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Nanomechanical resonator coupled linearly via its momentum to a quantum point contact
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We use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current
noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator
is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear
signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at
a value of the relative tunneling phase (η = −π/2) where such correlations are expected to be maximized. We
also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience
thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled
environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is
correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath
and suggesting that a future calculation valid at lower bias voltage, stronger tunneling, and/or stronger coupling
might reveal interesting quantum effects in the oscillator dynamics.
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I. INTRODUCTION

Nanoelectromechanical systems (NEMS), in which a nano-
to-micrometer scale mechanical resonator is coupled to an
electronic device of similar dimensions, have received a
great deal of theoretical and experimental attention in recent
years, as these systems are a promising tool for gaining a
deeper understanding of the quantum-to-classical transition
in physics, in addition to their useful applications in ultra-
sensitive metrology.1 A wide variety of NEMS have already
been realized experimentally, such as a doubly clamped
nanobeam coupled to a superconducting single-electron tran-
sistor (SSET),2 a suspended carbon nanotube coupled to an
embedded quantum dot3 or single-electron transistor (SET),4

a doubly clamped beam coupled to an external SET,5 and
a micromechanical cantilever coupled to a quantum point
contact (QPC).6 There have also been a number of theoretical
studies of NEMS, in which the oscillator is coupled linearly
via its position to a QPC7–10 or a SET.11 It has been shown both
theoretically and experimentally that the effect of the electronic
device (detector) on the oscillator is very similar to that of a
thermal bath with a certain effective temperature and damping
constant, even though the detector is in a far-from-equilibrium
state.1 Moreover, the oscillator can also have a strong effect on
the detector, producing a Fano-like current noise spectrum.12

Most of the studies conducted so far have focused on
a position-dependent linear coupling between the oscillator
and the detector. It is interesting to see how a momentum-
dependent coupling changes the oscillator steady state and
the detector current noise spectrum, and whether there is a
nontrivial interplay between the effects of the momentum-
coupled thermal bath associated with the detector and those
of the position-coupled bath due to the environment of
the oscillator. Normally, when a position-coupled detector
acts as a thermal bath with effective temperature Tdet and
damping constant γdet, in addition to the environmental
bath temperature T and damping γ0, the oscillator is in
a thermal state with effective damping γeff = γ0 + γdet and
temperature Teff = (γ0T + γdetTdet)/γeff .1 In the absence of an

environment, a momentum-coupled detector is equivalent to
a position-coupled one under the canonical transformation,
which interchanges the oscillator position and momentum
coordinates. However, the unavoidable presence of a position-
coupled environmental bath breaks this symmetry, leading to
potentially new and interesting physics.

One example of a NEMS which, after an appropriate
transformation (see Sec. II below), can be described by a
momentum-coupled effective Hamiltonian, was studied exper-
imentally by Stettenheim et al.13 Their experiment involved
a nanomechanical GaAs oscillator coupled piezoelectrically
to a radio-frequency QPC embedded in it. Measurements of
the current noise through the QPC detector showed that the
quantum statistical fluctuations of tunneling electrons could
affect the macroscopic dynamics of the host crystal. Figure 1(a)
(reproduced from Ref. 13) shows the GaAs crystal containing
a two-dimensional electron gas (2DEG). A displacement dy of
the front and back faces of the crystal leads to a compression dz

at the midpoint of the left face and a corresponding expansion
dz at the midpoint of the right face, as shown. The resulting
strain Syz = 2dz/w, where w is the width of the crystal,
produces, through the piezoelectric coupling constant ex4, a
bulk polarization Px = ex4Syz, which is assumed to be in the
direction of transport through the QPC. The 2DEG electrons
will try to screen the polarization charge, but under the gates
and in the QPC, where the 2DEG is depleted, there will be
a net electric field and a corresponding potential difference
dε = λdz between the left (L) and right (R) reservoirs, leading
to a current I through the QPC. One of the normal vibrational
modes of GaAs has a polarization field as in Fig. 1(a), and thus
the QPC current I can provide information on the displacement
dz of the crystal as it oscillates in this mode. On the other hand,
the unavoidable shot noise due to partitioning of electron-hole
pairs at the QPC leads to charge fluctuations dn in reservoirs
L and R, and a corresponding back-action force dF = ηdn

on the oscillator via the piezoelectric effect, completing a
feedback loop between the mechanical and electronic degrees
of freedom. Thus one expects both the mechanical motion
of the resonator and the current noise through the QPC
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FIG. 1. (Color online) (a) Displacement and associated polariza-
tion of the GaAs crystal [Fig. 1(b) in Ref. 13]. (b) Schematic diagram
of the different electronic reservoirs and tunnel barriers in the system
[Fig. 1(c) in Ref. 13]. The symbols are defined in the text.

detector to be peaked at the oscillator frequency. An interesting
result in the experiment, which we set out to investigate
theoretically in the present study, is that the current noise
spectrum of the QPC displays super-Poissonian values close to
the oscillator frequency yet sub-Poissonian values away from
it, indicating bunching and antibunching of electron tunneling
events due to the coupling to the oscillator. One important
caveat to keep in mind when comparing theory and experiment,
however, is that the experiment was performed in the strong
tunneling regime, where the QPC conductance GQPC ≈ 0.5G0

and G0 = 2e2/h is the conductance quantum, whereas our
theoretical calculation is based on the assumption of weak
tunneling. The case of strong tunneling will be considered in
a future publication.

The present paper is structured as follows: In Sec. II, we
perform a polaron-like transformation on the Hamiltonian
of the system described above, leading to an oscillator
momentum-dependent tunneling amplitude across the QPC,
and derive a Born-Markov approximated master equation
for the reduced oscillator density matrix. In Sec. III, we
solve the master equation to obtain the average current and
symmetrized-in-frequency current noise spectrum through the
QPC. The noise spectra thus obtained are investigated in
Sec. IV for a wide range of system parameters. In Sec. V, we
use the Wigner representation of quantum mechanics to study
the steady state of the oscillator. We present our conclusions in
Sec. VI. Details of the polaron transformation, the derivation
of the Born-Markov master equation, and its solution to obtain
the current noise spectrum are presented in Appendices A, B,
and C, respectively.

II. DERIVATION OF THE BORN-MARKOV MASTER
EQUATION FOR THE FOURIER-TRANSFORMED

REDUCED DENSITY MATRIX OF THE OSCILLATOR

As explained in the Introduction, the piezoelectric coupling
between the 2DEG reservoirs and the flexing GaAs crystal
can be modeled by a linear dependence of the single-electron
energy levels in the L and R reservoirs on the crystal
displacement [Fig. 1(b)]. The energy levels of the emitter
(E) and collector (C) reservoirs, which represent the leads
connected via tunnel barriers to the L and R reservoirs,
respectively, are assumed to be fixed. Thus one starts with
the Hamiltonian H = Hsys + Hbath + Hint, where the system,

interaction, and bath Hamiltonians are, respectively,

Hsys = h̄ωma†a +
∑
L

(εL − λx/2)b†LbL

+
∑
R

(εR + λx/2)b†RbR,

Hbath =
∑
E

εEb
†
EbE +

∑
C

εCb
†
CbC, (1)

Hint =
∑
E,L

h̄�ELb
†
EbL +

∑
C,R

h̄�CRb
†
CbRY †

+
∑
L,R

h̄�LRb
†
LbR + H.c.

Here the operators bi (b†i ) denote the annihilation (creation)
operators for the energy levels εi of a given reservoir i =
E,L,R,C, the Y operator counts electrons traversing the
RC reservoir barrier, the �ij are the tunneling amplitudes
between the various adjacent reservoirs, the parameter λ

describes the piezoelectric coupling between the (bosonic)
crystal vibrational mode x = xzp(a + a†) with frequency ωm

and the L, R reservoir electrons, and xzp is the vibrational
amplitude zero-point uncertainty. It is important to note that
we use x, and not z as in Ref. 13 and Fig. 1, as the direction
of motion of the oscillator throughout the rest of this paper.

The coupling described above is rather unusual; in most
electromechanical systems studied so far, the oscillator posi-
tion affects either the charge state of a single island2–5,11 or the
tunnel-barrier potential,6–10 rather than the reservoirs to the
left and right of the tunnel barrier. To obtain the current noise
spectrum, one could derive a Born-Markov approximated
master equation directly from the above Hamiltonian, tracing
over the bath degrees of freedom comprising the E and
C reservoir electrons. However, this approach can be quite
involved due to the large number of coupled second-order
moment equations that one needs to solve. An easier method is
to perform a polaron-like transformation on Eq. (1) and derive
a much simpler effective Hamiltonian for our system, in which
the coupling maps effectively onto a momentum-dependent
tunnel barrier potential. We replace H → UHU †, where the
unitary operator is

U = exp

[
− λxzp

2h̄ωm

(∑
L

b
†
LbL −

∑
R

b
†
RbR

)
(a† − a)

]
. (2)

Expanding to first order in the oscillator displacement and
neglecting the quartic terms in the bL and bR operators
as well as the momentum dependence in the E and C

contact resistance barrier terms, we arrive at the much simpler
Hamiltonian H = Hosc + Hbath + Hint, where

Hosc = h̄ωma†a, Hbath =
∑
L

εLb
†
LbL +

∑
R

εRb
†
RbR,

(3)

Hint =
[

1 − λxzp

h̄ωm

(a† − a)

] ∑
L,R

h̄�LRb
†
LbRY + H.c.,

and Y now counts electrons tunneling through the LR reservoir
barrier. This calculation is described in detail in Appendix A. In
the above derivation, we have assumed weak coupling between
the oscillator and QPC, λ̃ � 1, where the dimensionless
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coupling parameter is

λ̃ = λ√
2h̄mω3

m

(4)

and m is the oscillator mass, as well as weak tunneling,
t0 � 1, where the bare tunneling amplitude t0 is defined
below in Eq. (8). Together with the assumption of high
bias voltage across the QPC, eV/h̄ωm � 1, needed to make
the Born-Markov approximation described below, these are
the three main conditions of validity of our calculation. As
already mentioned, the experiment of Ref. 13 is in the regime
of strong tunneling, where the polaronic and Born-Markov
approximations are no longer valid and scattering matrix
methods can be used instead14—an approach we intend to
investigate in future work.

It is convenient to express Hint in terms of the oscillator
momentum, p̂ = (ih̄/2xzp)(a† − a):

Hint = T̂ (p)
∑
L,R

b
†
RbL + H.c., (5)

where

T̂ (p) = h̄�∗
LR

(
1 − i

λ

h̄mω2
m

p̂

)
Y †, (6)

and we have assumed that �LR is level-independent. From
this point, we follow the approach of Doiron,10 since our
Hamiltonian has exactly the same form as his, except that
his tunneling amplitude T̂ (x) is position-dependent. We can
write

T̂ (p) = 1

2π	
(t0 + eiηt1p̂)Y †, (7)

where 	 is the constant density of states in the reservoirs, and

t0 = 2π	h̄|�LR|, t1 = 2π	|�LR|λ
mω2

m

, η = −π

2
. (8)

We have taken the absolute value of �∗
LR since the overall

phase of t0 and t1 is unimportant and only the relative phase

difference η matters physically. In Ref. 8 and most other
studies so far, only the case of η = 0 was investigated for the
position-coupled system, implying a zero average back-action
force on the oscillator. In our case, η = −π/2 implies that
the average back-action force is nonzero [cf. Eq. (13) below;
under the canonical transformation, which interchanges the
oscillator position and momentum coordinates, F 0(η) indeed
becomes the average back-action force, cf. the first line of
Eq. (10) below]. The case of nonzero η is considered in Ref. 15,
where two tunnel junctions, one of which is linearly coupled
to an oscillator via its position, are arranged in an Aharonov-
Bohm-type setup, and the magnetic flux through the loop can
be used to tune the phase η between the oscillator-independent
and oscillator-dependent total tunneling amplitudes. It is
shown that when η = 0 mod π , the current noise spectrum
of the detector is proportional to the position spectrum of the
oscillator as in Ref. 8, but when η = π/2 mod π , the noise
spectrum is proportional to the momentum spectrum of the
oscillator. On the other hand, in Ref. 16 it is demonstrated
that for a nonstationary oscillator coupled to a single QPC
via its position, the current noise spectrum of the detector
is complex-valued and contains information about both the
oscillator position and the oscillator momentum, even when
η = 0.

Assuming that the oscillator-bath coupling is weak and the
bath correlations decay much faster than the characteristic
timescale of the oscillator, we can use a Born-Markov
approximation technique to derive a master equation for the
Fourier-transformed reduced oscillator density matrix

ρ(χ ; t) =
∑
N

eiχNρ(N ; t), (9)

where ρ(N ; t) = 〈N |ρosc(t)|N〉 is the N -resolved oscillator
density matrix and N is the number of electrons that have
tunneled from the left into the right lead at time t . The details
of this calculation are presented in Appendix B, and the final
result is

d

dt
ρ(χ ; t) = 1

ih̄

[
Hosc − F 0

(
−π

2

)
p̂,ρ(χ ; t)

]
−

∑
σ=±1

Dσ

h̄2 [p̂,[p̂,ρ(χ ; t)]] + i

h̄
m2ω2

m

∑
σ=±1

γ̃σ [p̂,{x̂,ρ(χ ; t)}]

− D0

h̄2 [x̂,[x̂,ρ(χ ; t)]] − i

h̄
γ̃0[x̂,{p̂,ρ(χ ; t)}] +

∑
σ=±1

σ (0)(eiχσ − 1)

(
ρ(χ ; t) − σ it1

2t0
[p̂,ρ(χ ; t)]

)

−
∑

σ=±1

σ iDσ

h̄2

(
eiχσ − 1

t2
1

)
(t0t1[p̂,ρ(χ ; t)]) +

∑
σ=±1

2Dσ

h̄2

(
eiχσ − 1

t2
1

)[
t2
1 (p̂ρ(χ ; t)p̂)

]

−
∑

σ=±1

σm2ω2
mγ̃σ

h̄

(
eiχσ − 1

t2
1

)
[t0t1{x̂,ρ(χ ; t)}] +

∑
σ=±1

im2ω2
mγ̃σ

h̄

(
eiχσ − 1

t2
1

)[
t2
1 (p̂ρ(χ ; t)x̂ − x̂ρ(χ ; t)p̂)

]
. (10)

We have defined

γ̃σ = h̄

4mωm

(
t1

t0

)2

[σ (h̄ωm) − σ (−h̄ωm)], (11)

Dσ = h̄2

4

(
t1

t0

)2

[σ (h̄ωm) + σ (−h̄ωm)], (12)

F 0(η) = h̄ sin η

(
t1

t0

)∑
σ

σσ (0), (13)
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where σ = ±1 and the forward (left to right) and backward
(right to left) tunneling rates are, respectively,

h+(E) =
∫ ∞

0
dε|t0|2f (ε − μL)[1 − f (ε − μR + E)],

(14)

h−(E) =
∫ ∞

0
dε|t0|2f (ε − μR)[1 − f (ε − μL + E)],

(15)

where μi and fi are the chemical potential and Fermi function
of reservoir i. We have also modeled the environment of the
oscillator as a thermal bath by including external diffusion and
damping terms [the first and second terms on the second line
of Eq. (10), respectively], where

D0 = mγ̃0h̄ωm coth

(
h̄ωm

2kBT

)
≈ 2mγ̃0kBT (when kBT � h̄ωm), (16)

γ̃0 is the external oscillator damping constant (defined in such
a way that −2γ̃0p is the classical external damping force), and
T is the temperature of the environment.

If the external damping and diffusion terms were not
present, our system would be identical under the canon-
ical transformation (p̂ ↔ mωmx̂) to the position-coupled
resonator-QPC systems studied by other groups,6–10 but with
nonzero η. However, the presence of such terms destroys this
correspondence and creates a fundamentally new situation, in
which there is a potentially interesting interplay between the
effects of the position-coupled environment and those of the
momentum-coupled detector on the oscillator.

III. SOLVING THE MASTER EQUATION
TO FIND THE AVERAGE CURRENT AND

SYMMETRIZED-IN-FREQUENCY
CURRENT NOISE SPECTRUM

We assume a large forward bias [so that we can drop
the σ = −1 terms in Eq. (10)] and zero temperature in
the leads so that we can set f (ε − μL,R) = �(μL,R − ε)
in the definitions of ±(E) and compute the resulting simple
integrals in Eqs. (14) and (15). The average current and current
noise can be computed from the moments of N using the
formula

〈Nn(t)〉 = i−nTr

(
dn

dχn
ρ(χ ; t)

)
χ=0

(17)

and taking the χ derivative and trace of Eq. (10) [cf. Eq. (9)].
After a straightforward calculation we find for the average
current

〈I 〉 = e
d

dt
〈N〉 = e2V

h

(
t2
0 + t2

1 〈p2〉) − 2em2ω2
m

h̄

t0

t1
γ̃+〈x〉

− em2ω2
mγ̃+, (18)

where γ̃+ = h̄2t2
1 /2mh and eV = μL − μR is the QPC bias

voltage. To find the symmetrized-in-frequency current noise
spectrum,

S̄I (ω) = 1

2

∫ ∞

−∞
〈{δI (τ ),δI (0)}〉eiωτ dτ, (19)

where δI = I − 〈I 〉, we use the MacDonald formula,17

S̄I (ω) = 2e2ω

∫ ∞

0
dt sin(ωt)

d

dt
〈〈N2(t)〉〉. (20)

The time derivative of the variance of N can be computed from
the time derivatives of the moments using the expression

d

dt
〈〈N2(t)〉〉 = d

dt
〈N2(t)〉 − 2〈N (t)〉 d

dt
〈N (t)〉. (21)

One obtains the following result:

S̄I = 2e〈I 〉 + �S̄I , (22)

where the first term is the Poissonian (oscillator-independent)
part of the noise, and the oscillator-dependent part is given by
the integral

�S̄I = 2e2ω

∫ ∞

0
dt sin(ωt)

(
−4m2ω2

mγ̃+
h̄

t0

t1
〈〈xN〉〉

+ 2eV

h
t2
1 〈〈p2N〉〉

)
. (23)

It is possible to solve analytically for the time dependence
of the cumulants 〈〈xN〉〉 and 〈〈p2N〉〉, and integrate them to
obtain an algebraic expression for �S̄I . [Note: The double
angular brackets used throughout this article denote second
cumulants, i.e., covariances, between products of powers of
the oscillator coordinates (e.g., x, p2, or xp) and N , not higher
order cumulants.] The full calculation and results are presented
in Appendix C.

IV. RESULTS

To plot the current noise spectrum, it is useful to put the
equations in Appendix C in dimensionless form. We define

x̃ = x

xzp
, p̃ = p

pzp
, τ = ωmt, ω̃ = ω

ωm

(24)

to be the dimensionless oscillator position, oscillator momen-
tum, time, and oscillator frequency, respectively, where

xzp =
√

h̄

2mωm

, pzp =
√

h̄mωm

2
(25)

are the oscillator position and momentum zero-point uncer-
tainties. Our system is then governed by five dimensionless
parameters:

Ṽ = eV

h̄ωm

, λ̃ = λ√
2h̄mω3

m

,

(26)

̃0 = γ̃0

ωm

, T̃ = kBT

h̄ωm

,

and t0, i.e., the dimensionless bias voltage, coupling, external
damping, external temperature, and bare tunneling amplitude.

We plot the non-Poissonian part of the symmetrized-in-
frequency current noise spectrum in units of the average
current, i.e., �S̄I (ω)/2e〈I 〉, versus dimensionless frequency
ω̃ for different values of the dimensionless parameters. First,
we explore the regime of high bias voltage and high external
temperature. Each of Figs. 2–6 shows plots of the non-
Poissonian current noise for different values of a certain
dimensionless parameter, the other parameters being held
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FIG. 2. (Color online) Dimensionless non-Poissonian current
noise spectrum for t0 = 0.1, 0.2, and 0.3. The remaining parameters
are Ṽ = 2 × 104, λ̃ = 1 × 10−3, ̃0 = 5 × 10−6, and T̃ = 1 × 104.

fixed. The parameters being varied are the bare tunneling
amplitude t0 (Fig. 2), the bias voltage Ṽ (Fig. 3), the coupling
λ̃ (Fig. 4), the external temperature T̃ (Fig. 5), and the external
oscillator damping ̃0 (Fig. 6).

In all the plots, one observes three peaks in the noise
spectrum at ω̃ = 0, ±2, as well as two resonance-antiresonance
features at ω̃ = ±1 (the noise is a symmetric function of ω̃

and is not plotted for ω̃ < 0). The peaks, especially the ones at
ω̃ = 0, ±2, are very sharp and can be as high as 106 for some
parameter values, so it was necessary to truncate them in order
to resolve the off-peak behavior. To give a general sense of the
peak magnitudes (heights or depths) and their variation, the
ω̃ = 0 peak ranges from 6 × 102 to 8 × 105, the ω̃ = ±2 peaks
are usually half as high and range from 3 × 102 to 4 × 105, the
ω̃ = ±1 resonance peaks range from 2 × 10−3 to 1 × 102,
and the antiresonance features range from −1 × 10−2 to
−2 × 10−6. The peaks and resonance-antiresonance features
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V = 2 × 104
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FIG. 3. (Color online) Dimensionless non-Poissonian current
noise spectrum for Ṽ = 2 × 103, 2 × 104, and 2 × 105. The re-
maining parameters are t0 = 0.2, λ̃ = 1 × 10−3, ̃0 = 5 × 10−6, and
T̃ = 1 × 104.
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FIG. 4. (Color online) Dimensionless non-Poissonian current
noise spectrum for λ̃ = 5 × 10−4, 1 × 10−3, and 2 × 10−3. The
remaining parameters are t0 = 0.2, Ṽ = 2 × 104, ̃0 = 5 × 10−6, and
T̃ = 1 × 104.

tend to broaden and become higher/deeper as t0, Ṽ , and
λ̃ increase (Figs. 2–4). The peaks at ω̃ = 0, ±2 broaden
and become higher as T̃ increases, but broaden and become
lower as ̃0 increases. At ω̃ = ±1, the resonance peak gets
higher as T̃ increases and lower as ̃0 increases, whereas
the antiresonance gets shallower in both cases, and there is
no noticeable change in the width of either feature (Figs. 5
and 6).

Our noise spectrum is similar to that derived in Ref. 8
for a position-coupled oscillator and QPC with η = 0, except
that we see a resonance-antiresonance feature instead of a
positive peak at ω̃ = ±1. In the η = 0 case, the noise spectrum
near ω̃ = ±1 is proportional to the position spectrum of the
oscillator.8 It can be expressed as a leading term, corresponding
to a classically fluctuating junction conductance, minus a
quantum correction term, which arises from the correlations
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5x 10
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eI
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T = 5 × 103

T = 1 × 104

T = 2 × 104

FIG. 5. (Color online) Dimensionless non-Poissonian current
noise spectrum for T̃ = 5 × 103, 1 × 104, and 2 × 104. The re-
maining parameters are t0 = 0.2, Ṽ = 2 × 104, λ̃ = 1 × 10−3, and
̃0 = 5 × 10−6.
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FIG. 6. (Color online) Dimensionless non-Poissonian current
noise spectrum for ̃0 = 0, 5 × 10−6, and 5 × 10−5. The remaining
parameters are t0 = 0.2, Ṽ = 2 × 104, λ̃ = 1 × 10−3, and T̃ =
1 × 104.

between the intrinsic shot noise of the detector and the
back-action force on the oscillator. This quantum correction is
always smaller than the leading term when η = 0, resulting
in a positive Lorentzian peak at ω̃ = ±1. In Ref. 9, the
non-Gaussian correlations between the junction current and
back-action force are derived using a simple model, in which
tunneling electrons impart random momentum kicks to the
oscillator at the exact moment of tunneling, the typical size of
the kicks being set by the Heisenberg uncertainty principle. In
the η = 0 case, the most notable effects of these correlations
are an enhancement of the ω̃ = 0 peak and a suppression of
the ω̃ = ±2 peaks relative to the classical picture. However,
in the η = −π/2 case they have a much more profound
effect on the noise spectrum. Reference 15 shows that in
this case the current noise near ω̃ = ±1 is proportional to
the momentum spectrum of the oscillator (for our momentum-
coupled system, this would be the position spectrum under
the canonical transformation), and again there is a leading
classical term and a quantum correction, but now the quantum
correction can be larger than the classical term for a cold
enough environment (kBT � eV ), producing a negative peak
at ω̃ = ±1. Even more interestingly, there is one more term
in the noise at η = −π/2, namely the last term in Eq. (8)
of Ref. 15, which is nonnegligible when the total oscillator
damping due to the environment and the detector is very
small, as is the case in our plots. This is exactly the term
leading to the Fano-like resonance-antiresonance features in
our spectra. Thus, due to the nonzero tunneling phase, our
spectra show clear signatures of the correlations between the
junction current and back-action force on the oscillator.

It is also interesting to note that our spectra are similar
to those obtained classically by Armour for the full noise
spectrum of a SET whose capacitance depends linearly on
the position of a nearby nanomechanical oscillator.11 In both
cases, the same peaks and resonance-antiresonance features
emerge, and the dependence of the peak heights and widths
on the system parameters is very similar. It is possible
that the quantum effects in our system somehow mimic the
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FIG. 7. (Color online) Dimensionless non-Poissonian current
noise spectrum for t0 = 0.05, 0.1, and 0.2. The remaining parameters
are Ṽ = 100, λ̃ = 0.01, T̃ = 0.01, and ̃0 = 10−6.

classical effects in the SET-oscillator system. The resonance-
antiresonance features at ω̃ = ±1 are also predicted to appear
in the back-action force spectrum of an oscillator coupled
linearly via its position to a generic detector.12 In our case, due
to η = −π/2, the detector current is exactly correlated with
the back-action force, so it is not surprising that we see the
same features in the current noise spectrum as well.

Next, we focus on the regime of low external temperature,
relatively low bias voltage (but still Ṽ � 1, as required by the
Born-Markov approximation), and comparable external and
internal damping, i.e., ̃0 ≈ t2

0 λ̃2/2π . We start with t0 = 0.1,
Ṽ = 100, λ̃ = 0.01, T̃ = 0.01, and ̃0 = 10−6 as the central
point in our parameter space, and vary each parameter around
its central value, keeping the other parameters fixed (Figs. 7–
11). In Fig. 10, the spectrum does not change appreciably
as a function of external temperature for T̃ � 1; hence it is
only plotted for T̃ = 0.01 and T̃ � 10. In this regime, the
magnitude of the ω̃ = 0 peak ranges from 9 × 10−4 to 80,
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FIG. 8. (Color online) Dimensionless non-Poissonian current
noise spectrum for Ṽ = 50, 100, and 200. The remaining parameters
are t0 = 0.1, λ̃ = 0.01, T̃ = 0.01, and ̃0 = 10−6.
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FIG. 9. (Color online) Dimensionless non-Poissonian current
noise spectrum for λ̃ = 0.005, 0.01, and 0.02. The remaining
parameters are t0 = 0.1, Ṽ = 100, T̃ = 0.01, and ̃0 = 10−6.

the ω̃ = ±2 peaks range from 6 × 10−4 to 40, the ω̃ = ±1
resonances vary between 5 × 10−8 and 2 × 10−4, and the
antiresonance features vary from −1 to −2 × 10−2. The
dependence of the peak heights and widths on the parameters
is much the same as in the high-voltage, high-temperature
regime. The main difference between the two regimes is
that the ω̃ = ±1 antiresonance features are relatively more
prominent in the low-temperature regime. In fact, the set
of parameter values t0 = 0.1, Ṽ = 100, λ̃ = 0.01, T̃ = 0.01,
and ̃0 = 10−6 appears to be a crossover point in parameter
space, where all the peaks are similar in magnitude (e.g., the
ω̃ = 0 peak magnitude is 0.3, the ω̃ = ±2 peaks are 0.15,
and the ω̃ = ±1 antiresonances are −0.25; the resonances
are negligible throughout this regime). For higher values of
t0, Ṽ , λ̃, and T̃ , and lower values of ̃0, the ω̃ = 0, ±2
peaks dominate, and for lower values of t0, Ṽ , λ̃, and T̃ , and
higher values of ̃0, the ω̃ = ±1 antiresonances dominate.
Besides, unlike in the high-temperature, high-voltage regime,
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FIG. 10. (Color online) Dimensionless non-Poissonian current
noise spectrum for T̃ = 0.01, 10, and 100. The remaining parameters
are t0 = 0.1, Ṽ = 100, λ̃ = 0.01, and ̃0 = 10−6.
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FIG. 11. (Color online) Dimensionless non-Poissonian current
noise spectrum for ̃0 = 10−8, 10−7, 10−6, and 10−5. The remaining
parameters are t0 = 0.1, Ṽ = 100, λ̃ = 0.01, and T̃ = 0.01.

here the current noise spectrum is sub-Poissonian (�S̄I < 0)
for |ω̃| > 1, except near the ω̃ = ±2 peaks, especially for large
t0, Ṽ , or λ̃, and approaches zero from below as ω̃ → ±∞. This
is consistent with Ref. 15, where the last term in Eq. (8), which
is responsible for the Fano-like feature at ω̃ = ±1, grows with
t0, Ṽ , and λ̃. Also, the first (Lorentzian) term is expected to be
negative when kBT � eV , explaining the suppression of the
resonance peak in this regime.

In the experiment of Ref. 13, the parameter values (e.g., for
sample A) are Ṽ ≈ 104, λ̃ = 7.2 × 10−6, ̃0 = 3.3 × 10−2,
and T̃ = 1.6 × 103,13 corresponding to our high-voltage,
high-temperature regime, with the external damping much
larger than the detector damping (̃0 � t2

0 λ̃2/2π ). It is
important to note, however, that the tunneling t0 is much larger
in the experiment (t2

0 = 0.5). Comparing the experimental and
theoretical results [e.g., Fig. 4(d) in Ref. 13 and Figs. 2–6
in this article], we find the same peaks at ω̃ = 0, ±1, and
±2. Both the experimental Fano factor and the theoretical
current noise vary over many orders of magnitude, indicating
strong electron-electron correlations due to interaction with the
oscillator. The ω̃ = ±2 peaks are somewhat less pronounced
in the experimental results. The small antiresonances predicted
theoretically in this regime are not resolved in the experiment,
possibly due to the background noise. The sub-Poissonian
noise observed at higher frequencies in the experiment is
absent from Figs. 2–6, but surprisingly does appear in the
low-temperature, low-voltage regime in Figs. 7–11.

For comparison purposes, in Fig. 12 we have also plotted
the theoretical current noise spectrum for the exact set of
parameter values used in the experiment. The theory fails
to predict the high super-Poissonian peaks, the resonances at
ω̃ = ±1, or the sub-Poissonian noise seen in the experiment.
It also overestimates the relative magnitude of the ω̃ = ±2
peaks. These discrepancies are probably due to the breakdown
of the theoretical method at strong tunneling, and suggest
that comparisons between theory and experiment should be
made with caution until the strong-tunneling regime of our
system has been investigated theoretically. As expected, our
theory fails to predict the sharp increase in peak heights as the
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FIG. 12. (Color online) Dimensionless non-Poissonian current
noise spectrum for the parameter values used for sample A in the
experiment of Ref. 13: t0 = 0.71, Ṽ = 1 × 104, λ̃ = 7.2 × 10−6,
T̃ = 1.6 × 103, and ̃0 = 3.3 × 10−2.

system enters the strong-tunneling regime. In fact, making the
coupling larger and the external damping smaller than in the
experiment, as in Figs. 2–6, partially “compensates” for this
failure, producing higher peaks more similar to those seen in
the experiment.

V. WIGNER FUNCTION REPRESENTATION AND
STEADY-STATE OSCILLATOR DYNAMICS

In order to investigate the steady-state behavior of the
oscillator, it is useful to translate the master equation into
the Wigner-Weyl formalism.18 Using the method outlined in
Bennett,9 one obtains

∂tW (x,p; χ ; t)

=
{
− p

m
∂x + mω2

mx∂p + F̄0

(
−π

2

)
∂x

+D+∂2
x + 2m2ω2

mγ̃+∂xx + D0∂
2
p + 2γ̃0∂pp

+ (eiχ − 1)

[
+(0) − h̄

2
+(0)

t1

t0
∂x − D+

h̄

t0

t1
∂x

+ 2D+
h̄2

(
p2 + h̄2

4
∂2
x

)
− 2m2ω2

mγ̃+
h̄

t0

t1
x

+m2ω2
mγ̃+(p∂p + ∂xx)

]}
W (x,p; χ ; t). (27)

Here we have assumed large bias voltage (the σ = −1 terms
are set to zero). In what follows, we also assume zero
temperature in the leads, just as in the previous sections.
Just as in the case of the position-coupled oscillator and
QPC studied in Ref. 9, a careful inspection of the above
equation shows that exactly half of the back-action damping
and diffusion [terms involving γ̃+ and D+ on the third line
of Eq. (27) as well as the second terms on the fifth and
sixth lines] is correlated with tunneling (multiplied by eiχ ),
whereas the other half is independent of tunneling events. The
precise correlation between the electron tunneling events and
the momentum kicks imparted to the oscillator suggests that

there is a departure from the simple model of the detector as
a thermal bath. On the other hand, the uncorrelated half of
the back-action means that one gains information about the
oscillator even when no electrons are tunneling.

The first three lines of Eq. (27) represent a classical Fokker-
Planck equation for an oscillator coupled to two equilibrium
baths, and agree well with Eq. (6a) in Ref. 9, except that in
our case the external bath is position-coupled whereas the
detector bath is momentum-coupled. Moreover, the average
back-action force on the oscillator, F̄0(−π/2), is nonzero in
our case. The terms on the fourth line and the first term on the
fifth line of Eq. (27) combine to give an oscillator-dependent
tunneling rate through the QPC, analogous to the classically
fluctuating tunneling rate represented by the last term of
Eq. (6a) in Ref. 9. However, there are subtle differences;
instead of a quadratic dependence of the classical tunneling
rate on the oscillator position, in our case there is a quadratic
dependence on the oscillator momentum, as well as a linear
term proportional to ∂xW . Finally, the last term on the fifth line
and the first term on the sixth line of Eq. (27) correspond to the
last two terms in Eq. (6b) of Ref. 9, which represent quantum
corrections to the average tunneling rate and arise from the
difference between tunneling processes involving absorption
or emission of a phonon. There are again some differences;
in the position-coupled system, these terms involve ∂xW and
x∂xW , whereas in our case they are proportional to xW and
p∂pW .

To study the steady-state dynamics of the oscillator, we need
to trace over N , the number of electrons that have tunneled
through the detector, which is equivalent to setting χ = 0 in
the above equation [cf. Eq. (9)]. The resulting simpler equation
can be integrated by parts to yield coupled equations for the
oscillator moments; e.g., up to second order,

d

dt
〈x〉 = h̄t0t1eV

h
− 2m2ω2

mγ̃+〈x〉 + 1

m
〈p〉 = 0,

d

dt
〈p〉 = −mω2

m〈x〉 − 2γ̃0〈p〉 = 0,

d

dt
〈x2〉 = h̄2t2

1 eV

h
+ 2h̄t0t1eV

h
〈x〉 − 4m2ω2

mγ̃+〈x2〉

+ 2

m
〈xp〉 = 0, (28)

d

dt
〈xp〉 = h̄t0t1eV

h
〈p〉 − mω2

m〈x2〉 − 2
(
m2ω2

mγ̃+ + γ̃0
)〈xp〉

+ 1

m
〈p2〉 = 0,

d

dt
〈p2〉 = 2D0 − 2mω2

m〈xp〉 − 4γ̃0〈p2〉 = 0.

As expected, these equations are the same as Eqs. (C22) and
(C23) in Appendix C. In the above equations, 〈xp〉 represents
the symmetrized moment 〈xp + px〉/2, which is why the
imaginary terms from Eqs. (C22) and (C23) are absent. We
will stick to this convention for the rest of this section. It
is interesting to consider the limiting cases in which either
the detector or the environment decouples from the oscillator.
In the former case (γ̃+, V → 0), one obtains 〈〈xp〉〉 = 0,
〈〈x2〉〉 = kBT /mω2

m, and 〈〈p2〉〉 = mkBT (when kBT � h̄ωm),
consistent with the equipartition theorem. Note that we are
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working with the irreducible moments, i.e., the variance and
covariance, hence the double brackets. In the latter case (γ̃0,
D0 → 0), one also obtains equipartition results: 〈〈xp〉〉 = 0,
〈〈x2〉〉 = kBTdet/mω2

m, and 〈〈p2〉〉 = mkBTdet, where we have
defined the detector temperature Tdet = eV/2kB .

In fact, one can solve the moment equations algebraically
in the general case. One obtains the following results:

〈x〉 = 2h̄t0t1eV γ̃0

hω2
m(4m2γ̃0γ̃+ + 1)

,

〈p〉 = − mh̄t0t1eV

h(4m2γ̃0γ̃+ + 1)
,

〈〈x2〉〉 = m2h̄2t2
1 eV

(
4γ̃ 2

0 + 4m2ω2
mγ̃0γ̃+ + ω2

m

) + 2hD0

4m2ω2
mh(4m2γ̃0γ̃+ + 1)

(
γ̃0 + m2ω2

mγ̃+
) ,

〈〈xp〉〉 = − m
(
γ̃0h̄

2t2
1 eV − 2hγ̃+D0

)
2h(4m2γ̃0γ̃+ + 1)

(
γ̃0 + m2ω2

mγ̃+
) ,

〈〈p2〉〉 = 2hD0
(
4m2γ̃0γ̃+ + 4m4ω2

mγ̃ 2
+ + 1

) + m2ω2
mh̄2t2

1 eV

4h(4m2γ̃0γ̃+ + 1)
(
γ̃0 + m2ω2

mγ̃+
) .

(29)

The nonzero values of 〈x〉 and 〈p〉 imply that the oscillator
is in a boosted frame as a result of our use of an effective
model for the physical system of Ref. 13. It is interesting to
know whether the simultaneous interaction of the oscillator
with the position-coupled external bath and the momentum-
coupled detector bath can put the oscillator into a so-called
squeezed state—a clear signature of quantum behavior in the
system. If the initial state of the oscillator has a Gaussian
Wigner function, the quadratic form of Eq. (27) ensures that
it remains Gaussian for all time. Such a state will obey the
position-momentum Heisenberg uncertainty relation; i.e., in
dimensionless form

VxVp � 1, (30)

where Vx = 〈〈x̃2〉〉 and Vp = 〈〈p̃2〉〉 are the variances in dimen-
sionless units. For a squeezed state, we need either Vx < 1 or
Vp < 1.19 The values of Vx and Vp depend on the orientation
of the x and p axes in phase space. Figure 13 shows that Vx

or Vp is minimized when the covariance Vxp = 〈〈x̃p̃ + p̃x̃〉〉/2
is zero. Thus we need to find a new set of axes in phase
space such that Vxp = 0, and therefore Vx (or equivalently Vp)
attains its minimum value. Mathematically, this is analogous to
diagonalizing the variance-covariance matrix of the Gaussian
state. If the smaller of the eigenvalues thus obtained is less
than unity, we have a squeezed state.

Using this criterion, we do not find any evidence of
quantum squeezing in our system in any of the parameter
regimes discussed in the previous section. The variances are
larger than unity and approximately equal, and the covariance
is much smaller than the variances, resulting in equal,

x

p

FIG. 13. Phase-space diagram of a squeezed state showing that
one of the variances, Vx or Vp , is minimized when the covariance Vxp

is zero. The solid ellipses represent the Wigner function contours of
a squeezed state in two different orientations relative to the axes.

larger-than-unity eigenvalues. The absence of quantum
squeezing is not surprising given the form of Eq. (27). As
already discussed, when we set χ = 0, only the first three
lines of the equation remain, which represent a classical
Fokker-Planck equation for an oscillator coupled to two
independent reservoirs—the position-coupled environment
and the momentum-coupled detector. Thus an unconditional
measurement of the steady state of the oscillator cannot be
expected to yield any quantum results. Only a measurement
conditioned on a certain history of the current can show
departures from the effective bath model due to the correlation
between the tunneling and back-action already present in the
master equation.9

A natural question to ask is whether the covariance can
ever be nonnegligible compared to the variances. To answer
this question fully, we look at the analytical expressions for
the variances and covariance, i.e., the dimensionless versions
of Eq. (29):

Vx =
1

2π
t2
0 λ̃2Ṽ

(
4̃2

0 + 2
π
t2
0 λ̃2̃0 + 1

) + ̃0 coth
(

1
2T̃

)
(

2
π
t2
0 λ̃2̃0 + 1

)(
̃0 + 1

2π
t2
0 λ̃2

) ,

Vp = ̃0 coth
(

1
2T̃

)(
2
π
t2
0 λ̃2̃0 + 1

π2 t
4
0 λ̃4 + 1

) + 1
2π

t2
0 λ̃2Ṽ(

2
π
t2
0 λ̃2̃0 + 1

)(
̃0 + 1

2π
t2
0 λ̃2

) ,

Vxp = −
1
π
t2
0 λ̃2̃0Ṽ − 1

π
t2
0 λ̃2̃0 coth

(
1

2T̃

)
(

2
π
t2
0 λ̃2̃0 + 1

)(
̃0 + 1

2π
t2
0 λ̃2

) . (31)

Dividing these, we obtain expressions for the ratios of the
covariance to the variances:

Vxp

Vx

= − 1

π
t2
0 λ̃2̃0

Ṽ − coth
(

1
2T̃

)
1

2π
t2
0 λ̃2Ṽ

(
1 + 4̃2

0 + 2
π
t2
0 λ̃2̃0

) + ̃0 coth
(

1
2T̃

) ,

(32)
Vxp

Vp

= − 1

π
t2
0 λ̃2̃0

Ṽ − coth
(

1
2T̃

)
̃0 coth

(
1

2T̃

)(
2
π
t2
0 λ̃2̃0 + 1

π2 t
4
0 λ̃4 + 1

) + 1
2π

t2
0 λ̃2Ṽ

.
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It is easy to see that for ̃0 � 0.1 the magnitudes of these
expressions are bounded from above either by the external
damping 2̃0 or by the detector-induced damping t2

0 λ̃2/π , the
latter being a very small quantity for the physically relevant
values of the coupling and bare tunneling parameters. The
former bound is achieved when t2

0 λ̃2Ṽ /2π � ̃0 coth(1/2T̃ ).
Thus the ratios of the covariance to the two variances can
be made as large as 20% for very large external damping,
̃0 = 0.1, low external temperature, and sufficiently large bias
voltage, tunneling amplitude, and/or coupling parameter. For
example, when t0 = 0.1, λ̃ = 0.1, Ṽ = 1 × 106, T̃ = 0.01,
and ̃0 = 0.1, one obtains Vx = 166.5, Vp = 160.1, and Vxp =
−31.8, leading to covariance matrix eigenvalues of 131.3 and
195.3. Note that the bias voltage has to be very large in order to
satisfy the above condition for convergence to the 2̃0 bound.
In this case, the eigenvalues are large but unequal, indicating
an elliptical Gaussian Wigner function.

The above result is in stark contrast with the case of
two position-coupled baths and η = 0, where one always
obtains a circular state, whose variance is determined by
the equipartition theorem with effective temperature Teff =
(γ0T + γdetTdet)/γeff , as discussed in the Introduction. It is
important to note that the eigenvalues are still between the
equipartition theorem results for the two individual baths (in
this case, Vdet = 106 for the detector bath and Vext = 0.02
for the external bath), and this is also the case for all other
parameter values. Besides, the naive picture that the detector
bath temperature determines the variance in momentum and
the external bath temperature sets the variance in position
is clearly wrong; in fact, in this example Vx > Vp, even
though Tdet � T . The steady state of the oscillator can be
characterized as a classical, thermomechanically squeezed
state, similar to those studied in Ref. 20. As already dis-
cussed, there are two sources for this thermomechanical noise
squeezing—the interplay between the position and momentum
coupled baths as well as the nonzero average back-action force
due to η �= 0.

Alternatively, if we allow t0 and λ̃ to be as large as 0.5, we
can allow Ṽ to be smaller while keeping the above convergence
condition approximately valid; e.g., when t0 = 0.5, λ̃ = 0.5,
Ṽ = 10, T̃ = 0.01, and ̃0 = 0.1, we have Vx = 1.85, Vp =
1.81, Vxp = −0.162, and eigenvalues equal to 1.67 and 1.99.
We have made the tunneling and coupling as large as possible,
the bias voltage as small as possible (but still large compared to
the oscillator frequency), the temperature as low as possible,
and the damping as large as possible (but smaller than the
oscillator frequency so that Q � 1). Our intuition suggests
that this is as close to a quantum regime as we can push the
parameters and still maintain the validity of the Born-Markov
approximation. The variances in this case are close to the
Heisenberg uncertainty limit, the covariance/variance ratios
are large (about 10%), and the eigenvalues are unequal, yet
even in this extreme regime what we have is simply a very
cold, classical, thermomechanically squeezed state, consistent
with our expectations.

It is also interesting to compare our system to the dou-
ble quantum dot (DQD) system studied, for example, in
Refs. 21–25. In this system, there are two single-level quantum

dots (in the Coulomb blockade regime), which are coupled
to each other and to two external leads via tunnel junctions,
and whose energy levels depend linearly on the position
of a nearby resonator. The system in Ref. 13 is similar to
the DQD system, except that our L and R reservoirs are
Fermi seas instead of single energy levels. Also, most DQD
studies assume the dot-lead tunneling rates to be smaller
than or approximately equal to the dot-dot tunneling rate,
whereas our polaron transformation assumes that the E-L and
C-R tunneling rates are much larger than the L-R tunneling
rate.

We compare our results to those in Refs. 21–25 with zero
energy difference between the dots in the absence of the
oscillator (εL = εR). For the DQD current noise, Refs. 22, 23
and 25 obtain sub-Poissonian values at zero frequency, even
in the limit of zero oscillator-dot coupling, in contrast with
our super-Poissonian peaks at ω̃ = 0. The results for the full
frequency-dependent current noise of the DQD in Ref. 23 also
differ significantly from ours; the noise exhibits a Fano-like
shape at the oscillator frequency at zero electromechanical cou-
pling, and develops additional Rabi peaks at finite coupling.
For the oscillator steady state, Refs. 21 and 23 find no evidence
of quantum squeezing, though the oscillator position and
momentum variances may be unequal, in complete accordance
with our findings. Moreover, Ref. 23 finds evidence of number
state squeezing [(〈n2〉 − 〈n〉2)/〈n〉 < 1] in a parameter regime
very similar to the one in which we observe thermomechanical
noise squeezing. Reference 24 studies the cooling of the
oscillator due to the DQD and finds no evidence of cooling
at zero dot energy difference. However, their system is slightly
different as the oscillator is asymmetrically coupled to only
one of the quantum dots. To conclude, the DQD system and
our system display rather different current noise properties yet
similar oscillator steady state behavior. This is not surprising
given that the two systems differ in the quantum details of
their electronic structure, which we have shown affect the
current noise spectrum but not the classical oscillator steady
state.

VI. CONCLUSION

We have studied the current noise spectrum and steady
state behavior of a resonator coupled linearly to a QPC via
its momentum for a wide range of system parameters. Our
spectra show clear signatures of the non-Gaussian correlations
between the junction current and the back-action force on
the oscillator, namely the resonance-antiresonance features at
ω̃ = ±1. These features are prominent in our case because the
tunneling phase is set to a value (η = −π/2) where the current
and back-action force are maximally correlated. Our results
are consistent with the analysis of Ref. 15, implying that, as
far as the current noise is concerned, the momentum-coupled
system is quite similar to the position-coupled system with the
same η due to canonical invariance, despite the presence of a
position-coupled external bath, at least in the case of a weakly
coupled environment (Q � 1).

Comparing our results to the experimental noise spectra
obtained in Ref. 13, we find that inserting the experimental
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parameter values into our calculation fails to reproduce some
important features of the experimental results, such as the high
super-Poissonian values at the peaks or the sub-Poissonian
noise away from them. This breakdown of the theory at
strong tunneling is expected as both the polaron transformation
and the Born-Markov approximation we have used hinge
on the assumption of weak tunneling. However, if we keep
the tunneling weak and use stronger coupling and weaker
damping than in the experiment, we can obtain spectra much
more similar to the experimental ones, suggesting that a
future theoretical approach that does not depend on the
weak-tunneling assumption might be much more successful
in predicting the noise quantitatively. In future work, we plan
to use scattering matrix methods to treat arbitrarily strong
tunneling, as proposed by Bennett et al.14

Our study of the oscillator steady state indicates that once
the detector is traced out, the oscillator obeys a classical
Fokker-Planck equation, where it is coupled to two indepen-
dent reservoirs. Thus an unconditional measurement of the
steady-state oscillator moments is not expected to yield any
deviations from classicality. However, the full master equation
for the coupled system, Eq. (27), clearly contains quantum
terms showing that exactly half of the electronic back-action
is correlated with tunneling. Reference 9 suggests that in order
to observe these departures from the effective bath model, one
needs to study the conditional evolution of the oscillator, based
on a certain current measurement history, or else look at the
current noise spectrum of the detector, as we have done in the
present study.

Despite its classical nature, the oscillator steady state can
experience significant thermomechanical noise squeezing. At
high external damping, low external temperature, and large
bias voltage, tunneling amplitude, and/or coupling strength,
the variances in position and momentum can differ by up to
about 20%, while still remaining between the limits set by the
temperatures of the two individual baths. The sources for this
thermomechanical squeezing are the simultaneous presence of
a position-coupled and a momentum-coupled bath, as well as
the nonzero average back-action force on the oscillator due to
η = −π/2.

To conclude, there are several future directions that one can
take in order to extend the present study. First, one could use
a scattering approach to treat the case of strong tunneling and
enter the parameter regime of current experiments.14 Second,
using scattering or some other approach, one could attempt
to relax the high bias voltage (eV/h̄ωm � 1) assumption
and enter a regime where one might expect to see quantum
signatures in the oscillator steady state as well as in the
current noise spectrum. Third, one could look at the conditional
evolution of the oscillator based on a certain measurement
history of the QPC current, which can be highly nonthermal
even in the weak-tunneling limit.9
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APPENDIX A: POLARONIC TRANSFORMATION

Starting with Eq. (1), we perform a polaron-like transfor-
mation on the Hamiltonian, i.e., H → UHU †, with the unitary
operator

U = exp

[
− λxzp

2h̄ωm

(∑
L

b
†
LbL −

∑
R

b
†
RbR

)
(a† − a)

]
.

(A1)

We make use of the Baker-Hausdorff lemma:26

eiGξOe−iGξ = O + iξ [G,O] + i2ξ 2

2!
[G,[G,O]] + · · ·

+ inξn

n!
[G,[G, . . . [G,O]] . . . ], (A2)

where O is an operator, G is a Hermitian operator, and ξ

is a real number. In our case, we identify ξ = λxzp/(2h̄ωm)
and G = i(

∑
L b

†
LbL − ∑

R b
†
RbR)(a† − a). Expanding to first

order in the oscillator coordinates, i.e., in ξ , and using
the canonical commutation (anticommutation) relations for
the a(†) (b(†)

i ) operators, we obtain the following results for the
various terms in the original Hamiltonian:

U

(∑
L,R

h̄�LRb
†
LbR

)
U †

=
[

1 − λxzp

h̄ωm

(a† − a)

] ∑
L,R

h̄�LRb
†
LbR, (A3)

U (h̄ωma†a)U † = h̄ωma†a + λx

2

(∑
L

b
†
LbL −

∑
R

b
†
RbR

)
,

(A4)

U

[∑
L

(εL − λx/2)b†LbL

]
U † =

∑
L

(εL − λx/2)b†LbL, (A5)

U

[∑
R

(εR + λx/2)b†RbR

]
U † =

∑
R

(εR + λx/2)b†RbR. (A6)

To obtain the last two equations, we have dropped the second
term in the Baker-Hausdorff formula as it leads to terms quartic
in the bL and bR operators. As the L and R reservoirs are
to be combined with the E and C reservoirs, respectively
[see comment after Eq. (A10) below], there is negligible
accumulation of electrons in these reservoirs; hence higher
order terms in bL and bR do not contribute. Also, we have

U

(∑
E

εEb
†
EbE +

∑
C

εCb
†
CbC

)
U †

=
∑
E

εEb
†
EbE +

∑
C

εCb
†
CbC, (A7)

since U clearly commutes with Hbath. Finally, for the remaining
two terms in Hint, we get

U

(∑
E,L

h̄�ELb
†
EbL

)
U †

=
[

1 + λxzp

2h̄ωm

(a† − a)

]∑
E,L

h̄�ELb
†
EbL, (A8)
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U

(∑
C,R

h̄�CRb
†
CbR

)
U †

=
[

1 − λxzp

2h̄ωm

(a† − a)

] ∑
C,R

h̄�CRb
†
CbR, (A9)

where we can neglect the momentum-dependent second terms.
Putting all the terms in UHU † together, we see that the

oscillator position-dependent terms cancel, and obtain

UHU † = h̄ωma†a +
∑
L

εLb
†
LbL +

∑
R

εRb
†
RbR

+
∑
E

εEb
†
EbE +

∑
C

εCb
†
CbC +

∑
E,L

h̄�ELb
†
EbL

+
∑
C,R

h̄�CRb
†
CbR +

[
1 − λxzp

h̄ωm

(a† − a)

]

×
∑
L,R

h̄�LRb
†
LbR + H.c. of the last 3 terms.

(A10)

Finally, we assume that the lead-reservoir tunneling ampli-
tudes �EL and �CR are much larger than the tunneling am-
plitude �LR between the two reservoirs, so we can effectively
combine the emitter and the left reservoir, and also the collector
and the right reservoir. Thus the transformed Hamiltonian can
be written in the much simpler form H = Hosc + Hbath + Hint,
where

Hosc = h̄ωma†a,

Hbath =
∑
L

εLb
†
LbL +

∑
R

εRb
†
RbR, (A11)

Hint =
[

1 − λxzp

h̄ωm

(a† − a)

] ∑
L,R

h̄�LRb
†
LbRY + H.c.

APPENDIX B: DETAILED DERIVATION OF THE
BORN-MARKOV MASTER EQUATION

The starting point for the derivation of Eq. (10) is the general
Born-Markov master equation

d

dt
ρosc(t) = 1

ih̄
[H0,ρosc(t)] − 1

h̄2

∫ ∞

0
dt ′Trbath{[Hint,[Hint(−t ′),ρosc(t) ⊗ ρbath]]}, (B1)

where H0 = Hosc + Hbath and Hint(−t ′) is given in the interaction picture. The derivation proceeds in exactly the same way as in
Eqs. (7.49)–(7.64) of Ref. 10, since the position or momentum dependence of the coupling is not made explicit until later. Thus
we can take Eqs. (7.63) and (7.64) (adapted to our notation) as the starting point of our calculation:

d

dt
ρ(χ ; t) = 1

ih̄
[H0,ρ(χ ; t)] − 1

(2πh̄	)2

∫ ∞

0
dt ′

∑
R,L

A(χ,R,L; t,t ′), (B2)

where

A(χ,R,L; t,t ′) = [T T †(−t ′)ρ(χ ; t) − T †(−t ′)ρ(χ ; t)T ]e−i(εL−εR)t ′/h̄fR(1 − fL)

+ [ρ(χ ; t)T (−t ′)T † − T †ρ(χ ; t)T (−t ′)]ei(εL−εR)t ′/h̄fR(1 − fL)

+ [T †T (−t ′)ρ(χ ; t) − T (−t ′)ρ(χ ; t)T †]ei(εL−εR)t ′/h̄fL(1 − fR)

+ [ρ(χ ; t)T †(−t ′)T − T ρ(χ ; t)T †(−t ′)]e−i(εL−εR)t ′/h̄fL(1 − fR)

− (eiχ − 1)[T ρ(χ ; t)T †(−t ′)e−i(εL−εR )t ′/h̄]fL(1 − fR)

− (eiχ − 1)[T (−t ′)ρ(χ ; t)T †ei(εL−εR)t ′/h̄]fL(1 − fR)

− (e−iχ − 1)[T †ρ(χ ; t)T (−t ′)ei(εL−εR )t ′/h̄]fR(1 − fL)

− (e−iχ − 1)[T †(−t ′)ρ(χ ; t)T e−i(εL−εR)t ′/h̄]fR(1 − fL). (B3)

In this equation, εL(εR) and fL(fR) are the energy levels and Fermi functions of the left (right) reservoir and T is defined as
T = t0 + t1e

iηp̂ such that

T̂ = 1

2π	
T Y †. (B4)

Using the interaction picture expression for the harmonic oscillator momentum,

p̂(t) = −mωmx̂ sin(ωmt) + p̂ cos(ωmt), (B5)

we can write

T (t) = t0 + t1

2
eiη(p̂ + imωmx̂)eiωmt + t1

2
eiη(p̂ − imωmx̂)e−iωmt , (B6)

with an analogous expression for T †(t). Substituting these into Eq. (B3), we first perform the integration over t ′ using∫ ∞

0
dte±iωt = πδ(ω) ± ipv

(
1

ω

)
. (B7)
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In the case of position-dependent coupling, the principal
value term leads to a term that renormalizes the oscillator
frequency plus another negligible term in the Caldeira-Leggett
equation. In our case, we expect it to lead to oscillator
mass renormalization (i.e., an extra term ∝p̂2) plus a similar
negligible term, so we drop the principal value part in complete
analogy with the position coupling case. Next, we replace
the summations over discrete energy levels by integrals over
energy with constant density of states 	:∑

i

· · · →
∫ ∞

0
dεi	 . . . , (B8)

where i = L,R. The result of the integration over the reservoir
Fermi functions can be expressed in terms of the tunneling
rates ±(E):

h+(E) =
∫ ∞

0
dε|t0|2f (ε − μL)[1 − f (ε − μR + E)],

(B9)

h−(E) =
∫ ∞

0
dε|t0|2f (ε − μR)[1 − f (ε − μL + E)],

(B10)

where μi is the chemical potential in reservoir i. After a
somewhat lengthy but straightforward collection of terms, one
arrives at Eq. (10).

APPENDIX C: DETAILED SOLUTION OF THE MASTER
EQUATION TO FIND THE CURRENT NOISE SPECTRUM

In this Appendix, we solve for the time dependence of the
cumulants 〈〈xN〉〉 and 〈〈p2N〉〉, and integrate the MacDonald
formula to obtain exact analytical expressions for the non-
Poissonian current noise spectrum �S̄I (ω) in Eq. (23). First
we solve for 〈〈xN〉〉. Using the method of taking derivatives
with respect to χ and then tracing the master equation over
the oscillator degrees of freedom, we obtain two coupled first-
order differential equations for 〈〈xN〉〉 and 〈〈pN〉〉:

d

dt
〈〈xN〉〉 = −2m2ω2

mγ̃+〈〈xN〉〉 + 1

m
〈〈pN〉〉 + h̄eV t0t1

h
− m2ω2

mγ̃+〈x〉 − ih̄eV t2
1

h
〈p〉 − 2m2ω2

mγ̃+
h̄

t0

t1
(〈x2〉 − 〈x〉2)

+ eV t2
1

h
(〈xp2〉 − 〈x〉〈p2〉),

(C1)
d

dt
〈〈pN〉〉 = −mω2

m〈〈xN〉〉 − 2γ̃0〈〈pN〉〉 + im2ω2
mγ̃+

t0

t1
− m2ω2

mγ̃+〈p〉 − 2m2ω2
mγ̃+

h̄

t0

t1
(〈xp〉 − 〈x〉〈p〉)

+ eV t2
1

h
(〈p3〉 − 〈p〉〈p2〉).

We replace all averages that do not contain N with their stationary values in order that the current-current correlation function
〈I (t + t ′)I (t)〉 be independent of t . Eliminating 〈〈pN〉〉 and imposing the boundary conditions 〈〈xN (t = 0)〉〉 = 〈〈pN (t = 0)〉〉 = 0,
we obtain the following initial value problem for y = 〈〈xN〉〉:

ÿ + aẏ + by = c, y(0) = 0, ẏ(0) = d, (C2)

where

a = 2
(
m2ω2

mγ̃+ + γ̃0
)
,

b = ω2
m(1 + 4m2γ̃+γ̃0),

c = 2h̄eV t0t1γ̃0

h
+ imω2

mγ̃+
t0

t1
− 2m2ω2

mγ̃+γ̃0〈x〉 − mω2
mγ̃+〈p〉 − 2ih̄eV t2

1 γ̃0

h
〈p〉 − 4m2ω2

mγ̃+γ̃0

h̄

t0

t1
(〈x2〉 − 〈x〉2) (C3)

− 2mω2
mγ̃+

h̄

t0

t1
(〈xp〉 − 〈x〉〈p〉) + 2eV t2

1 γ̃0

h
(〈xp2〉 − 〈x〉〈p2〉) + eV t2

1

mh
(〈p3〉 − 〈p〉〈p2〉),

d = h̄eV t0t1

h
− m2ω2

mγ̃+〈x〉 − ih̄eV t2
1

h
〈p〉 − 2m2ω2

mγ̃+
h̄

t0

t1
(〈x2〉 − 〈x〉2) + eV t2

1

h
(〈xp2〉 − 〈x〉〈p2〉).

This is a simple second-order linear inhomogeneous differen-
tial equation with constant coefficients, whose general solution
is

y(t) = Aer1t + Ber2t + c

b
, (C4)

where

r1,2 = −a ± √
a2 − 4b

2
(C5)

are the roots of the auxiliary equation (assumed to be distinct).
Applying the initial conditions, we find

A = r2c + bd

b(r1 − r2)
, B = − r1c + bd

b(r1 − r2)
. (C6)

We substitute this solution into Eq. (23) to obtain the first
term in �S̄I . The resulting integrals converge provided that
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Re(r1,2) < 0, which is easily seen to be the case. The term∫ ∞

0
dt sin ωt

(
c

b

)
(C7)

is not integrable, but can be evaluated by the method of Cesaro
summation: ∫ ∞

0
K sin ωtdt = K

ω
. (C8)

We trust this method as it removes the discontinuity in the
noise spectrum at ω = 0 and also makes the noise go to zero
at large frequencies instead of having a zero level that is very
large in magnitude and varies randomly with the choice of
parameters. Finally, one obtains for the first term in Eq. (23),
i.e., for the contribution from 〈〈xN〉〉,

�S̄
(1st term)
I

= −8m2ω2
mγ̃+

h̄

t0

t1
e2ω

[
Aω

r2
1 + ω2

+ Bω

r2
2 + ω2

+ c

b

(
1

ω

)]
.

(C9)

In a similar way we can solve for 〈〈p2N〉〉, needed to
calculate the second term in the non-Poissonian current noise.
We first obtain three coupled linear differential equations for
the cumulants that are second order in the oscillator variables:

d

dt
〈〈x2N〉〉 = c1〈〈x2N〉〉 + c2〈〈(xp)N〉〉 + c3〈〈xN〉〉 + c4,

d

dt
〈〈(xp)N〉〉 = c5〈〈x2N〉〉 + c6〈〈(xp)N〉〉

(C10)
+ c7〈〈p2N〉〉 + c8〈〈pN〉〉 + c9,

d

dt
〈〈p2N〉〉 = c10〈〈(xp)N〉〉 + c11〈〈p2N〉〉 + c12,

where we have defined the constants ci as

c1 = −4m2ω2
mγ̃+,

c2 = 2

m
,

c3 = 2h̄t0t1eV

h
,

c4 = 2h̄t0t1eV

h
〈x〉 − 2m2ω2

mγ̃+〈x2〉 − 2ih̄t2
1 eV

h
〈xp〉

+ 2m2ω2
mγ̃+

h̄

t0

t1
(〈x〉〈x2〉 − 〈x3〉)

+ t2
1 eV

h
(〈x2p2〉 − 〈x2〉〈p2〉),

c5 = −mω2
m,

c6 = −2
(
m2ω2

mγ̃+ + γ̃0
)
,

c7 = 1

m
,

c8 = h̄t0t1eV

h
,

c9 = ih̄m2ω2
mγ̃+ + im2ω2

mγ̃+
t0

t1
〈x〉 + h̄t0t1eV

h
〈p〉

− 2m2ω2
mγ̃+〈xp〉 − ih̄t2

1 eV

h
〈p2〉

− 2m2ω2
mγ̃+

h̄

t0

t1
(〈x2p〉 − 〈x〉〈xp〉)

+ t2
1 eV

h
(〈xp3〉 − 〈xp〉〈p2〉),

c10 = −2mω2
m,

c11 = −4γ̃0,

c12 = 2im2ω2
mγ̃+

t0

t1
〈p〉 − 2m2ω2

mγ̃+〈p2〉

− 2m2ω2
mγ̃+

h̄

t0

t1
(〈xp2〉 − 〈x〉〈p2〉)

+ t2
1 eV

h
(〈p4〉 − 〈p2〉2

). (C11)

Eliminating 〈〈x2N〉〉 and 〈〈(xp)N〉〉 and substituting for 〈〈xN〉〉
and 〈〈pN〉〉 using Eqs. (C4) and (C1), we get a third-order linear
inhomogeneous ordinary differential equation for z = 〈〈p2N〉〉:

d3z

dt3
+ α

d2z

dt2
+ β

dz

dt
+ γ z = μer1t + νer2t + ρ, (C12)

where we have defined the constants

α = −(c1 + c6 + c11),

β = c1c6 + c1c11 − c2c5 + c6c11 − c7c10,

γ = −c1c6c11 + c1c7c10 + c2c5c11,

μ = A
(
c3c5c10 + c8c10mr2

1 + 2c8c10m
3ω2

mγ̃+r1

− c1c8c10mr1 − 2c1c8c10m
3ω2

mγ̃+
)
,

(C13)
ν = B

(
c3c5c10 + c8c10mr2

2 + 2c8c10m
3ω2

mγ̃+r2

− c1c8c10mr2 − 2c1c8c10m
3ω2

mγ̃+
)
,

ρ = c3c5c10
c

b
− 2c1c8c10m

3ω2
mγ̃+

c

b
+ c1c6c12 + c1c8c10md

− c1c9c10 − c2c5c12 + c4c5c10,

and b, c, r1, r2, A, and B are as defined above. The general
solution is easily found to be

z(t) = Ceρ1t + Deρ2t + Eeρ3t + Mer1t + Ner2t + ρ

γ
, (C14)

where ρi are the three roots of the auxiliary equation ρ3 +
αρ2 + βρ + γ = 0 (assumed to be distinct), the constants C,
D, and E are to be found by imposing initial conditions, and

M = μ

r3
1 + αr2

1 + βr1 + γ
,

(C15)
N = ν

r3
2 + αr2

2 + βr2 + γ
.

Assuming α2 − 3β �= 0 and using the cubic equation formula,
we find

ρ1 = −α

3
− R

3
− α2 − 3β

3R
,

ρ2 = −α

3
+ R(1 + i

√
3)

6
+ (1 − i

√
3)(α2 − 3β)

6R
, (C16)

ρ3 = −α

3
+ R(1 − i

√
3)

6
+ (1 + i

√
3)(α2 − 3β)

6R
,
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where

Q =
√

(2α3 − 9αβ + 27γ )2 − 4(α2 − 3β)3,
(C17)

R = 3

√
1
2 (Q + 2α3 − 9αβ + 27γ ),

and any determination of the complex-valued square and cube roots can be used. From the boundary conditions 〈〈x2N〉〉 =
〈〈(xp)N〉〉 = 〈〈p2N〉〉 = 〈〈xN〉〉 = 〈〈pN〉〉 = 0 at t = 0 we obtain the appropriate initial conditions:

z(0) = 0, ż(0) = δ, z̈(0) = ε, (C18)

where

δ = c12, ε = c9c10 + c11c12. (C19)

Applying these initial conditions and solving the resulting system of equations, we obtain

C = M
(
ρ2ρ3 − r1ρ2 − r1ρ3 + r2

1

) + N
(
ρ2ρ3 − r2ρ2 − r2ρ3 + r2

2

) + ρρ2ρ3/γ + δρ2 + δρ3 − ε

(ρ1 − ρ2)(ρ3 − ρ1)
,

D = M
(
ρ1ρ3 − r1ρ1 − r1ρ3 + r2

1

) + N
(
ρ1ρ3 − r2ρ1 − r2ρ3 + r2

2

) + ρρ1ρ3/γ + δρ1 + δρ3 − ε

(ρ1 − ρ2)(ρ2 − ρ3)
, (C20)

E = M
(
ρ1ρ2 − r1ρ1 − r1ρ2 + r2

1

) + N
(
ρ1ρ2 − r2ρ1 − r2ρ2 + r2

2

) + ρρ1ρ2/γ + δρ1 + δρ2 − ε

(ρ2 − ρ3)(ρ3 − ρ1)
.

Having determined all the relevant constants, we finally substitute Eq. (C14) into the MacDonald formula, Eq. (23), to obtain the
second term in �S̄I . The integration proceeds in exactly the same way as in the calculation of the first term. One has to check
that the roots ρ1, ρ2, and ρ3 have negative real parts, which is best done numerically as the analytical expressions are rather
complicated. Finally, we obtain for the second term in Eq. (23), i.e., the contribution from 〈〈p2N〉〉,

�S̄
(2nd term)
I = 4e3V t2

1

h
ω

[
Cω

ρ2
1 + ω2

+ Dω

ρ2
2 + ω2

+ Eω

ρ2
3 + ω2

+ Mω

r2
1 + ω2

+ Nω

r2
2 + ω2

+ ρ

γ

(
1

ω

)]
. (C21)

In the above calculations, we needed to know the N -independent oscillator moments, 〈xipj 〉, up to fourth order. These can
be found easily by solving systems of linear equations successively, starting with the first-order moments, then going to second
order, etc. The equations for the moments are obtained by multiplying Eq. (10) by xipj , setting χ = 0, tracing over the oscillator
degrees of freedom, and finally setting d〈xipj 〉/dt = 0 since all oscillator moments are stationary as already discussed. The
moment equations are given below.

First-order moments:
d

dt
〈x〉 = h̄t0t1eV

h
− 2m2ω2

mγ̃+〈x〉 + 1

m
〈p〉 = 0,

(C22)
d

dt
〈p〉 = −mω2

m〈x〉 − 2γ̃0〈p〉 = 0.

Second-order moments:

d

dt
〈x2〉 = − ih̄

m
+ h̄2t2

1 eV

h
+ 2h̄t0t1eV

h
〈x〉 − 4m2ω2

mγ̃+〈x2〉 + 2

m
〈xp〉 = 0,

d

dt
〈xp〉 = ih̄

(
m2ω2

mγ̃+ + γ̃0
) + h̄t0t1eV

h
〈p〉 − mω2

m〈x2〉 − 2
(
m2ω2

mγ̃+ + γ̃0
)〈xp〉 + 1

m
〈p2〉 = 0, (C23)

d

dt
〈p2〉 = 2D0 + ih̄mω2

m − 2mω2
m〈xp〉 − 4γ̃0〈p2〉 = 0.

Third-order moments:

d

dt
〈x3〉 = 3

(
h̄2t2

1 eV

h
− ih̄

m

)
〈x〉 + 3h̄t0t1eV

h
〈x2〉 − 6m2ω2

mγ̃+〈x3〉 + 3

m
〈x2p〉 = 0,

d

dt
〈x2p〉 = 2ih̄

(
m2ω2

mγ̃+ + γ̃0
)〈x〉 +

(
h̄2t2

1 eV

h
− ih̄

m

)
〈p〉 + 2h̄t0t1eV

h
〈xp〉 − mω2

m〈x3〉

− 2
(
2m2ω2

mγ̃+ + γ̃0
)〈x2p〉 + 2

m
〈xp2〉 = 0,

d

dt
〈xp2〉 = (

ih̄mω2
m + 2D0

)〈x〉 + 2ih̄
(
m2ω2

mγ̃+ + γ̃0
)〈p〉 + h̄t0t1eV

h
〈p2〉 − 2mω2

m〈x2p〉

− 2
(
m2ω2

mγ̃+ + 2γ̃0
)〈xp2〉 + 1

m
〈p3〉 = 0,
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d

dt
〈p3〉 = 3

(
ih̄mω2

m + 2D0
)〈p〉 − 3mω2

m〈xp2〉 − 6γ̃0〈p3〉 = 0. (C24)

Fourth-order moments:

d

dt
〈x4〉 = 6

(
h̄2t2

1 eV

h
− ih̄

m

)
〈x2〉 + 4h̄t0t1eV

h
〈x3〉 − 8m2ω2

mγ̃+〈x4〉 + 4

m
〈x3p〉 = 0,

d

dt
〈x3p〉 = 3ih̄

(
m2ω2

mγ̃+ + γ̃0
)〈x2〉 + 3

(
h̄2t2

1 eV

h
− ih̄

m

)
〈xp〉 + 3h̄t0t1eV

h
〈x2p〉

−mω2
m〈x4〉 − 2

(
3m2ω2

mγ̃+ + γ̃0
)〈x3p〉 + 3

m
〈x2p2〉 = 0,

d

dt
〈x2p2〉 = (

ih̄mω2
m + 2D0

)〈x2〉 + 4ih̄
(
m2ω2

mγ̃+ + γ̃0
)〈xp〉 +

(
h̄2t2

1 eV

h
− ih̄

m

)
〈p2〉

(C25)

+ 2h̄t0t1eV

h
〈xp2〉 − 2mω2

m〈x3p〉 − 4
(
m2ω2

mγ̃+ + γ̃0
)〈x2p2〉 + 2

m
〈xp3〉 = 0,

d

dt
〈xp3〉 = 3

(
ih̄mω2

m + 2D0
)〈xp〉 + 3ih̄

(
m2ω2

mγ̃+ + γ̃0
)〈p2〉 + h̄t0t1eV

h
〈p3〉

− 3mω2
m〈x2p2〉 − 2

(
m2ω2

mγ̃+ + 3γ̃0
)〈xp3〉 + 1

m
〈p4〉 = 0,

d

dt
〈p4〉 = 6

(
ih̄mω2

m + 2D0
)〈p2〉 − 4mω2

m〈xp3〉 − 8γ̃0〈p4〉 = 0.

Importantly, the equations for the moments of a given order only involve moments of lower order, which have already been
calculated and become part of the constant vector in the resulting matrix equation. Thus there is no need for truncation or use of
a semiclassical approximation in our case.
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