscopic system. The variation of the electric
field normalized to V/R at two points on the symmetry
axis in the vacuum gap just below the tip and just above
the surface versus their normalized separation is shown in
Fig. 7. The same quantities, as shown magnified in the inset
for nanotip separations relevant for atomic-scale contrast, i.e.,
z =15 —h < 0.6 nm, differ little and drop only weakly with
increasing z. In the same distance range, the z component
of the electric field is two orders of magnitude stronger than
the radial component parallel to the surface. These features are
also clearly illustrated by the essentially equispaced horizontal
equipotential contour lines in the vacuum region shown in
Fig. 2(d). This important observation greatly simplifies the
desired coupling to atomistic calculations: we can consider the
electric field E, at the midpoint of the macroscopic tip-surface
distance s =z + h as a uniform external field acting on
the isolated microscopic tip-sample system. The connection
between those two scales is schematically illustrated in Fig. 1.
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FIG. 6. (Color online) Effect of the cantilever (size) on the
macroscopic electrostatic force (inset) and force-gradient at different
normalized tip separations from a conducting (a) and dielectric
(b) sample. The cantilever is modeled as either a small or a large
disk with radii of 20 and 35 pm, respectively. Other parameters are
as in caption of Fig. 2(a). The solid lines show corresponding results
for a tip approximated by a conducting sphere with radius R = 20
nm obtained by summing the analytic series for semi-infinite samples
of both kinds (see Appendix B).

Figure 6 shows that for a conducting sample the force
gradient can be accurately described by a spherical tip if
s < R, although the force itself is increasingly underestimated
at larger separations.'”>® In contrast, for a thick dielectric
sample, the same description only provides the order of
magnitude of F), at small s/R, but exhibits a faster decrease
with increasing separation and overestimates F,,. Figure 7
reveals that a spherical model tip overestimates the electric
field E, under the tip at all separations, which then approaches
V/R on the sphere (and zero on the surface) when s > R.
This occurs because the induced surface charges can spread
to the conical shank and the cantilever in the more realistic
model. The contributions of those parts to the force F); become
nevertheless stronger than that of the sphere alone already at
small s/R. In general, if s/R — 0, the electric field under
the tip, hence the force and the force gradient are enhanced
owing to an increasingly localized surface polarization of both
tip and sample, but remain finite if the sample is a dielectric,
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FIG. 7. (Color online) Normalized macroscopic electric field in
the vacuum on the tip surface and on the dielectric sample surface
(e/€p = 5.9) vs their normalized separation for the probe described
in the caption of Fig. 2(a) (curves with symbols) and for a tip
approximated by a conducting sphere of the same radius (continuous
curves). Inset: zoom into the range z = s — i where atomic-scale
contrast appears for R =20 nm, 2 = 0.72 nm; the electric field
between the tip and the surface changes by only a few percent and is
hence nearly uniform.

as explicitly demonstrated by the solution for a spherical tip
(see Appendix B). Comparison with that solution (the solid
curves in Fig. 6) shows that even at small separations both
the conical shank and the cantilever contribute to the force,
whereas mainly the conical shank affects the force gradient.
Hence ignoring those contributions causes an overestimation
of the force-gradient if the sample is an insulator.

III. SHORT-RANGE ELECTROSTATIC FORCES

A. Evidence and previous models

When an AFM tip approaches a surface, short-range
forces contribute to the tip-sample interaction and give rise
to atomic-scale contrast in NCAFM. Hereafter, F,, denotes
the short-range force component perpendicular to the surface
which can be extracted from measurements of A f; versus the
closest tip approach distance d in an oscillation cycle.%%%
The contrast observed in Vi cpp in the same distance range
cannot only be due to the long-range electrostatic force, but
must be due to a short-range bias-dependent force. Arai and
Tomitori were the first to infer the existence of such a force
from Afi(Vp) curves recorded with a cleaned and sharpened
silicon tip closer than 0.5 nm to a7 x 7 reconstructed Si(111)
surface.”® In particular, above a Si adatom, they found a
narrow peak growing with decreasing d superposed on the
usual parabolic dependence around the plotted minimum of
—Af1(Vp) in their Fig. 1, i.e., for V}, >~ Vpp. Later the same
authors pointed out that an even sharper peak appeared at the
same bias in the simultaneously recorded tunneling current.”!
This seemingly supported their original suggestion that the
additional attractive force causing the peak in —A f1(V}) arose
from the increased overlap due to the bias-induced energetic
alignment of dangling bonds states localized at the tip apex
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and on Si surface adatoms. The formation of a covalent bond
between those states has been shown to be responsible for
the observed NCAFM contrast on the 7 x 7 reconstructed
Si(111) surface.” In extensive recent measurements on the
same system, however, Sadewasser et al. reported parabolic
Af1(Vy) curves, but detected a rapid drop by about —1 V
followed by a gradual increase in Vi cpp above a Si adatom
with decreasing d in the range where the extracted short-range
force showed a similar behavior.!® The apparent discrepancy
with respect to Arai and Tomitori’s observations is not so
surprising because tunneling is seldom observed with clean
silicon tips, although it is routinely measured in STM as
well as in NCAFM on conducting and even semiconduct-
ing samples when using metal-coated silicon tips.”>’* An
appreciable position- and distance-dependent dc tunneling
current complicates the interpretation of LCPD measurements.
This problem does not arise with insulating samples, but
conversion to a dc transport current below the surface of a
weakly doped semiconductor can cause a significant voltage
drop within the sample owing to the finite bias required to
compensate the LCPD. Especially in quasistatic measurements
of Af(V,) away from the compensation voltage, a strong dc
electrostatic “phantom” force is generated which gives rise to
atomic-scale contrast in NCAFM at separations where none
is expected.”’® Nevertheless, Arai and Tomitori’s basic idea
that bias-induced alignment of spatially localized surface states
can lead to an enhanced site-dependent attractive force remains
plausible even if a dc tunneling current cannot be sustained.
Thus Krok and coworkers*? suggested that the lower LCPD
which they found across protruding In rows on the ¢(2 x 8)
reconstructed InSb(001) surface was due to a bias-induced
local electron transfer from a polar dangling bond on the
electronegative Sb atom presumably picked by the Si tip to
the nearest electropositive surface In atoms. The same authors
also showed that the LCPD contrast between different lateral
positions decays exponentially with increasing d < 1 nm.
The few simulations of KPFM based on DFT computations
have been concerned with silicon model tips interacting
with reconstructed Si surfaces, both clean and containing
substitutional impurities. None of those purely microscopic
calculations took into account the macroscopic capacitive
contribution to the KPFM signal, however. Thus Sadewasser
et al.'® obtained qualitative agreement between variations of
the perpendicular dipole moment and of the local chemical
potential of their microscopic subsystem, both computed at
zero bias, and the distance dependence of Vicpp measured
by FM-KPFM on the benchmark-like Si(111) 7 x 7 surface.
Masago and coworkers®® defined the Vicpp within a tight-
binding-based DFT formalism as the difference between the
Fermi levels (electrochemical potentials) of their tip and
sample microscopic subsystems, which were forced to carry
opposite charges determined so as to minimize the force on
their nanotip. Although overlap between tip and sample wave
functions was neglected, qualitatively correct Vi cpp images of
charged surface and subsurface defects were obtained based
on Coulomb interactions between Mulliken charges treated
as point objects. Very recently, the same authors included
wave-function overlap to first order,® and generated Vi cpp
images showing partially occupied dangling bonds on the
5 x 5 analog of the Si(111) 7 x 7 surface at a smaller distance
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(0.4 nm) where a covalent bond begins to form between a
dangling bond at the tip apex and a Si adatom.

Whereas bias-induced electron transfer is plausible for
narrow-band-gap semiconductors like those previously men-
tioned, it is unlikely for overall neutral cleaved (001) surfaces
of wide-band gap insulators like alkali halides that neither
have gap states nor are reconstructed, but are only weakly
rumpled.”” In Ref. 34, the atomic-scale LCPD contrast
observed on KBr(001) was attributed to opposite surface
cation and anion displacements in response to local electric
fields induced by the macroscopic (in accordance with our
definition) field. However, the authors approximated E, by
the electric field V/R at the surface of an isolated conducting
spherical tip, the local unit cell polarizability by the bulk crystal
(Clausius-Mosotti) expression, and neglected the macroscopic
surface polarization. Although essentially constant on the
scale of a nanometer-size nanotip, the latter, together with
E. is actually nonuniform on a lateral scale of order ~/Rs
for separations s << R. They evaluated the macroscopic and
microscopic surface charges densities o, and o, induced on
a conducting model tip by their E, and by the displaced
surface ions, respectively. Using Eq. (7), they computed the
modulation of the electrostatic force. After further justified
approximations, they obtained opposite LCPDs above cations
and anions, which increased exponentially with d. In a
subsequent article,*’ the same authors added a macroscopic
force roughly representing the interaction of the cantilever
with the back electrode, but still obtained a surprisingly
large maximum in the absolute LCPD for d ~ 0.6 nm. In a
subsequent publication,*® more reliable results were obtained
with the SCIFI code* for a cubic NaCl cluster partly embedded
into a conducting sphere interacting with a NaCl(001) sample
similar to ours via empirical shell-model potentials. Cluster
ions inside the sphere were fixed, while the protruding cluster
ions formed a small nanotip with a net charge +e at the
apex. The protruding ions were allowed to relax and to induce
image charges in the electrodes. The results obtained can be
considered representative of what is expected for a small,
charged nanotip interacting with an ionic crystal. A common
justification for such a model is that real tips often pick
up sample material and that simulations based on the same
code produced reasonable results when compared to NCAFM
measurements on ionic crystals, alkali halides in particular.’ %!
However, in those and in previous SCIFI computations’®7
using a larger protruding ionic nanotip against an overall
neutral defect-free sample slab, the inclusion of electrode
polarization was deemed unnecessary. Indeed, contributions
from images charges of close anion-cation pairs tend to cancel
outif R > z. More importantly, according to the Supplemental
Material of Ref. 25, the distance dependence of Vicpp
calculated analytically for a single charge or dipole fixed below
a conducting sphere facing a biased planar counter-electrode
coincides with the results of full SCIFI computations including
image charges. This is observed down to a separation s of
0.7 nm for a small charged nanotip similar to that assumed
in Ref. 48, whereas the much smaller V; cpp obtained for the
larger nanotip assumed in the above-mentioned SCIFI compu-
tations is compatible with a smaller permanent dipole moment.
The coincidence implies that at larger separations the electrode
polarizations induced by the charge g and by the effective bias

PHYSICAL REVIEW B 86, 075407 (2012)

V =V}, — Vipp are decoupled. Coupling presumably arises at
separations approaching interatomic distances where ions (or
atoms) inside the microsystem become appreciably polarized
(electronically and/or owing to induced displacements) by
local fields,?’ thus leading to the site-dependent LCPD contrast
superposed on the z-dependent long-ranged LCPD obtained in
Ref. 48. In the absence of localized, pointlike net charges (or
permanent dipoles) in the microsystem, the resulting force
due to polarization of the microsystem and of the electrodes
is proportional to V2. It is, however, overwhelmed by the
macroscopic capacitive contribution discussed in Sec. ITA if
the nanotip dimensions are small compared to R.

Earlier studies mentioned that the short-range tip-sample
interaction is bias dependent but provided no recipe to
investigate it theoretically. Moreover, they did not clarify
how long-range and short-range bias-dependent forces are
connected and the role of each in the observed KPFM signals.
In the following sections, we answer all of these questions
and obtain and analyze in detail theoretical expressions for the
site-dependent LCPD. Our approach is not limited to particular
materials, but results are presented for the system described
in the following section, which is representative of a neutral,
but polarizable reactive clean Si tip interacting with an ionic
crystal.

B. Density functional computations

As illustrated in Fig. 1 our microscopic system consists of
a nanotip of height # protruding from the spherical end of
the macroscopic tip and of a wider two-layer slab of sample
atoms. Computations are performed within the local-density
approximation to density functional theory (DFT) using
norm-conserving HGH pseudopotentials®® and the BigDFT
package.8! Relying on a wavelet basis set with locally ad-
justable resolution, this package calculates the self-consistent
electron density, the total energy and its electrostatic com-
ponent with selectable boundary conditions,?? i.e., periodic
in two directions and free in the third in our case. This
allows us apply an external field perpendicular to the surface
without artifacts which can arise from periodic images in
the z direction when using plane-wave of mixed basis sets.
As already explained, the voltage biased macroscopic system
determines the uniform electric field £, « V =V}, — Vepp
applied to the microscopic part (see Fig. 1). This provides the
desired well-defined relationship between the bias-voltage and
short-range forces, which was lacking in previous approaches
to LCPD contrast based on DFT computations. 32628

Figure 8 illustrates the microscopic system used in the
DFT computations reported here. The nanotip at the very end
of a silicon tip is modeled as a cluster with a fixed (001)
base of eight Si atoms with all dangling bonds passivated
by H atoms in order to mimic the connection to the rest of
the tip. The remaining Si atoms were prerelaxed using the
minima hopping method®® previously employed to generate
low-energy structures of silicon clusters and of similar model
tips.84 As in that work, the free Si atoms adopted a disordered
configuration with several exposed under-coordinated atoms.
In particular, the protruding apex atom is threefold coordinated
and hence has a dangling bond with a small dipole moment
pointing towards the surface. As we verified, a distance five
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FIG. 8. (Color online) The microscopic Si-tip NaCl-slab system
used in our ab initio DFT calculations. The apex of a silicon AFM
tip is modeled as a prerelaxed SiygH;s cluster. All eight atoms in
the top (001) layer are passivated by hydrogen atoms and kept
fixed. The position of the foremost Si atom is (x,y,z), z being its
nominal distance from the surface. The model sample consists of two
NaCl(001) layers each containing 10 x 10 ions with the bottom layer
kept frozen. Periodic boundary conditions are applied along the x and
y directions.

times the lattice constant of NaCl is large enough to get rid
of the electrostatic interaction between this nanotip and its
images in the main in-plane symmetry directions along which
periodic boundary conditions applied. Therefore our sample
slab consists of two 10 x 10 NaCl(001) layers containing
200 ions in total. For such a large system, it is sufficient
to perform calculations only at one single k-point, namely,
center of the surface Brillouin zone. Pre-relaxation of the
sample only caused a small rumpling which preserved the
basic periodicity of the truncated (001) surface. Although
the silicon model tip and the sample were initially individually
prerelaxed, all tip and sample atoms were subsequently frozen
in some of our KPFM simulations. In this way, we could assess
pure electronic polarization effects without effects due to the
interaction-induced displacements of ion cores.

The silicon model tip was positioned so that its foremost
atom was 0.65 nm above a sodium and chlorine surface ion,
then moved towards the sample in steps of 0.02 nm. At each
step the Kohn-Sham equations are solved iteratively. The
topmost layer of the Si tip together with the passivating H
atoms as well as the bottom layer of the slab are kept fixed,
while other ions are free to relax until the Hellman-Feynman
force exerted on each ion is less than 1 pN. This extremely tight
tolerance is required only when the relative variation of the
force when the bias changes is very small. The force F), exerted
on the model tip is obtained by summing the z components
of the forces over atoms of the tip. Since the free atoms are
well relaxed, their contribution to that force is not significant
and was used as a measure of the error in forces. Figure 9
shows the microscopic force versus the tip-apex separation
from Cl and Na surface sites without applied electric field. The
same procedure is repeated at each tip-sample separation for
a few field strengths E, determined as explained in Sec. IID
for effective biases —2 < V =V, — Vepp < 2 V applied to
the macroscopic tip. For such biases and distances where F),
becomes site dependent, a nearly uniform macroscopic electric
field of ~0.15 V/nm occurs in the vacuum gap, as discussed
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FIG. 9. (Color online) Microscopic force on the Si nanotip above
Na and Cl surface ions from ab initio calculations without an applied
electric field. Insets: variation of the force as a function of the
macroscopic bias voltage at a tip-surface separation of 0.30 nm.

in Sec. II and illustrated in the inset of Fig. 7. No instabilities
caused by electronic and/or atomic rearrangements appeared
in that range of parameters. The variation of the force at the
particular separation z = 0.3 nm is shown in the insets in Fig. 9.
In contrast to the macroscopic capacitive force, the short-
range force depends linearly on the applied bias voltage. As
explained elsewhere,® this linear term is remarkably close to
the interaction between distance-dependent but V -independent
charge densities on the tip and sample with the macroscopic
electric field. Earlier studies obtained such a term by treating
native ions or charged atoms adsorbed on the sample surface
and/or the tip apex as point charges.?>?*”3* Deviations from
the linear behavior could occur for larger biases, especially
near instabilities, as observed in computations for a charged
nanotip.*

The basic quantity which determines the deviation of the
LCPD from the background CPD is the voltage-independent
slope of the short-range force with respect to the applied
voltage

a(x.3.2) =~ F (e, ZEV)) ®)
oV

As discussed in Introduction, the background CPD is not a
well defined quantity for an insulator. For a real doped silicon
tip-NaCl(001) sample, it would be different from the CPD
of our microscopic system if charge equilibrium is achieved,
as enforced by the self-consistency of the computations.
Besides, no CPD is explicitly included in the description of the
macroscopic system. Thus the effective bias V =V}, — Vepp
would differ from that in a real system. Nevertheless, as long

as this bias is in the Volt range, the slope a is unaffected.
Figure 10(a) shows that the slope a exhibits a characteristic
site-dependent distance dependence at separations less than
0.5 nm, and is larger above the more polarizable Cl ion.
The underlying physics will be explained elsewhere.®> The
microscopic force-gradient F), is also a linear function of bias
voltage, and the distance dependence of its slope a’(x,y,z) =
dF, /dV, approximated to second order by linear interpolation
between adjacent points on both sides of a given z value, is
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FIG. 10. (Color online) Distance-dependence of the slopes a = 9F,/dV and a’ = 9F, /dV above Na and Cl surface ions with [(a) and
(c)] and without [(b) and (d)] relaxation of the free atoms and ions during tip approach. The difference (contrast) between Na and Cl sites is

shown by red (filled) symbols.

shown in Fig. 10(c). Figures 10(b) and 10(d) show that a and
a’ are weaker if relaxation is allowed but that contrast appears
below nearly the same distance and exhibits almost the same
distance dependence. Thus, for the assumed neutral Si nanotip,
the contrast is mainly due to electronic polarization rather than
to bias-induced ion displacements.

In the approximation that the macro- and microscopic
systems are coupled only through the macroscopic electric
field, the z component of the total force exerted on the tip is

F=Fy@s;:V)+ Fu(x,y,2: V) + Faw(s), ©))
wheres = z + hand V = V;, — Vcpp. The long-range van der
Waals force Fyqw is bias and site independent. Being only a
function of the mesoscopic geometry it is therefore henceforth
ignored, although it affects the resonance frequency shift A f
in a NCAFM measurement. The macroscopic force Fj is
capacitive (o<V2) while the microscopic force F, has been
shown to be linear in V.

Three additional corrections couple the bias-dependent
macro- and microscopic forces. The first correction §C'V?/2
is due to an additional capacitive contribution caused by
the presence of a polarizable nanoscale object in the gap
between the macroscopic bodies. Owing to the small lateral
dimensions of the nanotip compared to the radius of the
macroscopic tip end, this correction is small,’’#5 although
it can become noticeable and site dependent if the nanotip is
strongly polarizable and nearly contacts the sample.?’*3

The second correction arises if the microsystem contains
a localized net charge®” or permanent dipole moment.%
This leads to a site-independent LCPD with an approximate

power-law approach towards a background CPD of several
volts. The interaction of the nanotip charge distribution with
the macroscopic field E could, in principle, be included in
our description at separations s where E can no longer be
considered uniform. In that range, however, the charge or
dipole might be approximated as point objects, as justified in
the case of a conducting sample in the Supplemetal Material
of Ref. 25. Because the charge or dipole are intrinsic, the
interaction is proportional to V, so that this correction would
give rise to long-range contributions to the slopes a and a’.>>?’
In the case of our neutral Si nanotip and sample slab, this
correction is small.

The third correction arises because in reality the nanotip
is in electrical contact with the macroscopic tip, so that the
electron density at the interface differs from that near the top
of our isolated silicon cluster. However, this model tip is large
enough, so that the charge distribution near the apex, which
dominates F), is not much affected. The microscopic force is
computed from the self-consistently determined microscopic
electron density and ion core positions. The resulting electric
field between the nanotip apex and the sample surface is
nonuniform and differs from the original applied macroscopic
field E..

IV. AM AND FM KPFM SIGNALS AND LOCAL CONTACT
POTENTIAL DIFFERENCES

A. Ultrasmall amplitude limit

The force gradient is more sensitive than the force to
short-range interactions which are responsible for atomic-scale

075407-11



ALI SADEGHI et al.

contrast in NCAFM and KPFM. Direct detection of the
gradient is in principle possible if the variation of F, over
the peak-to-peak oscillation amplitude is linear, e.g., if 2A is
comparable to the spacing 0.02 nm of the computed points in
Fig. 9. We first consider this simple limit which is commonly
assumed in the KPFM literature, but is seldom achieved in
NCAFM experiments. As explained in Introduction, Vi cpp is
operationally defined by nulling the KPFM signal generated
by the force component F, at the modulation frequency.
Assuming that the response V. is linear and instantaneous,
F, =(dF/dVy)Vy, and the deflection signal detected in
AM-KPFM would be proportional to

F, =[C'(z+ h)(Vac — Vepp) + a(x,y,2)1Vae  (10)
in the ultrasmall amplitude limit, and would be nulled if
a(x,y,z)
Vie = Vopp — ————. 11
d D = E (11)

Because the background Vcpp is not well defined, and only
a(x,y,z) is site dependent, we consider only the deviation
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of Vicpp from Vepp, which is responsible for atomic-scale
contrast, i.e.,

AM a(x,y,z)

AVicpp = TCG+h) (12)

As illustrated by the points for A = 0.01 nm in Fig. 11(d), for
a dielectric sample, the z-dependence of C’ is weak over the
range (s = z + h < 1 nm) where a(x,y,z) is appreciable, cf.
Fig. 10(a) (note that the ultrasmall amplitude A = 0.01 nm is
equivalent to A — 0 in our calculations, as discussed in the
following section). Therefore A Vi cpp differs froma(x,y,z) by
an essentially z-independent factor. Depending on the nanotip
height A, this may no longer hold in the case of a conductive
sample or thin dielectric film on a conductive substrate.

In FM-KPFM, the contribution of the modulated electro-
static force component F,, to the frequency shift of the first
resonant mode Af; is detected and nulled. In the ultrasmall
amplitude limit, A f; is proportional to the force gradient!? and
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FIG. 11. (Color online) (a) Sketch of the cantilever-tip probe oscillating in its fundamental mode with a finite amplitude A; d is the closest
approach distance of the nanotip apex. The weight functions used in Egs. (16) and (17) to calculate the cycle averages are plotted as functions
of { = z —d — A. Dependencies of the first (b) and second (c) spatial derivatives of the capacitance on the macroscopic separation s = z + h
calculated for the setup in Fig. 2(a), and of their cycle averages (d) and (e) on d for tip oscillation amplitudes A = 0.01, 0.1, 1, and 10 nm.
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would therefore be nulled if
F, =[C"(z+h) (Vg — Vepp) + d'(x,,2)]Vae = 0.
The FM counterpart of Eq. (12) is therefore

a'(x,y,z)
AVidko = = Ci s iy

13)

The site and distance dependence of AV, is determined
by a’(x,y,z) because in the range s < 1 nm where a’ is
appreciable, cf. Fig. 10(c), the denominator of Eq. (13) is
almost z independent as illustrated by the points for A =
0.01 nminFig. 11(e). The calculated LCPD deviations for A =
0.01 nm in the AM and FM modes are plotted in Figs. 12(a) and
12(e). For the ultrasmall amplitude A = 0.01 nm, which would
likely not provide an adequate signal-to-noise ratio in practice,
the calculated AV is about hundred times stronger than
AVL‘}%D and exceeds the range of validity (£2 V) of our DFT
computations as well as the range of experimentally measured
values. Therefore it is important to consider averaging over
the range covered by the finite tip oscillation.

B. Finite amplitude expressions

In NCAFM with cantilevers, the oscillation amplitude A
is between several and a few tens of nanometers, so that
the macroscopic capacitive electrostatic force can change
by several orders of magnitude over an oscillation cycle. In
practice, the detected AM and FM-KPFM signals are given by
differently weighted averages, namely,>

1 2
(F,) = —/ F,ld + A(1 + cos ¢)]ldo
2 0

and®’

Afa) 1 2
kA— = —— F,ld + A(1 4+ cos¢)] cos ¢pd ¢,
fw 2n 0
where k is the flexural stiffness of the cantilever and d = zpy;p
is the closest tip apex-sample separation. Substituting the force

from Eq. (10) and setting these averages to zero, one obtains
(a(x,y.2)w
AV = - e 14
LCPD (C'GC+ 1)) (14)
/
AV = — e (1s)
(C"(z + h))l/w
where the cycle averages depend both on d and A and are
defined as

x
S
I

1 A
—/ w(¢)gd + A+ ¢)de, (16)
T J-a

1 A
& = — / Cu©)gd + A+ e

[ T

As depicted in Fig. 11(a), { = z — (A + d), whereas the
weight functions w(¢) = 1/4/A? — ¢2? and {w(¢) have square
root singularities at the turning points of the oscillation. Note
that if A — O then (g), tends to g(d + A). Similarly, the
expression on the second line of Eq. (17) justifies the notation

PHYSICAL REVIEW B 86, 075407 (2012)

(g')1/w and shows that this quantity tends to g’(d + A) when
A — 0, besides helping to relate the distance dependence
of AV, to those of a'(x,y,z) and C”(z + h). However,
because a(x,y,z) is computed with high precision, whereas
a’(x,y,z) is obtained by interpolation, we use the expression
on the first line for numerical purposes. Furthermore, since
a(x,y,z) is known only at equispaced separations z; where
the DFT computations have been performed, the integrals in
Egs. (16) and (17) must be discretized. The adopted procedure,
which deals with the singularities of the weight function w(¢)
at the integration limits,%® is presented in Appendix C. There
we also show that the discretized version of the expression
in the first line of Eq. (17) reduces to the second-order FD
approximation of g'(d + A) when 2A matches the spacing
between adjacent z; values, in accordance with the expression
on the second line.

C. Results

Owing to the very different z dependencies of a(z) and
C'(z + h), shown respectively in Figs. 10(a) and 11(b), their
cycle averages depend in different ways on d and A. The
same holds for a'(z) and C”(z + h), shown respectively in
Figs. 10(c) and 11(c). Figures 11(d) and 11(e) show the cycle
averages of C’ and C” versus the closest tip-apex approach dis-
tance d for oscillation amplitudes A =0.01, 0.1, 1, and 10 nm,
whereas the cycle averages of Vi cpp calculated from Eqgs. (14)
and (15) are plotted in Fig. 12 for AM-KPFM (left column)
and FM-KPFM (right column) for the same amplitudes in the
range where a(z) is finite. In that range, the cycle averages for
A = 0.01 nm agree with the nonaveraged quantities. Since the
primary quantities were calculated at points spaced by 0.02 nm,
this is not surprising in view of the remarks at the end of the
preceding section. Thus apart from small deviations introduced
by the discretization procedure, the points in Figs. 12(a)
and 12(e), which were actually calculated for A = 0.01 nm
coincide with those given by Egs. (12) and (13), and exhibit
essentially the same distance dependencies as a(d) and a’(d),
as already discussed in Sec. IV A.

Already above A = 0.1 nm, however, the LCPD contrasts
in both modes exhibit almost the same spatial dependence
as a(d), although their respective magnitudes decrease if
A is increased. Nevertheless, AV significantly exceeds
AV{o; this can be understood as follows. As seen in
Figs. 11(d) and 11(e), (C”)1,, drops much faster than —(C’),,
if A is increased. As explained in the discussion of Fig. 6(b),
this behavior reflects the increasing influence of the relative
contributions of the tip shank and of the cantilever to C'(z + h)
in the range covered by the peak-to-peak oscillation. Especially
(C"), is affected by the cantilever contribution which causes
the very gradual levelling of C’(z + h) apparent in Fig. 11(b).
As seen in Fig. 11(c), this slowly varying contribution tends
to cancel out in C”(z + h), and, according to the second line
in Eq. (17), in (C")1, as well.

On the other hand, (a),, and A(a’),, essentially coincide
once a exceeds the range where a is noticeable. Indeed, the
main contributions to those averages come from the vicinity
of z = d where the integrands in Egs. (16) and (17) (first
line) match. Expanding w(¢) about this turning point, one
finds that (a), ~ A~"/? whereas (a);;, ~ A7/, just like
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FIG. 12. (Color online) Calculated deviations A Vi cpp for AM- (left column) and FM-KPFM (right column) versus closest tip apex-sample
distance for tip oscillation amplitudes A = 0.01 nm (a) and (e), A = 0.1 nm (b) and (f), A = 1 nm (c) and (g), and A = 10 nm (d) and (h). In
(e) and (f), the dashed horizontal lines indicate the range of validity of our DFT calculations (2 V).

Af, behaves in NCAFM.?” According to Figs. 11(b) and oscillation amplitude affects the relevant cycle averages as well
11(c), the same argument cannot be applied to (C”);/,, for  as AVicpp in the AM mode (left column) and in the FM mode
A < 10 nm, and not at all to (C’),, because C’(s) varies only (right column) at the closest tip apex-sample separation d =
slowly up to s = R = 20 nm. Figure 13 shows how the finite ~ 0.30 nm indicated by arrows in Fig. 9.
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VFM

the resulting deviations A VM, and AVM

The same trends persist at all separations d < 0.5 nm where
LCPD contrast appears. (a),, drops as A~'/%, and (a’)1/y
drops as A™%/? already beyond A = 0.1 nm, while (C’),,
varies only little and (C”), ., begins to drop somewhat slower
than A~! only above A =1 nm. The resulting amplitude
dependencies in both modes reflect the different dependencies
of the numerators and denominators in Eqgs. (14) and (15).

D. Discussion and experimental limitations

Expressions formally similar to Eqs. (12) and (13) were
obtained in Refs. 26, 28, and 47. However, their denominators
came from a short-range polarization contribution ocV? to
the microscopic force F), rather than from the much larger
capacitive force Fy;. Nony et al.*’ also noticed that (a),, and
A{a’)1» almost coincide when A exceeds a few nanometers.
This results in a comparable AV cpp for AM and FM modes
if A exceeds a few nanometers. However, by including the
correct F); and taking into account the different amplitude
dependencies of the denominators in Eqgs. (14) and (15), we
conclude that the contrast should remain larger in the FM than

(e) and (f) at a closest tip apex separation of d = 0.3 nm above Cl and Na surface sites.

in the AM mode for a given closest approach distance d and
oscillation amplitude A. This prediction is independent of the
particular system considered, but the mode-dependent signal
to noise ratio must also be considered. Thus Kawai et al.’
calculated the minimum detectable CPD as a function of A and
showed that it is smaller in the AM mode. Taking into account
the discussions of Figs. 6 and 11, (C’),, would be larger if the
cantilever area is larger, whereas (C”) 1, would be unaffected,
whereas both quantities would be larger if the cone angle is
broader or if the sample is a metal rather than an insulator, but
(C")1/w would be more strongly affected. On the other hand,
(), and (a’);, would be larger if the tip apex is charged*®
rather than neutral, or if the sample is a semiconductor
with a reconstructed surface which exposes partially charged
species like Si(111) 7 x 7.'%3% From this point of view, the
system studied here is especially challenging. Furthermore,
the contrast ratio slowly decreases if A is increased, e.g., by
a factor which drops from about 100 to 10 for oscillation
amplitudes between 0.01 and 10 nm in our example.

For a meaningful comparison with NCAFM-KPFM mea-
surements, it is important to take experimental limitations
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into account. In view of the long-range LCPD variations due
to surface and bulk inhomogeneities on real samples, one
should compare computed atomic-scale LCPD variations with
the difference between the LCPD measured at subnanometer
separations d in the middle of a flat homogeneous island
or terrace and the extrapolated long-range, essentially site-
independent LCPD. This procedure would also suppress most
of the long-range contributions to (a),, and (a’)1/,, which
would arise in the case of a charged or strongly polar tip.>
Moreover, the comparison should be done with the same tip
at constant d (slow distance control) because atomic-scale
variations of d at constant Afj(x,y,d) would induce such
variations in the LCPD even if the latter is site-independent
but has a different distance dependence as Af;.

For the distance controller to function properly, Af; must
be chosen on the branch where this frequency shift becomes
more negative if d is decreased. Furthermore, the maximum
restoring force kA must be much larger than the maximum tip-
sample attraction.®” For measurements with standard NCAFM
cantilevers (k ~ 20-40 N/m) this criterion is typically satisfied
by using oscillation amplitudes A > 5 nm, and atomically
resolved imaging is typically performed at distances d ~ 0.4—
0.5 nm. According to Fig. 12, the LCPD contrast which is then
predicted to be 20100 mV in the FM mode and a few mV
in the AM mode approaches the experimental limits in both
modes. Even if the AM-KPFM signal is enhanced by setting
the modulation frequency at the second flexural resonance
of the cantilever, the LCPD contrast predicted by our model
would remain the same. This contrast would be stronger if
the tip were charged. Unfortunately, available data showing
atomic-scale contrast on (001) surfaces of NaCl and KBr is
insufficient for a meaningful comparison between AM and FM
KPFM. However, LCPD maps obtained with sputter-cleaned
Si tips and similar measurement parameters on Si(111) 7 x
7 surfaces show that the contrast between Si adatoms and
corner holes in the FM-mode!® is about ten times stronger
than in the AM-mode.> Moreover, data obtained from a direct
determination of the maximum of Af; versus bias voltage V},
agreed well with those obtained by nulling the FM-KPFM
signal at the modulation frequency.'®

The sizable LCPD contrast of several Volts predicted in
the FM mode for amplitudes A < 0.1 nm should, however,
be readily observable when using a tuning fork instead
of a cantilever. Owing to the much higher stiffness k =~
1800 N/m of this deflection sensor, the above-mentioned cri-
terion can be satisfied with such amplitudes close to the ultra-
small limit.!! Combined NCAFM-KPFM measurements using
such tuning forks with Ptlr tips have only been done at low
temperature by the time-consuming direct method mentioned
in Introduction.'®?° Unfortunately, no FM-KPFM measure-
ments showing atomic-scale LCPD contrast on alkali halide
(001) surfaces have so far been reported.

V. SUMMARY AND OUTLOOK

We proposed a general multiscale approach to compute
electrostatic forces responsible for atomic-scale contrast in
KPFM performed simultaneously with NCAFM. Although
attention is focused on insulating samples and results are
presented for a silicon tip interacting with a NaCl(001) sample,
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the approach is not restricted to particular sample or tip
materials. The problem is split into two parts coupled in a
remarkably simple but novel fashion. First, the electrostatic
problem of the voltage-biased AFM probe (including the
tip and the cantilever) against the grounded sample, treated
as macroscopic perfect conductors or insulators, is solved
by a finite-difference method with controlled accuracy on a
nonuniform mesh. The method is capable of treating complex
geometries with widely different dimensions, but is illustrated
here for systems with cylindrical symmetry. The solution
yields the electric potential and field distributions and the
capacitance C(s) of the system from which the electrostatic
force F), acting on the probe and its gradient are calculated
as functions of the macroscopic tip-sample separation s. By
comparing results obtained with and without the cantilever
as well as with the analytic solution for a tip approximated
by a conducting sphere in Appendix B, the contributions of
the cantilever, the conical tip shank and of its spherical end
can be recognized. If the sample is a thick insulator, all three
affect the macroscopic force, whereas the last two affect the
force gradient even at sub-nanometer separations relevant for
atomic-scale contrast.

Instead of the bias voltage Vj, the nearly uniform electric
field obtained in that range is then applied as an external field
to the microscopic part which can be treated by empirical
atomistic or first principles methods. The ab initio BigDFT
wavelet code employed here enables one to compute the
short-range bias-dependent force on the tip apex represented
by a cluster with an unprecedented accuracy of 1 pN. For the Si-
nanotip-NaCl(001) system considered here, this microscopic
force F), is alinear function of the bias in the investigated range
Vi — Vepp = £2 V. We argue that this is a general result,
except close to atomic-scale instabilities caused by strong
enough forces which could arise at very small separations
and/or very large effective biases.

Adding the macroscopic and microscopic bias-dependent
forces, expressions are obtained for the KPFM signals in the
AM and the FM modes. The atomic-scale deviation A Vi cpp
of the local CPD from its common value at large separations is
the ratio of the derivatives a = d F,,/dV), and dC /ds averaged
over the tip oscillation amplitude with different weights in
AM- and FM-KPFM, as described by Eqgs. (14) and (15).
We explain the amplitude dependence of the atomic-scale
LCPD contrast in both modes and predict that for typical
amplitudes used in measurements with standard NCAFM
cantilevers, this contrast should be much stronger in the
FM mode. This is a consequence of the contributions of
the cantilever and the tip shank to the KPFM signal in the
AM mode, which are stronger on insulating samples. The
same conclusion has previously been reached in comparisons
of AM- and FM-KPFM measurements of long-range LCPD
variations; such variations are caused by interactions of the
biased probe with CPD inhomogeneities and surface charges
on scales of several nanometers and above on conducting
samples partly covered with ultrathin overlayers of different
materials.'>3® However, the strong mode-dependent influence
of distant contributions to dC/ds on the atomic-scale LCPD
contrast has, to our knowledge, not been recognized because
previous work on this topic assumed that only the tip apex
mattered at subnanometer separations.
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Because AVicpp depends on measurement parameters, it
is desirable to extract the more fundamental quantity a =
dF,/dV, from combined KPFM measurements, just like the
microscopic force F), is extracted from NCAFM measure-
ments using, e.g., a widely accepted inversion algorithm® or
one based on the direct inversion of the discretized version
of the first line of Eq. (15) described in Appendix A by back
substitution.®® Since AVicpp is predicted to be stronger in
FM-KPFM, whereas its distance dependence is governed by
the weighted average (a’);,, modes, the most appealing way
to obtain a(d) would be to extract a’ then integrate it from the
range where A Vi cpp vanishes down to the desired separation
d. The averages (a’) 1/, and (C"),,, can be separately obtained
from direct measurements of the frequency shift Af; as a
function of bias,'® namely, from the shift of the maximum
and the curvature of parabolic fits at several (x,y,d) positions.
The signal-to-noise ratio of those averages can be improved by
using ac modulation and lock-in detection at the modulation
frequency. The averages could then be determined from the
zero intercept Vb and the slope of the FM-KPFM signal
(Af,)w versus dc bias. An analogous procedure could be
applied to determine {(a), and (C’),, from the AM-KPFM
signal (F,), then a itself by inversion, using suitably modified
algorithms.3%%° Because the AM-KPFM signal-to-ratio is
much superior if the modulation frequency f is at the second
cantilever resonance,’’ AVIf}%[D could be determined more
accurately even if it is smaller than in FM-KPFM.

In any case, note that the slope a reflects variations of the
electrostatic potential outside the sample surface which are,
however, locally enhanced by the proximity of the tip apex.
Since the latter is in turn also polarized and deformed,” a can-
not simply be described as the convolution of the unperturbed
electrostatic potential with a merely distance-dependent tip
point-spread function, as in macroscopic electrostatics.*?

Complications due to averaging over the tip oscillation
amplitude are to a certain extent avoided with tuning fork
deflection sensors which enable direct measurements of
(Af,)w versus bias, using amplitudes approaching the ul-
trasmall limit.'">?° Spectacular results have thus been ob-
tained on isolated molecules adsorbed on a thin epitaxial
NaCl(001) film by using tips with well defined apex species
stable at low temperature.”* Most recently, V[, contrast
reflecting changes in the intramolecular charge distribution
has been observed upon a configurational switch triggered
by a judiciously applied pulse.”> Our results shown in
Figs. 12(e), 12(f), and 13(d) show that AV} and o’ still
have a significant amplitude dependence between A = 0.1
and 0.01 nm, so that inversion is still necessary to obtain
accurate results for typical amplitudes used with tuning fork
Sensors.

Since such measurements use hard metal tips, while
metal-coated tips are also used in NCAFM and/or KPFM
measurements with cantilevers it would desirable to develop
appropriate nanotip models and to perform simulations like
those described here. In particular, the recently fabricated sharp
and stable W and Cr coated silicon tips’**® and the stable
atomic-scale resolution achieved with Cr-coated cantilevers
at separations exceeding the usual range d < 0.5 nm merit
further attention. Atoms or molecules intentionally picked by
the apex and/or adsorbed on the sample?*?32427 would be
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worth studying using our approach in order to take into account
modifications of their electronic and geometric structure due to
bonding and charge transfer. Another class of systems which
merit further investigations involve silicon nanotips with a
picked-up cluster of foreign material, NaCl in particular, which
have so far been studied by DFT in the absence of a sample®!
or represented by a cluster of the same material as the sample
using empirical interaction potentials.*$>

Note finally that all macroscopic probe models, including
ours, provide a better description of metallic or metal-coated
tips than of real silicon tips. Indeed, even if the native oxide
is removed by sputtering, a silicon layer of few nanometers
depleted of charge carriers still separates the tip surface from
the highly doped conducting tip interior. Although it was taken
into account in previous treatments of KPFM of semiconductor
devices®, this depletion layer remains to be included when
modeling Si tips, e.g., by allowing a smaller effective radius
R of the equipotential at the applied bias voltage and a larger
effective separation s from the sample surface.

ACKNOWLEDGMENTS

This work has been supported by the Swiss National
Science Foundation (SNF) and the Swiss National Center of
Competence in Research (NCCR) on Nanoscale Science. The
CPU intensive computations were done at the Swiss National
Supercomputing Center (CSCS) in Manno.

APPENDIX A: SIGN OF THE MACROSCOPIC
ELECTROSTATIC FORCE

Using the virtual work method, the macroscopic elec-
trostatic tip-sample interaction can be calculated from the
potential energy stored in the capacitor formed between the
tip and the back electrode. The (real) force acting on the tip
F,, which is considered constant during a virtual arbitrary
infinitesimal tip displacement §z, performs a virtual work
dw = F, 6z = —8U, where U = U, + U, is the total energy
of the system including contributions from both the capacitor
and the biasing battery which maintains a fixed potential
difference V between the electrodes. In response to this
displacement, the battery transfers a charge § QO between the
electrodes in order to keep their potential difference fixed. It
costs a change of U, = —§Q V in the energy of the battery.
Whereas the energy of the capacitor changes by U, = %6 oV,
which implies U, = —2U,, i.e.,

8U =68U, +6U, = =6U..

The electrostatic force is therefore

sU sU. 186C_,
r=——=+—=+-——V
8z 6z

and is always attractive because §C/§z < 0.

APPENDIX B: CONDUCTING SPHERE AGAINST A THICK
DIELECTRIC SLAB

The force between a conducting sphere of radius R at
potential V facing a dielectric slab grounded on the bottom
can be calculated by means of the image charge method.
For a semi-infinite dielectric, we found that the solution is
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given by remarkably simple generalization of the treatment in
Sec. 5.08 of Smythe’s textbook® for a semi-infinite conductor.
Details, further analytic results, and useful approximations,
which are of general interest for scanning force microscopy,
will be presented elsewhere.”” The potential ® in the region
between the sphere and the slab is generated by a series of
point charges {g,,z,,} inside the sphere and their corresponding
images {—B¢q,,—z,} below the surface of the dielectric, where
B = (e —€p)/(e + €), € and €y being the permittivities of
the dielectric and of vacuum, respectively. The first charge
q1 = 4megV R is located at the center of the sphere z; =
R + 5. Physically, the image charges represent the effect
of the polarization induced at the surface of the dielectric
which causes a jump discontinuity in E,. Together with the
other charges they ensure that the sphere surface remains
equipotential at V.

We find
n—1
qn = q1 sinha( - ) (BD)
sinh na
where cosha = z;/R and
Z, = R sinh«a coth na, (B2)

as in Smythe’s treatment (8 = 1). Except at the contact point
(s = 0), the charges ¢, decay exponentially fast towards
zero and this solution provides convenient expressions for the
capacitance C(s) = gspn/ V, where

ﬂnfl

sinhna’

Goph = an = 4meyRV sinha Z (B3)

n=1

and the z component of the force (dC/ds)V?/2

Fy = 2ne0V2 Z

n—1

(cotha — ncothna), (B4)
sinh na

the force gradient d F),/ds, and the electric field at r = 0,
z=0

Lsinh na

V1+/32,3 (B5)

R sinh o cosh? no

These series have been used to evaluate the solid lines
in Figs. 6 and 7. The truncation error can be reduced by
generalizing a trick proposed for the conducting sphere-
plane problem.* If a series is truncated at some n = k, the
remainder can be summed up analytically if one assumes

Znsk = Zoo = R sinha. Thus because ¢,+1/qn-r =~ BR/(z1 +
Zoo)s
- q q
. - k+1 _ k+1
RIS - BR/(z1 +20) 1= e

n=k+1

Adding the correction to the first five terms, gy is obtained
with an accuracy of 107> for € /ey = 5.9, s/R = 0.1.

For an ideal conductor (8 = 1), these expressions re-
duce to those of Smythe® and diverge in the limit s — 0
(i.e., « > 0). In our case B <1 and in the same limit,
the resulting series converge and can, in fact, be summed
explicitly.”? The result for F(s = 0) was given without proof
in Eq. (2) of Ref. 57. For NaCl (e/¢p =5.9, g =0.71),
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one obtains limiting values of C/megR = 6.98, F/meyV? =
—6.77 (i.e., F = —0.188 nN/V? independent of sphere ra-
dius), F'/megV?R™' =188.7 and E/VR™' =20.4. In the
case of a dielectric slab of finite thickness #, mirror images of
all previously mentioned charges with respect to the grounded
back-electrode must also be considered. They ensure that
the field lines inside the dielectric become perpendicular to
the grounded back-electrode instead of spreading radially.
If z; = R+ s < ¢, further image charges induced by those
mirror charges can be neglected to order O((z; / 1)%). Moreover,
the electric force exerted by the mirror charges on the
biased sphere can then be approximated as the Coulomb
force between ggpn at its center and a lumped mirror charge
—(1 = B)qsph, 2(z1 + t) away, i.e.,

—U =) don _p 200 (R (g’
4eq  (21)? ete \ 1 q1 .

For relevant values s < R ~ 10 nm and ¢ ~ 1 mm, this
correction is below (R/1)?/6.8 ~ 10~!! times the force given
by Eq. (B4), i.e., negligible in practice. A similar expression
of comparable magnitude was proposed in Ref. 47, but was
erroneously assumed to represent F,.

Faga >~

APPENDIX C: DISCRETIZED INTEGRALS FOR FINITE
TIP OSCILLATION AMPLITUDES

Assuming that N + 1 equispaced data points {z;} are
sufficiently close together such that g(z) remains almost
constant within an interval length § = 2A/N, the integration
in Eq. (16) can be approximated by a finite sum:

(8(D))w Z wigi,

where g; = g(z;) is either g; = a(z;) or g; = C(z; + h). Since

w(¢) = 1/4/A? — 2, we obtain

i . {,‘+ . &
w; = /{ w(¢)d¢ = arcsin (X) — arcsin (X) ,

i

where {ii == %)8 — A are the midpoints between ¢; and
gi+1. Taking into account the rapid variation of w(¢) near
the integration limits defined as ¢, = —A and {5 = A, the
square-root singularities of w(¢) at those turning points are
approximately included with this modified trapezoid integra-
tion method. Sufficiently far from those points, w; >~ w(¢;)$
so that the standard trapezoid approximation is recovered. The
analogous approximation for Eq. (17), namely,

1 N
(&' @hiw = (8@)ew > — Y wig

i=0

involves®

L _ &\ &’
it f ;w@)d;_Jl_(X) _/1_(1).

Note that in the A — 0 limit, only the data points at the
two limits are taken into account. Indeed, if N = 1, A = §/2,
and Wy = Wy, hence (g)y, = (g0 + gn)/2, and W5 = —W/,
hence (g')1/w = (gv — &0)/2A, so that Egs. (14) and (15)
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consistently approximate the corresponding zero-amplitude
equations, Eqgs. (12) and (13). Similarly, if N =2, A=

PHYSICAL REVIEW B 86, 075407 (2012)

and one obtains wo = wy,w; = 0 and wj =
Egs. (12) and (13) are again recovered.

—wj,w] = 0and

1J. Weaver and D. Abraham, J. Vac. Sci. Technol. B 9, 1559 (1991).

M. Nonnenmacher, M. O’Boyle, and H. Wickramasinghe, Appl.
Phys. Lett. 58, 2921 (1991).

3S. Sadewasser, T. Glatzel, M. Rusu, A. Jager-Waldau, and M. C.
Lux-Steiner, Appl. Phys. Lett. 80, 2979 (2002).

4C. Barth, A. S. Foster, C. R. Henry, and A. L. Shluger, Adv. Mater.
23,477 (2011).

3S. Sadewasser and T. Glatzel, Kelvin Probe Force Microscopy:
Measuring and Compensating Electrostatic Forces (Springer,
Heidelberg, Dordrecht, London, New York, 2011).

°L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrody-
namics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1993),
Chap. 3.

"D. P. Woodruff and T. A. Denchar, Modern Techniques of Surface
Science, 2nd ed. (Cambridge University Press, Oxford, 1994),
Chap. 7.

8F. E. Olsson and M. Persson, Surf. Sci. 540, 172 (2003).

°C. Barth and C. R. Henry, Phys. Rev. Lett. 98, 136804 (2007).

10F. J. Giessibl, Science 267, 68 (1995).

F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

12T, R. Albrecht, P. Griitter, D. Horne, and D. Rugar, J. App. Phys.
69, 668 (1991).

13A. Kikukawa, S. Hosaka, and R. Imura, Rev. Sci. Instrum. 67, 1463
(1996).

4S. Kitamura and M. Iwatsuki, Appl. Phys. Lett. 72, 3154
(1998).

15U. Zerweck, C. Loppacher, T. Otto, S. Graftsrom, and L. M. Eng,
Phys. Rev. B 71, 125424 (2005).

ISF. J. Giessibl, Appl. Phys. Lett.73, 3956 (1998).

M. Guggisberg, M. Bammerlin, C. Loppacher, O. Pfeiffer,
A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Meyer,
and H.-J. Giintherodt, Phys. Rev. B 61, 11151 (2000).

18S. Sadewasser, P. Jelinek, C.-K. Fang, O. Custance, Y. Yamada,
Y. Sugimoto, M. Abe, and S. Morita, Phys. Rev. Lett. 103, 266103
(2009).

19T. Kénig, G. H. Simon, H.-P. Rust, and M. Heyde, J. Phys. Chem.
C 113, 11301 (2009).

20L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer,
Science 324, 1428 (2009).

2IH. Diesinger, D. Deresnes, J. Nys, and T. Mélin, Ultramicroscopy
108, 773 (2008).

22C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jager-Waldau, and
M. C. Lux-Steiner, App. Phys. Lett. 75, 286 (1999).

23F. Mohn, L. Gross, N. Moll, and G. Meyer, Nat. Nanotechnology
7,227 (2012).

24L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, Science
325, 1110 (2009).

23C. Barth, T. Hynninen, M. Bieletzki, C. R. Henry, A. S. Foster,
F. Esch, and U. Heiz, New J. Phys. 12, 093024 (2010).

204, Masago, M. Tsukada, and M. Shimizu, Phys. Rev. B 82, 195433
(2010).

?’F. Bocquet, L. Nony, and C. Loppacher, Phys. Rev. B 83, 035411
(2011) .

28M. Tsukada, A. Masago, and M. Shimizu, J. Phys.: Condens. Matter
24, 084002 (2012).

28, Kitamura, K. Suzuki, M. Iwatsuki, and C. Mooney, Appl. Surf.
Sci. 157, 222 (2000).

30K, Okamoto, Y. Sugawara, and S. Morita, Appl. Surf. Sci. 188, 381
(2002).

3K. Okamoto, K. Yoshimoto, Y. Sugawara, and S. Morita, Appl.
Surf. Sci. 210, 128 (2003).

2E Krok, K. Sajewicz, J. Konior, M. Goryl, P. Platkowski, and
M. Szymonski, Phys. Rev. B 77, 235427 (2008).

3G. H. Enevoldsen, T. Glatzel, M. C. Christensen, J. V. Lauritsen,
and F. Besenbacher, Phys. Rev. Lett. 100, 236104 (2008).

3*F. Bocquet, L. Nony, C. Loppacher, and T. Glatzel, Phys. Rev. B
78, 035410 (2008).

358. Kawai, T. Glatzel, H.-J. Hug, and E. Meyer, Nanotechnology 21,
245704 (2010).

3T. Glatzel, S. Sadewasser, and M. Lux-Steiner, Appl. Surf. Sci. 210,
84 (2003).

37T, Glatzel, L. Zimmerli, S. Koch, B. Such, S. Kawai, and E. Meyer,
Nanotechnology 20, 264016 (2009).

BT. Hochwitz, A. K. Henning, C. Levey, C. Daghlian, and
J. Slinkman, J. Vac. Sci. Technol. B 14, 457 (1996).

%H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer,
J. Appl. Phys. 84, 1168 (1998).

403, Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Appl.
Phys. A 66, S239 (1998).

41J. Colchero, A. Gil, and A. M. Bar6, Phys. Rev. B 64, 245403
(2001).

48. Gémez-Moiiivas, L. S. Froufe, R. Carminati, J. J. Greffet, and
J. J. Séenz, Nanotechnology 12, 496 (2001).

“3E. Strassburg, A. Boag, and Y. Rosenwaks, Rev. Sci. Instrum. 76,
083705 (2005).

43 Konior, J. Appl. Phys. 101, 084907 (2007).

43Y. Shen, D. M. Barnett, and P. M. Pinsky, Rev. Sci. Instrum. 79,
023711 (2008).

46R. Baier, C. Leendertz, M. C. Lux-Steiner, and S. Sadewasser, Phys.
Rev. B 85, 165436 (2012).

4TL. Nony, F. Bocquet, C. Loppacher, and T. Glatzel, Nanotechnology
20, 264014 (2009).

“8L. Nony, A. S. Foster, F. Bocquet, and C. Loppacher, Phys. Rev.
Lett. 103, 036802 (2009).

“L. Kantorovich, A. Foster, A. Shluger, and A. Stoneham, Surf. Sci.
445, 283 (2000).

S0R. Hoffmann, L. N. Kantorovich, A. Baratoff, H. J. Hug, and H.-J.
Glintherodt, Phys. Rev. Lett. 92, 146103 (2004).

SIK. Ruschmeier, A. Schirmeisen, and R. Hoffmann, Phys. Rev. Lett.
101, 156102 (2008).

L. N. Kantorovich, A. I. Livshits, and M. Stoneham, J. Phys.:
Condens. Matter 12, 795 (2000).

33S. Hudlet, M. Saint Jean, C. Guthmann, and J. Berger, Eur. Phys. J.
B 2,5(1998).

%Y. Shen, D. M. Barnett, and P. M. Pinsky, Eng. Anal. Bound. Elem.
32, 682 (2008).

075407-19


http://dx.doi.org/10.1116/1.585423
http://dx.doi.org/10.1063/1.105227
http://dx.doi.org/10.1063/1.105227
http://dx.doi.org/10.1063/1.1471375
http://dx.doi.org/10.1002/adma.201002270
http://dx.doi.org/10.1002/adma.201002270
http://dx.doi.org/10.1016/S0039-6028(03)00783-0
http://dx.doi.org/10.1103/PhysRevLett.98.136804
http://dx.doi.org/10.1126/science.267.5194.68
http://dx.doi.org/10.1103/RevModPhys.75.949
http://dx.doi.org/10.1063/1.347347
http://dx.doi.org/10.1063/1.347347
http://dx.doi.org/10.1063/1.1146874
http://dx.doi.org/10.1063/1.1146874
http://dx.doi.org/10.1063/1.121577
http://dx.doi.org/10.1063/1.121577
http://dx.doi.org/10.1103/PhysRevB.71.125424
http://dx.doi.org/10.1063/1.122948
http://dx.doi.org/10.1103/PhysRevB.61.11151
http://dx.doi.org/10.1103/PhysRevLett.103.266103
http://dx.doi.org/10.1103/PhysRevLett.103.266103
http://dx.doi.org/10.1021/jp901226q
http://dx.doi.org/10.1021/jp901226q
http://dx.doi.org/10.1126/science.1172273
http://dx.doi.org/10.1016/j.ultramic.2008.01.003
http://dx.doi.org/10.1016/j.ultramic.2008.01.003
http://dx.doi.org/10.1063/1.124357
http://dx.doi.org/10.1038/nnano.2012.20
http://dx.doi.org/10.1038/nnano.2012.20
http://dx.doi.org/10.1126/science.1176210
http://dx.doi.org/10.1126/science.1176210
http://dx.doi.org/10.1088/1367-2630/12/9/093024
http://dx.doi.org/10.1103/PhysRevB.82.195433
http://dx.doi.org/10.1103/PhysRevB.82.195433
http://dx.doi.org/10.1103/PhysRevB.83.035411
http://dx.doi.org/10.1103/PhysRevB.83.035411
http://dx.doi.org/10.1088/0953-8984/24/8/084002
http://dx.doi.org/10.1088/0953-8984/24/8/084002
http://dx.doi.org/10.1016/S0169-4332(99)00530-9
http://dx.doi.org/10.1016/S0169-4332(99)00530-9
http://dx.doi.org/10.1016/S0169-4332(01)00953-9
http://dx.doi.org/10.1016/S0169-4332(01)00953-9
http://dx.doi.org/10.1016/S0169-4332(02)01492-7
http://dx.doi.org/10.1016/S0169-4332(02)01492-7
http://dx.doi.org/10.1103/PhysRevB.77.235427
http://dx.doi.org/10.1103/PhysRevLett.100.236104
http://dx.doi.org/10.1103/PhysRevB.78.035410
http://dx.doi.org/10.1103/PhysRevB.78.035410
http://dx.doi.org/10.1088/0957-4484/21/24/245704
http://dx.doi.org/10.1088/0957-4484/21/24/245704
http://dx.doi.org/10.1016/S0169-4332(02)01484-8
http://dx.doi.org/10.1016/S0169-4332(02)01484-8
http://dx.doi.org/10.1088/0957-4484/20/26/264016
http://dx.doi.org/10.1116/1.588494
http://dx.doi.org/10.1063/1.368181
http://dx.doi.org/10.1007/s003390051138
http://dx.doi.org/10.1007/s003390051138
http://dx.doi.org/10.1103/PhysRevB.64.245403
http://dx.doi.org/10.1103/PhysRevB.64.245403
http://dx.doi.org/10.1088/0957-4484/12/4/323
http://dx.doi.org/10.1063/1.1988089
http://dx.doi.org/10.1063/1.1988089
http://dx.doi.org/10.1063/1.2721943
http://dx.doi.org/10.1063/1.2885679
http://dx.doi.org/10.1063/1.2885679
http://dx.doi.org/10.1103/PhysRevB.85.165436
http://dx.doi.org/10.1103/PhysRevB.85.165436
http://dx.doi.org/10.1088/0957-4484/20/26/264014
http://dx.doi.org/10.1088/0957-4484/20/26/264014
http://dx.doi.org/10.1103/PhysRevLett.103.036802
http://dx.doi.org/10.1103/PhysRevLett.103.036802
http://dx.doi.org/10.1016/S0039-6028(99)01086-9
http://dx.doi.org/10.1016/S0039-6028(99)01086-9
http://dx.doi.org/10.1103/PhysRevLett.92.146103
http://dx.doi.org/10.1103/PhysRevLett.101.156102
http://dx.doi.org/10.1103/PhysRevLett.101.156102
http://dx.doi.org/10.1088/0953-8984/12/6/304
http://dx.doi.org/10.1088/0953-8984/12/6/304
http://dx.doi.org/10.1007/s100510050219
http://dx.doi.org/10.1007/s100510050219
http://dx.doi.org/10.1016/j.enganabound.2007.12.003
http://dx.doi.org/10.1016/j.enganabound.2007.12.003

ALI SADEGHI et al.

3J. D. Jackson, Classical Electrodynamics (Wiley, New York,
2001).

8. Belaidi, P. Girard, and G. Leveque, J. Appl. Phys. 81, 1023
(1997).

57S. Gémez-Moiiivas, L. S. Froufe-Pérez, A. J. Caamaiio, and J. J.
Sdenz, App. Phys. Lett. 79, 4048 (2001).

38G. M. Sacha, E. Sahagiin, and J. J. Sdenz, J. Appl. Phys. 101, 024310
(2007).

¥G. M. Sacha and J. J. Sdenz, Appl. Phys. Lett. 85, 2610
(2004).

%0G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and
Y. Rosenwaks, Beilstein J. Nanotechnol. 2, 252 (2011)

61S. Sadewasser, T. Glatzel, R. Shikler, Y. Rosenwaks, and
M. Lux-Steiner, Appl. Surf. Sci. 210, 32 (2003).

©2G. Valdre and D. Moro, Nanotechnology 19, 405502 (2008).

8D. S. H. Charrier, M. Kemerink, B. E. Smalbrugge, T. de Vries, and
R. A.J. Janssen, ACS Nano 2, 622 (2008).

%W. R. Smythe, Static and Dynamic Electricity, 2nd ed. (McGraw-
Hill, New York, 1950), Chap. 5.

650. Schenk, M. Bollhéfer, and R. A. Romer, SIAM Review 50, 91
(2008).

0. Schenk, A. Wichter, and M. Hagemann, Comput. Optim. Appl.
36, 321 (2007).

http://pages.unibas.ch/comphys/comphys/software.

%8U. Diirig, Appl. Phys. Lett. 75, 433 (1999).

]. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004).

70T. Arai and M. Tomitori, Phys. Rev. Lett. 93, 256101 (2004).

"I'T. Arai and M. Tomitori, Phys. Rev. B 73, 073307 (2006).

2M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel,
P. Kappenberger, S. Martin, A. Baratoff, and H.-J. Guntherodt,
Science 291, 2580 (2001).

Y. Sugimoto, Y. Nakajima, D. Sawada, K. I. Morita, M. Abe, and
S. Morita, Phys. Rev. B 81, 245322 (2010).

74Y. Kinoshita, Y. Naitoh, Y. J. Li, and Y. Sugawara, Rev. Sci. Instr.
82, 113707 (2011).

PHYSICAL REVIEW B 86, 075407 (2012)

M. Guggisberg, M. Bammerlin, A. Baratoff, R. Lthi,
C. Loppacher, F. Battiston, J. L, R. Bennewitz, E. Meyer, and H.-J.
Gntherodt, Surf. Sci. 461, 255 (2000).

TOA. J. Weymouth, T. Wutscher, J. Welker, T. Hofmann, and F. J.
Giessibl, Phys. Rev. Lett. 106, 226801 (2011).

7TF. W. de Wette, W. Kress, and U. Schroder, Phys. Rev. B 32, 4143
(1985).

78R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin,
C. Loppacher, S. Schar, M. Guggisberg, E. Meyer, and A. L.
Shluger, Phys. Rev. B 62, 2074 (2000).

R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin,
C. Loppacher, S. Schar, M. Guggisberg, E. Meyer, and A. L.
Shluger, Phys. Rev. B 62, 2074 (2000).

80C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641
(1998).

81L.. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi,
A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, and
R. Schneider, J. Chem. Phys. 129, 014109 (2008).

821.. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin,
J. Chem. Phys. 125, 074105 (2006).

83S. Goedecker, J. Chem. Phys. 120, 9911 (2004).

84S. A. Ghasemi, S. Goedecker, A. Baratoff, T. Lenosky, E. Meyer,
and H. J. Hug, Phys. Rev. Lett. 100, 236106 (2008).

85A. Sadeghi, A. Baratoff, and S. Goedecker (unpublished.)

8G. Teobaldi, K. Limmle, T. Trevethan, M. Watkins, A. Schwarz,
R. Wiesendanger, and A. L. Shluger, Phys. Rev. Lett. 106, 216102
(2011).

87F. J. Giessibl, Phys. Rev. B 56, 16010 (1997).

80. Pfeiffer, Ph.D. thesis, Basel University, Basel, Switzerland, 2004.

8]. E. Sader and Y. Sugimoto, Appl. Phys. Lett. 97, 043502 (2010).

%S, Kawai, T. Glatzel, S. Koch, A. Baratoff, and E. Meyer, Phys.
Rev. B 83, 035421 (2011).

°'M. Amsler, S. A. Ghasemi, S. Goedecker, A. Neelov, and
L. Genovese, Nanotechnology 20, 445301 (2009).

22A. Sadeghi, A. Baratoff, and S. Goedecker (unpublished).

075407-20


http://dx.doi.org/10.1063/1.363884
http://dx.doi.org/10.1063/1.363884
http://dx.doi.org/10.1063/1.1424478
http://dx.doi.org/10.1063/1.2424524
http://dx.doi.org/10.1063/1.2424524
http://dx.doi.org/10.1063/1.1797539
http://dx.doi.org/10.1063/1.1797539
http://dx.doi.org/10.3762/bjnano.2.29
http://dx.doi.org/10.1016/S0169-4332(02)01475-7
http://dx.doi.org/10.1088/0957-4484/19/40/405502
http://dx.doi.org/10.1021/nn700190t
http://dx.doi.org/10.1137/070707002
http://dx.doi.org/10.1137/070707002
http://dx.doi.org/10.1007/s10589-006-9003-y
http://dx.doi.org/10.1007/s10589-006-9003-y
http://pages.unibas.ch/comphys/comphys/software
http://dx.doi.org/10.1063/1.124399
http://dx.doi.org/10.1063/1.1667267
http://dx.doi.org/10.1103/PhysRevLett.93.256101
http://dx.doi.org/10.1103/PhysRevB.73.073307
http://dx.doi.org/10.1126/science.1057824
http://dx.doi.org/10.1103/PhysRevB.81.245322
http://dx.doi.org/10.1063/1.3663069
http://dx.doi.org/10.1063/1.3663069
http://dx.doi.org/10.1016/S0039-6028(00)00592-6
http://dx.doi.org/10.1103/PhysRevLett.106.226801
http://dx.doi.org/10.1103/PhysRevB.32.4143
http://dx.doi.org/10.1103/PhysRevB.32.4143
http://dx.doi.org/10.1103/PhysRevB.62.2074
http://dx.doi.org/10.1103/PhysRevB.62.2074
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1063/1.2949547
http://dx.doi.org/10.1063/1.2335442
http://dx.doi.org/10.1063/1.1724816
http://dx.doi.org/10.1103/PhysRevLett.100.236106
http://dx.doi.org/10.1103/PhysRevLett.106.216102
http://dx.doi.org/10.1103/PhysRevLett.106.216102
http://dx.doi.org/10.1103/PhysRevB.56.16010
http://dx.doi.org/10.1063/1.3464165
http://dx.doi.org/10.1103/PhysRevB.83.035421
http://dx.doi.org/10.1103/PhysRevB.83.035421
http://dx.doi.org/10.1088/0957-4484/20/44/445301



