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Optical frequency mixing through nanoantenna enhanced difference frequency generation:
Metatronic mixer
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A design for a subwavelength all-optical frequency mixer is proposed. The method relies on enhanced
difference-frequency generation, which is achieved in two steps with the help of plasmonic nanoantennas. The
interaction of the two input signals with the nonlinear material is increased through the use of input nanoantennas,
which focus the incident energy of two different frequencies onto the nanoparticle formed by a nonlinear material.
Next, the difference-frequency emission is enhanced through the Purcell effect by the use of a separate output
nanoantenna that is resonant at the difference frequency. The application of this twofold approach allows for
a significant enhancement in the difference-frequency generation efficiency. Simulation results are presented
highlighting the features of the method. This multi-element nanostructure is indeed an optical mixer circuit
element in the metatronic paradigm.
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I. INTRODUCTION

A frequency mixer is a basic component in communications
systems in which two input signals are multiplied, resulting in
an output signal with the difference or sum of the frequencies of
the two input signals. This circuit element is used extensively
to modulate and demodulate signals in electronics.1,2 In
optical communications, the mixing and modulation is usually
accomplished through the use of electro-optical components.
For example, optical heterodyne detection uses frequency
mixing, but the output frequency is usually in the electronic
range.3 The mixing is typically achieved by sending the two
optical signals to a nonlinear photodetector, and the frequency
mixed signal is available as the electrical signal across the
photodetector, which is further extracted by applying a suitable
filter. Here, we present an idea for an all-optical frequency
subwavelength mixer which does not rely on electrical com-
ponents. Instead, the frequency mixing is achieved through
the use of optical second-order nonlinear material, while
the response is enhanced by using plasmonic nanoantennas.
Using numerical simulations, we demonstrate the possibility
of generation of difference-frequency signal in this nanoscale
optical mixer (although it should be noted that we can also
easily modify this design to obtain the sum-frequency signal
by appropriately tuning one of the nanoantennas to be resonant
at the sum frequency).

In recent years, there has also been an increased inter-
est in the nonlinear response of metamaterials, including
second-harmonic generation (SHG), third-harmonic gener-
ation (THG), and Raman scattering (see e.g. Refs. 4–9).
The enhanced nonlinear responses in subwavelength coated
particles have also been studied for several years using
quasistatic methods.10,11 It is well known that the second-
order susceptibility in optical nonlinear media is usually a
very small parameter as compared with the first-order linear
susceptibility.12 In order to observe a second-harmonic signal,
therefore, one would need to have strong pump intensity. There
have been various techniques for enhancing the second-order
nonlinearity over the past few decades. With the advent of
plasmonics, enhanced nonlinear processes have been observed
in nanoplasmonic structures, including frequency mixing,13,14

harmonic generation,15–18 and electrically controlled nonlinear
generation.19 Some of these results used a nonlinear material in
conjunction with the plasmonic material, while others relied
on the nonlinearity of the plasmonic material and nonlocal
dielectric effects.

Most of these techniques rely on providing a localized
region with enhanced field intensity termed as a hotspot. The
hotspot effectively increases the pump field strength that is
experienced by the nonlinear material. Due to the resonant
coupling of optical signals with collections of conduction
electrons at the surface of metallic nanostructures, the local
field intensity can be enhanced in the vicinity of metallic
nanostructures to create such hotspots. A simple and effective
means of achieving this form of enhancement is to use a
random metal-dielectric composite whose filling fraction is
close to the percolation threshold.20 However, there is one
more form of enhancement that can be exploited to further
boost the second-order nonlinear response, namely the Purcell
effect.21 The Purcell effect states that the rate of spontaneous
emission could be modified by the environment in terms of
photon density of states. For example, if the environment of an
emitter does not support any mode at the emission wavelength,
it will result in a complete suppression of emission. On the
other hand, if the environment supports an increased number
of modes compared to free space modes, it will lead to an
enhancement of emission. Strictly speaking, the Purcell effect
deals with the change in spontaneous emission rate, but it has
been shown that the rate of change in spontaneous emission
rate is equal to the rate of change in the energy emission by
a dipole.22 Since the nonlinear emission can be modeled by
a polarization density term, it implies that the Purcell effect
will also change the nonlinear emission in proportion to the
change in spontaneous emission rate. While using hotspots
to enhance the difference-frequency (DF) signal, the resulting
induced nonlinear dipoles may radiate into a region where
nanostructures may not interact with the difference-frequency
generation (DFG) frequency, and consequently, we would fail
to achieve any additional enhancement due to the Purcell
effect. In this paper, we explore the possibility of designing
a nanostructure in the form of three (or two) nanoantennas
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FIG. 1. (Color online) Schematic of the subwavelength optical
difference-frequency-generation (DFG) mixers using proper combi-
nations of nanoantennas. (a) When the frequencies of the two input
signals differ significantly, we do need two input and one output
nanoantenna. (b) However, when the two input frequencies are very
close to each other, we may have only one input and one output
nanoantenna.

designed to be at resonance at two input frequencies and at
the output difference frequency, respectively. The plasmonic
nanoantennas can be either cylindrical or ellipsoidal in
shape. Such nanoantennas have been studied in great detail
by various groups.23–25 Plasmonics nanoantennas have also
been shown theoretically26 and experimentally27 to enhance
spontaneous emission rate in their vicinity. This shows the
possibility that nanoantennas could also be used to enhance
nonlinear processes through the Purcell effect. The two input
nanoantennas would focus the two pump signals with two
different frequencies to a hotspot where the nonlinear material
will be located, and the output (third) nanoantenna would
interact with the nonlinear material in order to enhance the
emission at the DFG frequency through the Purcell effect.
When the two input frequencies are very close to each other,
one could use a single nanoantenna as the input nanoantenna
for both input frequencies, while the output antenna would
still provide the enhancement of the DF signal through the
Purcell effect. This nanoantenna-enhanced optical mixer may
be considered as a mixing circuit element in optical metatronic
circuitry, i.e. metamaterial-inspired optical nanocircuits.28–31

The device is schematically illustrated in Fig. 1, where the
top schematic shows the structure with three nanoantennas.
When the two input frequencies (ω1 and ω2) are well separated,
we would need two separate input antennas for enhancement,
and thus two of the three antennas in the top panels are designed
for enhancement of the signals with frequencies ω1 and ω2.
The third nanoantenna is designed for enhancement of the
difference-frequency signal. The bottom schematic indicates
the situation where the two input frequencies are very close
to each other, and hence they can share the same input
nanoantenna. In this case, the difference frequency (ω1 − ω2)
is much lower than either input frequency. Hence, the output
antenna is much longer than the input antenna. Because of
the orientation of the antennas in this mixer, the second-order
nonlinear material needs to have specific symmetries in order

for the input and output polarizations to align with the
nanoantennas. For example, in the first case [Fig. 1(a)], the
component of the susceptibility tensor of interest is given by
χ

(2)
ijk(ω1 − ω2; ω1,ω2), where i �= j �= k, whereas in the second

case (bottom panel), the component of interest is given by
χ

(2)
ijj (ω1 − ω2; ω1,ω2), where i �= j . The DF polarization term

is given by P (ω1 − ω2) = 2εoχ
(2) Eω1 E∗

ω2
.12 One can easily

note that the DF polarization term is proportional to the product
of the two input signals. This can be used to modulate or
demodulate a signal on a carrier.

II. RESONANCE OF SPHEROIDS

In order to gain a qualitative idea of the resonance
characteristics of spheroids, we will present a brief study on
these resonant modes using simulations and theory based on
quasistatic approximation. The polarizability for an ellipsoid
under quasistatic approximation can be described using the
depolarization factor given by the following expression:32

L1 =
∫ ∞

0

abc

2(s + a2)3/2(s + b2)1/2(s + c2)1/2
ds.

In the above equation, a, b, and c represents the semiaxes
lengths of the ellipsoid, and L1 represents the depolarization
factor along axis a. Similar expressions could be written for
the depolarization factors along other directions. In the case of
a prolate spheroid (a > b = c), the depolarization factor can
be written in the following form:

L1 = 1 − e2

e2
[−1 + tanh−1(e)],

where e2 = 1 − (b/a)2.32 The polarizability of the ellipsoid
(α = p/E) can be expressed in the following form:

α1 = 4πεmabc
ε1 − εm

3εm + 3L1(ε1 − εm)
, (1)

where ε1 and εm are the permittivity of the ellipsoid and the
surrounding medium, respectively. The ellipsoid undergoes
resonance when the real part of the denominator goes to zero.
Assuming the surrounding medium to be lossless, this results
in the following condition for resonance:

Re(ε1) = −εm

1 − L1

L1
. (2)

To test this theory, we performed a series of simula-
tions with spheroids of various aspect ratios. The full-wave
numerical simulations were performed using a commercial
finite-element-method- (FEM) based solver (COMSOL Mul-
tiphysics). The meshing was done with tetrahedral cubic
elements. The simulation domain is surrounded by a perfectly
matched layer (PML) in order to absorb the outgoing waves.
The scattering cross sections are evaluated by integrating the
intensity of the scattered wave over a closed surface enclosing
the scatterer. The scattered power thus obtained is divided
by the incident intensity to yield the scattering cross section.
The relative permittivity of silver is calculated using the

standard Drude model, i.e. ε(ω) = ε∞ − ω2
p

ω(ω+iγ ) , with realistic
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losses obtained from experimental data in the literature.
The parameter values are as follows: ε∞ = 5.0, ωp =
9.2159 eV(fp = 2.228 × 1015 Hz), and γ = 0.0212eV
(fγ = 5.12 × 1012 Hz).33

Figure 2 shows the results of simulations where the minor
axis of the spheroid was fixed at 20 nm, and the major
axis (a) was varied between 20 and 100 nm. Figure 2(a)
shows the scattering efficiency of the spheroid as a function
of the wavelength and the major axis of the spheroid. The
scattering efficiency is defined as the ratio of the scattering
cross section to the geometrical cross section. Figure 2(b)
shows the resonance wavelength as a function of the major
axis obtained using the simulation data and the analytical
resonance wavelength obtained using Eq. (2). The simulation
and analytical plots match reasonably well except for a small
red shift of around 20 nm in the simulation results. Figure 2(c)
shows the plots of the scattering efficiency as a function of the
wavelength for the spheroids of various lengths. Figure 2(d)
shows the resonance mode profile for a 100-nm-long spheroid
at a wavelength of 660 nm.

In order to describe the resonance of a pair of spheroids,
we can use the coupled dipole approximation along with the
polarizability calculated for the single spheroids. If two dipoles
with polarizability given by α1 and α2 are located at r1 and r2,
the effective dipole moment of the two polarizable dipoles can

be written as follows:

p1 = α1[E0 + ¯̄G(r1,r2)p2]

p2 = α2[E0 + ¯̄G(r2,r1)p1],

where ¯̄G represents the dyadic Green’s function and E0 repre-
sents the incident field. When both the spheroids are linearly
aligned along with the polarization of the incident electric field,
the above equation can be simplified by considering only the
relevant component of the various vectors and the Green’s
function. Under this approximation, we can write the dipole
moment as follows:

p1 = α1
[1 + α1G(r1,r2)]

[1 − α1α2G(r1,r2)G(r2,r1)]
E0.

When both the spheroids are identical, this expression could
be further simplified by setting α1 = α2 and utilizing the
reciprocity in Green’s function:

p = αE0

1 − αG(r1,r2)
.

This yields the following formula for the effective polariz-
ability:

αe = α

1 − αG
.
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FIG. 2. (Color online) (a) Scattering efficiency (log scale) as a function of wavelength and the major axis (length) of the spheroid. (b)
Resonance wavelength as a function of the major axis. (c) Scattering efficiency (linear scale) as a function of the wavelength for spheroids
with various major axis, a. (d) Field map for a spheroid under resonance (a = 100 nm, λ = 660 nm). The color represents the electric field
component along the major axis, and the arrows represent the direction of the electric displacement vector. For all results, the minor axis of the
prolate spheroid is fixed at 20 nm.
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We have dropped the coordinate inputs in the Green’s
function for the sake of brevity. Using the formula for α

from Eq. (1) and setting the denominator of αe to zero
yields the following resonance condition for the coupled
spheroids:

Re(ε1) = −εm

(1 − L1 + V Gεm)

(L1 − V Gεm)
, (3)

where V is the volume of the spheroid. The above equation
assumes the G is real, which is a good approximation when
the spheroids are located close to each other. In the general
case, we could easily account for a complex G by directly
equating the real part of the denominator of αe to zero.
From Eq. (3), we can see that the coupling between the two
spheroids, represented by G, serves to push the resonance
to more negative values of ε1. For a Drude type material,
this implies a red shift in the resonance wavelength. To test
this theory, we performed a series of simulations where two
spheroids (major axis = 100 nm, minor axis = 20 nm) were
separated by a gap size ranging from 5 to 100 nm. The results
are shown in Fig. 3. Figure 3(a) shows the scattering efficiency
as a function of the wavelength and the gap size. As expected,
we see that the resonance wavelength shifts towards longer
wavelengths as the gap size is decreased. Figure 3(b) shows a
comparison between the simulated resonance wavelength and
the analytical equation. Two adjustments had to be performed
on Eq. (3); first, a red shift of 20 nm was added to account

for the slight mismatch between the simulated and analytical
resonance wavelength for single spheroids, as evident from
Fig. 2(b). Secondly, the coupling factor (G) was reduced by
a factor of 3. This was done to account for the fact that the
spheroids have a finite extent, whereas Eq. (3) was derived
by assuming that the spheroids behave like point dipoles.
Hence, the coupling factor G gets averaged over the finite
extent of the spheroid, resulting in a lower value. Due to this,
although the analytical expression reproduces the trend really
well, it does not provide good quantitative agreement with
the full-wave simulations, unless we use a fitting parameter
to account for the averaging effect caused by the finite size
of the spheroids. Reducing G by a factor of 3 provided the
best fit with the full-wave simulation results. Figure 3(c) plots
the scattering efficiency as a function of the wavelength for
selected gap sizes. We can see that, even though the resonance
wavelength shifts with the gap size, the maximum scattering
efficiency does not show a lot of variation. Figure 3(d) shows
the resonance mode profile for a gap size of 20 nm at a
wavelength of 683 nm.

From the above results, we can infer that, although changing
the gap size changes the resonance wavelength of the antenna,
the shift is not very significant until very small gap sizes are
reached. Hence, relying solely on the gap size to tune the
resonance of a nanoantenna is not very practical. For this
reason, we use both the length of the spheroid and the gap
size to achieve resonance at the desired wavelength.

0 20 40 60 80 100
650

700

750

Gap size (nm)

W
av

el
en

gt
h 

(n
m

)

 

 

 

 

650 700 750
0

5

10

15

20

25

30

35

40

Wavelength (nm)

Q
sc

a

 

 

(b) Simulation

Theory

(c)

0 50–50

(d)

10 20 30 40 50 60 70
650

700

750

Gap size (nm)

W
av

el
en

gt
h 

(n
m

)

Qsca

 

 

10

20

30

40

50

60
(a)

gap = 5 nm
gap = 10 nm
gap = 20 nm
gap = 40 nm
gap = 70 nm

FIG. 3. (Color online) (a) Scattering efficiency (linear scale) as a function of wavelength and the gap size. (b) Resonance wavelength as a
function of the gap size. (c) Scattering efficiency (linear scale) as a function of the wavelength for spheroid pairs with various gap size. (d) Field
map for a spheroid under resonance (gap size = 20 nm, λ = 683 nm). The color represents the electric field component along the major axis,
and the arrows represent the direction of electric displacement vector. For all results, the major and minor axes of the two prolate spheroids are
fixed at 100 and 20 nm, respectively.
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III. RESULTS FOR THREE-ANTENNA STRUCTURE

Having analyzed the individual spheroids and paired
spheroid, we now move to the three-nanoantenna structure
shown in Fig. 1(a). The three nanoantennas are assumed to be
made of silver, and all the nanoantennas are designed in the
shape of prolate spheroids. The input antenna for the higher
frequency (ω1) has a major axis of 100 nm and minor axis
of 20 nm. The input antenna for the lower frequency (ω2)
has a major axis of 200 nm and minor axis of 20 nm. The
output antenna, which is used to enhance the DF signal, is
the longest with a major axis of 280 nm and minor axis of
20 nm. The gap for all three antennas is set at 12 nm. The
nonlinear material is assumed to be a sphere of radius 5 nm.
Because of the symmetry requirements for χ (2), the material
is assumed to be GaAs, which belongs to crystal class 4̄3m

(d16 = χ
(2)
xyz

2 = 370pm/V).12

In order to arrive at the final dimensions of all the antennas,
the initial optimization is carried out by calculating the scatter-
ing cross section of the triple-antenna structure, in the absence
of the nonlinearity in the particle at the gap, for the three
different incident polarizations corresponding to the two input
frequencies and one output frequency. The scattering cross
section (SCS) plots are shown in Fig. 4.

We see that the input antenna for the higher input frequency
has two resonances (around λ = 700 and 800 nm), and the
input antenna for the lower input frequency has one resonance

(around λ = 1260 nm). The third antenna, which is designed
for the output DF signal, has a resonance at a wavelength of
1700 nm, which is very close to the wavelength corresponding
to the difference frequency (1575 nm) when the two inputs
are set to 700 and 1260 nm. The scattering cross section
line shapes in Fig. 4 are markedly more complicated than
the line shapes in Figs. 2 and 3. This happens due to the
fact that, in this case, there are three antennas, and there is
some degree of coupling between them. While deciding on
which resonances are appropriate for an antenna application,
it is also important to look at the electric field in the antenna
gap where the nonlinear particle is placed. The electric
field enhancement (inside the nonlinear particle at the gap
but with the nonlinear susceptibility set to zero for now)
corresponding to the scattering cross sections are shown in
Fig. 5.

Next, we put back the nonlinear susceptibility in the particle
at the gap, and we consider the full-wave nonlinear simulation
in order to calculate the DFG conversion cross section. For
this simulation, the incident field is set to 106 V/m. In order to
quantitatively study the effect of the three antennas, we also
consider a couple of control cases. In the first case, we assume
we only have the input antenna for higher frequency, but no
input antenna for the lower input frequency and no output
antenna. In the second case, we assume we have the two input
antennas but no output antenna. Finally, in the third case, we
assume all three antennas. The results are shown in Fig. 6.
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FIG. 4. (Color online) Scattering cross sections of the three-antenna structure shown in Fig. 1(a), for the cases of (a) z-oriented polarization
for the incident signal with radian frequency ω1, (b) y-oriented polarization for the incident signal with radian frequency ω2, and (c) x-oriented
polarization for the incident signal with radian frequency ω1 − ω2. For the evaluation of the scattering cross section, the nonlinearity of the
material in the particle is assumed to be zero. The schematic shows the coordinate directions with the three antennas.
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FIG. 5. (Color online) Field enhancement inside the nonlinear particle, i.e. the ratio of the magnitude of the electric field inside the
nanoparticle and the magnitude of the incident electric field, for the cases shown in Fig. 2, i.e. (a) z-oriented polarization for the incident signal
with radian frequency ω1, (b) y-oriented polarization for the incident signal with radian frequency ω2, and (c) x-oriented polarization for the
incident signal with radian frequency ω1 − ω2. For the evaluation of the field enhancement, the nonlinearity of the material in the particle is
assumed to be zero. The schematic shows the coordinate directions with the three antennas.

In this figure, the DFG cross sections are plotted as a
function of two input frequencies (ν1 and ν2) shown on two
axes. The DFG cross section is defined as the ratio of the
total DF power and the geometric mean of the intensities
for the two inputs. With this representation, the enhancement
due to the Purcell effect would show up as a straight line.
For the first control case (with only ω1 antenna present),
we can only see the lightning rod effect due to the input
antenna corresponding to ω1. Note that we see two peaks
corresponding to the two resonances of the ω1 antenna, as also
shown in Fig. 4, for the z polarization. For the second control
case, we see the lightning rod effect from both input rods,
and we see a stronger enhancement in the DFG signal when
the lighting rod effects from the two input antennas overlap.
There is a four-orders-of-magnitude enhancement in the DFG
cross section compared to the first control case. Finally, when
we have all three antennas present, we can see the Purcell
effect enhancement from the output antenna in addition to
the two lighting rod effects from the two input antennas. The
Purcell effect manifests itself in the form of diagonal lines
corresponding to the straight lines given by ν1 − ν2 = ν3,res,
where ν3,res is the resonance frequency of the output antenna.
We also see another four-orders-of-magnitude enhancement in
the final case when compared to the second control case.

The field enhancement due to the first antenna is around
50, suggesting an enhancement of 2500 in the DFG emission

due to the first antenna. The second input antenna provides
the field enhancement of about 100, resulting in an increase
of factor 10,000 in the DFG emission, and this is the four
orders of magnitude enhancement we note due to the second
antenna in Fig. 6(b). The third (i.e. output) antenna gives a
field enhancement of another 100, thus another four-orders-
of-magnitude enhancement in the emission. Overall, the total
enhancement in the DFG signal from all three antennas is
around 2.5 × 1011.

IV. RESULTS FOR TWO-ANTENNA STRUCTURE

When the two input signals have frequencies that are near
each other in the spectral domain, the first two antennas can
be replaced with one single antenna for the field enhancement
of both input signals. However, in this case, the difference
frequency can be relatively low, e.g. in the THz regime, and
thus the output antenna for the Purcell enhancement may be
rather large. Figure 1(b) shows the sketch of this scenario.
The antennas are set to silver with the same permittivity as
in the previous sections. The nanoantenna (input antenna) is
designed in the shape of a prolate spheroid with a major axis of
100 nm and a minor axis of 20 nm. The output antenna, on the
other hand, is shaped in the form of a cylinder with a radius of
100 nm. Each arm of the output antenna is 7.5 μm in length.
The length is chosen to be a quarter of the output wavelength
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FIG. 6. (Color online) DFG emission cross sections for the three-antenna structure with the nonlinear particle in the gap (a) with only ω1

antenna present, (b) with ω1 and ω2 antennas present, and (c) with all three antennas present. These simulations include nonlinearity.

(λ = 30 μm). The gap sizes for the input and output antennas
are set at 12 and 200 nm, respectively. The nonlinear material is
a sphere of radius 5 nm. In this geometry, both the input signals
use the same nanoantenna in order to achieve enhancement
via the lightening rod effect. The output signal is enhanced
via Purcell effect using the output antenna. The symmetry
requires the χ (2) of the material to be of form χ

(2)
ijj , where

i �= j . Such symmetry is followed by materials belonging to
the crystal class mm2, m, 3, 3m, etc. For the simulations in
this work, we assume the material to be potassium titanyl
phosphate (KTP), which belongs to crystal class mm2 (d23 =
χ

(2)
zyy

2 = 6.5pm/V).34

The dimensions of the antennas are optimized by monitor-
ing the scattering cross sections and the field enhancements
inside the nonlinear material for incident radiation at input
frequencies. In this case, we have one control case where
the output antenna is removed from the system. Since the
scattering cross section is dominated by the output antenna
when it is present, here we show the scattering cross section
only for the control case in Fig. 7(a). However, for the field
enhancement inside the nonlinear particle, we can compare the
two scenarios, as presented in Fig. 7(b).

We see a strong resonance at both 700 and 800 nm. The
scattering cross section in Fig. 7(a) looks somewhat different
than that in Fig. 4(a), even though the z-oriented antenna
in the three-antenna structure is identical to the z-oriented
antenna in the two-antenna structure. This difference is caused
by the fact that, in Fig. 4(a), all three antennas were taken
into account, whereas in Fig. 7(a), we ignored the THz
output antenna in order to see more clearly the scattering

response of the input antenna. The field enhancement inside
the nonlinear material seems to be more robust at 800 nm
and is around 30 even in the presence of the large output
antenna. If we assume that the output frequency is set to 10
THz (≈30 μm wavelength) and the higher frequency input
signal at a wavelength of 800 nm, the lower frequency input
signal should be at a wavelength of around 822 nm since
the difference-frequency signal corresponding to input signals
at 800 and 822 nm has a wavelength of 30 μm. Hence, the
resonance should have a bandwidth of at least 20 nm in order
to simultaneously enhance both input signals. In this case, the
bandwidth of the resonance is around 40 nm.

Next, we utilize the full-wave simulation in order to
calculate the DFG conversion efficiency. As in the previous
case, here the incident field is set to 106 V/m. The results
are plotted in Fig. 7(c). We see an enhancement of 600 folds
when the output antenna is present. This is in addition to the
enhancement caused by the input antenna, which can be easily
estimated by using field enhancement values from Fig. 7(b),
and it comes out to be around a factor of 105. Therefore, the
overall enhancement of seven orders of magnitude may be
achieved by using the two-antenna structure here.

V. SUMMARY AND CONCLUSION

Using a series of full-wave numerical simulations, we have
demonstrated a nano- (or micro- in case of THz output) scale
all-optical frequency mixer that provides the product of two
optical signals at the difference frequency. The difference
frequency could lie either in the optical regime or in the
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FIG. 7. (Color online) Scattering cross section, field enhancement, and DFG emission cross section for the two-antenna structure shown
in Fig. 1(b): (a) Scattering cross section for the control structure, i.e. where the output antenna is absent. (b) Electric field enhancement inside
the nonlinear material with and without the output antenna. (c) DFG emission cross section with and without the THz output antenna. The
nonlinearity in the particle is set to zero for the evaluation of the scattering cross section and the field enhancement.

THz range. Overall, the output signal may be enhanced by
a factor of around 1011 in the case where the output frequency
is in the optical range, and by a factor of 107 when the
output frequency is in the THz range. By tuning the output
antenna to be resonant at the sum frequency, we can easily
convert the device to output the product at the sum frequency
(ω1 + ω2) instead of the difference frequency (ω1 − ω2).
The output signal could be further sent to optical amplifiers
in order to form an all-optical communication system that
could also entirely modulate and demodulate signals in the
optical domain. Analogous to the mixer element in electronic
circuits, the structure we investigated here may be considered

as another subwavelength optical lumped circuit element in
the optical metatronic paradigm. This structure may also be
utilized as a building block in the design of bulk nonlinear
optical metamaterials in which two optical signals may be
mixed in order to generate different-frequency signals.

ACKNOWLEDGMENTS

This work is supported in part by the US Office of
Naval Research (ONR) Multidisciplinary University Research
Initiative (MURI) Grant No. N00014-10-1-0942.

*Corresponding author: engheta@ee.upenn.edu
1J. G. Proakis and M. Salehi, Communication Systems Engineering,
2nd ed. (Prentice Hall, Upper Saddle River, NJ, 2002).

2P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge
University Press, Cambridge, 1989).

3R. A. Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750
(1988).

4M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313,
502 (2006).

5M. W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 15,
5238 (2007).

6A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131
(2006).

7I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S.
Kivshar, Opt. Express 16, 20266 (2008).

8C. Argyropoulos, P. Y. Chen, G. D’Aguanno, N. Engheta, and
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