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Calculation of terahertz conductivity spectra in semiconductors with nanoscale modulation
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Monte Carlo simulations are employed to calculate terahertz conductivity of charge carriers in a potential with
periodic modulation on the nanoscale. The modulation gives rise to two characteristic features in the conductivity
spectra: a Drude peak owing to charge carriers with kinetic energy exceeding the modulation depth, and resonance
due to charge carriers localized around potential minima. Both peaks shift in an applied magnetic field. We discuss
the relationship between the modulation potential and the positions and strengths of the resonances. We also
analyze the role of depolarization fields which are responsible for the difference between local and effective

conductivity.
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I. INTRODUCTION

Terahertz (THz) conductivity spectra contain rich informa-
tion on transport processes in semiconductors. This is apparent
namely in bulk semiconductors, where the conductivity is
frequently described by the simple Drude model'

nel 12
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where e is the positive elementary charge, n is the density of
conducting charge carriers (either due to doping or generated
by photoexcitation), m is their effective mass, tp is their
momentum relaxation time, and pppge(f) is the frequency-
dependent mobility. Since typical momentum relaxation times
in semiconductors are of the order of 100 fs, the most pro-
nounced dispersion occurs right in the THz range. Deviations
of THz conductivity from the Drude behavior can indicate, for
example, a distribution of relaxation times.>?

While THz conductivity spectra of bulk semiconductors
are well understood, this is not the case for nanostructured
semiconductors (Ref. 4, and references therein). Nonhomo-
geneity of these materials gives rise to complex depolariza-
tion fields, which are responsible for a nontrivial relation
between the macroscopic (effective) and local conductivity
of semiconductor nanostructures.*> But foremost, dimensions
of nanoparticles are frequently comparable to the mean
free path of charge carriers, which fundamentally affects
transport of charge carriers, and in turn, the spectrum of
their local conductivity.® However, the local conductivity was
theoretically investigated only in a very limited set of model
systems.

Spectra of various nanoparticulate systems have been
frequently fitted’~'" using the Drude-Smith model,'" which
is purely phenomenological and provides no microscopic
insight into the underlying physical processes. It has also been
criticized that it does not respect the time homogeneity, i.e.,
it assumes that the first scattering event is different from the
others.> More detailed information was gained from Monte
Carlo calculations of far-infrared mobility.® In particular, for
the first time it became possible to quantify the relation
between THz spectra and probabilities of electron transport
between semiconductor nanoparticles. For example, compari-
son of these calculations with the measured spectra can be used
for the determination of mean nanocrystal sizes.'> Monte Carlo

ODrude(f) = = neoMprude(f), (1)
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calculations also revealed the existence of two different length
scales of charge localization in CdS nanocrystals attributed
to the formation of clusters of nanocrystals.'> It should be
noted that the spectrum of such complex systems can never be
described by the Drude-Smith model.

All the mentioned Monte Carlo calculations of far-infrared
mobility have in common a probabilistic description of
interparticle charge transport. This simplifying assumption
has a good justification in disordered nanoparticulate sys-
tems: Instead of specifying the conductive coupling for each
nanoparticle in a large ensemble, it is more useful to describe
it by an average interparticle transition probability. On the
other hand, such an assumption does not reflect a possible
dependence of transition probability on carrier energy and
it is not applicable in systems where no clear interfaces
exist. A notable example is an artificial graphene where
nanostructuring is achieved by a periodic modulation of the
potential in which electrons move.'*

THz conductivity spectra can be efficiently measured
by time-resolved THz spectroscopy, which is a noncontact
technique offering subpicosecond time resolution.'> Together
with a deep knowledge of local THz conductivity of model
systems, time-resolved THz spectroscopy can become a
powerful instrument for understanding charge transport in
nanostructured networks down to the earliest times.!>!6

In this paper, we analyze theoretically the far-infrared
response of a three-dimensional electron gas in a potential peri-
odically modulated on the nanoscale. We find that this response
qualitatively differs from the conductivity of nanoparticulate
systems with clear interfaces. We also investigate how the
response of nanostructured semiconductors evolves with mag-
netic field. Finally, we analyze the role of depolarization fields.
This step is essential for a direct comparison with experimental
results which provide an effective conductivity, not the local
one.

II. MONTE CARLO SIMULATION

The calculations are based on Monte Carlo simulations
of the thermal motion of charge carriers in a modulated
potential. The carrier motion is governed by classical Newton
equations, which are solved by the fourth-order Runge-Kutta
method. In addition, charge carriers are scattered with mean
time 74 corresponding to the mean momentum relaxation time
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in the bulk material. Upon scattering, the velocity vector
randomizes according to Maxwell-Boltzmann distribution.
The calculated velocity autocorrelation function is then used
for the determination of mobility of carriers by using the Kubo
formula®!”

oo
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in which the averaging (...) takes place over a canonical
ensemble of carriers with temperature 7.

The simulations are carried out for a set of charge
carriers. Their initial positions are random and velocities
follow the Maxwell-Boltzmann distribution. A thermalization
phase follows (charge carriers are allowed to move according
to the Newton equations and undergo the scattering): This
ensures that the carriers reach a distribution close to thermal
equilibrium. After this phase, the movement of charge carriers
is recorded and the average (...) in Eq. (2) is replaced by a
time average. A typical integration range in Eq. (2) was 40 ps
and about one million sequences were used to calculate the
average.

Characteristics related to a modulation of the potential were
first investigated for a one-dimensional periodic modulation.
A prototype of a weak modulation is the sinusoidal potential

Vo . (2mx
V(X) = —? Sin (T) s (3)

wmii(f) =

where V) is its depth and L is its period. In order to also study
the impact of the shape of the potential, we employ a potential
defined as

v(x) — v(0)
v(L) — v(0)’
v(x) = arctan[y (1 — 5)] - arctanly (7 + 5)]
+ arctan [J/(%-H—%)]— arctan [y(%—l—}-%)]
“4)

in the interval (—L/2,L/2) and periodically extended [illus-
tration follows in Fig. 4(a)]. This form allows for control of
the relative width « of the potential bottom and the relative
steepness y of the potential walls. The response in these
potentials is discussed in Sec. III A— the parameters employed
for illustrations are selected with the aim of making the
principal spectral characteristics clearly visible.

Finally, we examined response in a two-dimensional peri-
odically modulated potential with hexagonal symmetry, which
was recently employed for theoretical investigation of the band
structure of artificial graphene: '8

V(X) = VQ

V(r) = Vylcos gir + cos gor + cos(g — g)r], )

where g, = 27/L(1/+/3,1,0) and g, = 27/L(2/~/3,0,0) are
the basis vectors in the reciprocal space. In a magnetic field
B, the Lorentz force —epv x B additionally acts on charge
carriers. Here we consider only the geometry where B is
normal to the plane defined by the vectors g; and g,. The
response is analyzed in Sec. III B. In this case, parameters
close to those employed in the experiments in Ref. 18 are used
for illustrations.

We stress that all calculations carried out here are classical
(they only employ the effective mass of charge carriers)
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and they do not account for any quantum phenomena. To
estimate the possible limitations, we examine the energy levels
E, = (nh/L)*/(8m) in an infinitely deep quantum well. For
example, a width L = 100 nm results in energy spacing
E; — E; = 0.038 meV, which corresponds to temperature
0.44 K. This means that the classical limit should be sufficient
for moderately low temperatures (e.g., above liquid helium
temperature) and for not too strong confinement (charac-
teristic dimensions exceeding 10 nm). Quantum-mechanical
calculations are much more difficult; they were employed, for
example, for calculation of the absorption cross section for
electrons in InGaAs nanorods."”

III. DISCUSSION

A. Response without magnetic field

Figure 1(a) shows examples of charge trajectories in the
potential (3) with various depths. For a low modulation depth
(Vo € kgT), charge movement is governed by scattering
events separated by nearly uniform motion only weakly
perturbed by the modulation. For a deep modulation (V, >
kg T), charges cannot pass over potential barriers and they only
oscillate near potential minima. For intermediate modulation
depth (Vy ~ kgT), both these modes alternate, as the energy
of charges changes upon scattering. All these regimes are
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FIG. 1. (Color online) (a) Examples of trajectories of charges
moving in the potential (3) with various depths. (b) Probability density
of charges within one period of the potential. Calculation parameters:
L =100 nm, 7y, = 1 ps, m = me, and T = 300 K.
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FIG. 2. (Color online) Real and imaginary part of mobility spectra
of charges moving in potential (3) with various depths. The spectra
were calculated with the same parameters as in Fig. 1. The arrows
indicate frequencies calculated using Eq. (6).

characterized by different degrees of charge localization
[Fig. 1(b)].

These considerations explain the related mobility spectra
in Fig. 2. For the weak modulation, charges respond as if they
were free and a Drude peak appears at zero frequency (its
width is controlled by the scattering time 7). Conversely, for
the strong modulation, charges oscillate around equilibrium
positions, thus giving rise to an oscillator-like response.?’
For the intermediate depth, both Drude and oscillator peaks
appear—their relative weights are controlled by the modu-
lation depth. Such a behavior is qualitatively different from
the response of charges in nanoparticles with semipermeable
boundaries, which is characterized by a single broad peak.°
The difference can be best understood in the limit of infinite
scattering time. In a modulated potential, each charge is then
either localized (it can never gain energy to pass over the
potential maximum) or delocalized (its energy always exceeds
the potential maximum), i.e., it has either Drude or oscillator
response. Averaging over a canonical ensemble of charges
then yields a superposition of the Drude and oscillator peaks.
However, in the case of charges in nanoparticles, each charge
(regardless of its energy) will interact with the nanoparticle
boundary: Each trajectory will therefore contain a statistically
identical mix of scattering and reflection events on the particle
boundary. In turn, one finds a single broad peak in the mobility
spectrum.®
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When the potential is sufficiently deep so that most charges
are close to the potential minima, the frequency of the oscillator
response can be approximated by the oscillator frequency in
the potential minimum

_ 1 1 92v
T 27\ m 9x2

(6)

o

x:V(x)=min

For the potential (3), these frequencies are equal to
L~'\/Vy/(2m). In Figs. 2 and 3 we observe that this approx-
imation satisfactorily reflects the dependence of the mobility
peak position both on the period and on the modulation depth,
even for intermediate modulation depths (Vy > 2kgT). This
means that the major contribution to the oscillator peak is
from carriers localized in the parabolic part of the potential.

Qualitatively same spectra are obtained for charges moving
in the potential (4) (see Fig. 4). We now investigate the
frequency of the oscillator peak as a function of the potential
width « and steepness y [Figs. 4 and 5]. There are two views
of the charge motion in the potential well:

(1) If the bottom of the potential is flat and the walls
are steep and high, charges will bounce between the walls
and the oscillator frequency will be related to the average
bouncing frequency verm/(2w) (w is the width of the potential
well and vyerm i1 the mean quadratic velocity /kgT /m).
Indeed, for potential (4) this behavior is observed for larger
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FIG. 3. (Color online) Real and imaginary parts of mobility
spectra in potential (3) with constant depth (V, = 2kgT) and with
variable period (the spectra were calculated for t; = 1 ps, m = me,
and T = 300 K). The arrows indicate frequencies calculated using
Eq. (6).
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FIG. 4. (Color online) (a) Profiles of the potential (4) with various
relative widths « and steepnesses y. (b) Real and imaginary parts
of mobility spectra in potentials from panel (a). The spectra were
calculated for V) = 2kgT, L =100 nm, 7y, =1 ps,m = me, and T =
300 K.

widths o since the bottom is rather flat. In this regime, the
frequency of the oscillator peak is insensitive to a further
steepening of potential walls [see, e.g. spectra for @ = 0.90 in
Fig. 4(b)].

(2) If charges remain only in the parabolic part of the
potential well, the oscillator frequency will be described by
Eq. (6). However, the potential (4) starts to be nonparabolic
already for small displacements, i.e., Eq. (6) is an insufficient
approximation of the oscillation frequency. Nonparabolic
effects become more pronounced in combination with high
wall steepness, giving rise to a markedly broadened oscillator
peak [spectra for « = 0.25 and y = 400 in Fig. 4(b)].

These results demonstrate a clear relation between THz
spectra and nanopatterning of semiconductors, which means
that a careful analysis of measured THz spectra can bring

PHYSICAL REVIEW B 86, 075308 (2012)

valuable information of the nanolandscape of the potential
energy in which charges move.

B. Response in magnetic field

The mobility of charges in a potential with hexagonal
symmetry in a magnetic field is a tensor with two independent
components:

Mxx Mxy
= ). 7
I ( iy oy > (7

In such a situation, eigenmodes of electromagnetic radia-
tion are circularly polarized and it is convenient to introduce
the mobilities for left-handed and right-handed polarizations
which read (i = ptyy +iptxy and py = pyy — iflxy, TESPEC-
tively. Since u_(f) = uZ (—f), the response to both circular
polarizations is encoded in pu_(f) with f including both
negative and positive values.

The response of electrons moving in the potential (5)
without the external magnetic field is the same as the response
in the potential with one-dimensional modulation (Figs. 6
and 2, respectively)—it exhibits both Drude and oscillator
peaks. Upon application of the magnetic field, the Drude model
becomes?!

Drude __ €0 ™
= — , 8
e m1—2nito(f + fo) ®)

which means that the Drude peak shifts in frequency and the
resulting cyclotron motion has a resonant frequency
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FIG. 5. (Color online) Frequency of the oscillator peak as a
function of the relative width « of potential (4). Symbols: results of
Monte Carlo calculations with parameters Vy = 6kg7, L = 100 nm,
7, = 1 ps,m = m., and y = 25 (the dotted line is a guide for the eyes).
Solid line: bouncing frequency 1.4 X Viherm/(2w) approximates very
well the oscillator peaks (w is the full width at half maximum of the
potential; the factor 1.4 is empirical and it generally varies with the
parameters of the potential—it accounts, namely, for the fact that not
all carriers are reflected exactly at the half of the maximum of the
potential). Dashed line: frequency calculated using Eq. (6) does not
reproduce the o dependence of the oscillator peak frequency.
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FIG. 6. (Color online) Real and imaginary parts of mobility
spectra of negative charges moving in potential (5) for various
magnetic fields. The spectra were calculated for L = 100 nm,
Vo = 0.6kgT, m = 0.067m,, 7y, = 3.8 ps,and T = 40 K.

Indeed, exactly such a behavior is also observed for the Drude
contribution in the presence of a modulated potential (Fig. 6);
and also the peak frequency well coincides with the standard
cyclotron resonance (Fig. 7) described by Eq. (9).

The behavior of the oscillator contribution with the mag-
netic field is more complicated and it can be understood based
on the oscillations of charges in a parabolic potential. Their
response in the magnetic field is described by

osc __ €0 lf
M = am 2 fof - f2+ifT)Qn)

where f; is the oscillator frequency of the potential and I is
the damping rate (see the Appendix). Consequently, there are
two resonant frequencies in the spectrum of p¢:

feE\JfE+AS

Tes
f== 2

If we now assign fj the value of the peak frequency obtained in
our calculations without the magnetic field, Eq. (11) provides
an excellent approximation of the evolution of oscillator
peak frequency with magnetic field (Fig. 7). This behavior
qualitatively reproduces the positions of resonances observed
experimentally in a two-dimensional electron gas moving in a
potential periodically modulated on the nanoscale.'®

(10)

Y
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FIG. 7. (Color online) Symbols: frequencies of Drude and oscil-
lator peaks in the real part of calculated mobility spectra (identical
parameters as those in Fig. 6 were employed in the calculations).
Lines: cyclotron frequency calculated from Eq. (9) and resonance
frequency calculated from Eq. (11).

In a strictly parabolic potential, Eq. (10) predicts that
the amplitudes of the oscillator peaks for opposite circular
polarizations should be identical. Such a behavior is also
observed in the potential (5) with deep modulation when
nonparabolic effects are marginal. On the other hand, the peak
amplitudes become markedly different for shallower modu-
lations such as illustrated in Fig. 6. The circular-like motion
of charges at frequencies corresponding to the oscillator peak
for the left-handed polarization is very similar to the circular
motion of free charges oscillating with cyclotron frequency,
i.e., the charges are only weakly influenced by the potential
modulation. This naturally suppresses the motion of charges
in the opposite direction. As a result, the oscillator peak for the
right-handed polarization becomes suppressed with increasing
magnetic field while the oscillator peak for the left-handed
polarization is enhanced.

IV. DEPOLARIZATION FIELDS

The qualitative role of depolarization fields can be straight-
forwardly understood in one-dimensional systems. In this case,
the displacement D is constant, whereas the electric field
intensity E(x) = D/e(x), where e(x) is the spatial profile
of the (complex) permittivity. The effective permittivity & is
then defined as the ratio of the displacement and electric field
intensity averaged over a distance smaller than the wavelength,
but much larger than the characteristic dimension of the
pattern. In one dimension, the effective permittivity has a
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particularly simple form:

(D) [\ .
Seff—m—<g> s (12)

which can be viewed as a connection of capacitors in series
(the (.. .) denotes a spatial average here). We express the local
permittivity € as a sum of a constant contribution &, due to
lattice vibrations and another part due to conduction processes:

io(x, f)

8(X,f) =¢&p + 27Tf8() 5

13)

where g is the permittivity of vacuum. The effective permit-
tivity can be decomposed similarly:

i0eit(f)
2w fey’

et (f) = Eefr,p + (14)

which thus defines the effective conductivity oe:

-1
. 1
oeft(f) = —2mifeg <Tf)> —& . (15
&+ g

2nfeo

There are two important limits of this expression. For very
weak local conductivity (o (x)| < |27 fepep| for all x), the
effective conductivity is simply equal to an average local
conductivity (o (x)). This limit is very similar to that found in
the case of Maxwell-Garnett approximation both for the case of
conducting inclusions and conduction matrix (both nonperco-
lated and nonpercolated conductor, respectively).* Conversely,
for very high local conductivity (|o(x)| > |27 fepep| for all x)
the background permittivity &, is negligible and the effective
conductivity is equal to (1/o(x))~!, which implies that the
effective conductivity is limited by areas with the lowest local
conductivity.

The intermediate cases as well as these limits are best
illustrated by numerical calculations. For this purpose, we
factorize the (local) conductivity as

o(x,f) =n(x)eou(f), (16)

which means that its spectrum is determined by the spectrum
of mobility while its spatial profile is controlled solely by
local carrier density profile. Both these quantities are obtained
from the Monte Carlo simulations described earlier. The
additional parameter which can now be varied is the average
carrier density nex. = (n(x)). In Fig. 8, we see that for low
carrier densities, the effective conductivity is indeed equal
to the local conductivity. With increasing carrier density, the
conductivity peak splits and one of the branches blueshifts.
Such a behavior (plasmonic resonance) was already reported
before and is related to the restoring force induced by
separation of confined charges.*> For the highest carrier
densities, the plasmonic resonance broadens and shifts very
high in frequency. However, the original conductivity spectrum
persists with attenuated amplitude. Such a behavior is apparent
when substituting Eq. (16) into (1/o(x))~!: The spectral shape
is preserved and the amplitude is limited by places with
reduced carrier density n(x). Note that this part of the spectrum
may be very weak for confined carriers, due to the presence of
areas with very low carrier density (right panel in Fig. 8).
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FIG. 8. (Color online) Spectra of the real part of the effective
conductivity normalized by charge density [Re oes/(€omexc)] of
charges moving in potential (3) with various depths. The spectra were
calculated with the same parameters as in Fig. 1 and with g, = 12. Left
panel: Vo = 2kg T, fimax = 680cm? V! s71; right panel: Vy = 8k T,
Mmax = 1300 cm? V™1 71

It should be noted that here we investigate systems with
well-defined profiles of the permittivity and conductivity
which allows one to exactly evaluate the role of the depolar-
ization fields. Although there are some similar characteristics
to those in the Maxwell-Garnett or Bruggemann effective
medium approximations,* the assumptions of these approx-
imations are not generally fulfilled, therefore these models are
not applicable in our case.

V. CONCLUSIONS

In summary, we employed the Monte Carlo method to
calculate terahertz conductivity spectra of charge carriers
moving in a potential periodically modulated on the nanoscale.
The spectra exhibit two characteristic features: a Drude peak
owing to charge carriers with kinetic energy exceeding the
modulation depth, and an oscillator peak due to charge
carriers localized around potential minima. Both peaks exist
for intermediate modulation depths, comparable with mean
thermal energy kg7. Shallow modulation depth favors the
Drude peak, while deep modulation gives rise to the oscillator
peak. Although the oscillator frequency can be estimated in
some specific cases (flat or parabolic bottom of potential
wells), it generally depends on the details of the potential
energy landscape. Application of a magnetic field shifts the
peaks—the shifts can be accurately predicted based on simple
models of free charge carriers (cyclotron resonance) or of
charge carriers localized in a parabolic potential. However,
the distribution of oscillator strengths with a magnetic field
depends on the detailed profile of the potential. Depolarization
fields generally play an essential role when relating the
calculated local conductivity spectra to the measured ones.
Particular attention must be paid to their influence on the
spectra when systems with strong localization and/or with high
carrier densities are investigated. All these results extend the
basis allowing the interpretation of THz conductivity spectra,
which can be efficiently measured, e.g., by time-resolved THz
spectroscopy.
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APPENDIX: MOBILITY OF CHARGES IN A PARABOLIC
POTENTIAL IN MAGNETIC FIELD

The equation of electron motion in a static magnetic field
B = (0,0,B) reads as

d*x dx dx
m— +ml— + mwix = —¢E — e— x B.

dr? dt @0 dt
Considering only the two-dimensional motion in plane
normal to B, ie., x = (x,y,0), we obtain after Fourier

(AD)
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transformation
2 . > € .
—o'x —iowl'x + wgx = ——E; +iow.y,
" (A2)
—wzy —iwl'y + a)(z)y =——FE, —iowx.
m

Solution for x and y then provides the components of the
mobility tensor (7)—for example, the component fi,, is
defined as

Ux(Ex = OvEy) _
z =

 x(E, =0,E,)
—lo—
y Ey

Substitution into p4 = fiyx Fifly, then directly leads to
Eq. (10). For the sake of brevity, w = 2n f.

MHxy = (A3)

“nemec @fzu.cz
'D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger,
J. Opt. Soc. Am. B 7, 2006 (1990).
2T.-1. Jeon and D. Grischkowsky, Phys. Rev. Lett. 78, 1106 (1997).
3M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Phys. Rev.
B 62, 15764 (2000).
“H. Némec, P. KuZel, and V. Sundstrom, J. Photochem. Photobiol.,
A 215, 123 (2010).
SH.-K. Nienhuys and V. Sundstrom, Appl. Phys. Lett. 87, 2101
(2005).
®H. Némec, P. KuZel, and V. Sundstrom, Phys. Rev. B 79, 115309
(2009).
’G. M. Turner, M. C. Beard, and C. A. Schmuttenmaer, J. Phys.
Chem. B 106, 11716 (2002).
8M. C. Beard, G. M. Turner, J. E. Murphy, O. 1. Micic, M. C. Hanna,
A.J. Nozik, and C. A. Schmuttenmaer, Nano Lett. 3, 1695 (2003).
°D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li,
A. Meldrum, and F. A. Hegmann, Phys. Rev. B 73, 193311 (2006).
19H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, and C.-L.
Pan, Appl. Phys. Lett. 91, 3105 (2007).
IN. V. Smith, Phys. Rev. B 64, 155106 (2001).

12, Némec, P. KuZel, F. Kadlec, D. Fattakhova-Rohlfing, J. Szeifert,
T. Bein, V. Kalousek, and J. Rathousky, Appl. Phys. Lett. 96,062103
(2010).

13Z. Mics, H. Némec, L. Rychetsky, P. KuZzel, P. Formének, P. Maly,
and P. Némec, Phys. Rev. B 83, 155326 (2011).

14C.-H. Park and S. G. Louie, Nano Lett. 9, 1793 (2009).

I5R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, Reyv.
Mod. Phys. 83, 543 (2011).

1, Némec, J. Rochford, O. Taratula, E. Galoppini, P. Kuzel,
T. Polivka, A. Yartsev, and V. Sundstrom, Phys. Rev. Lett. 104,
197401 (2010).

17R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

181 . Nddvornik, M. Orlita, N. A. Goncharuk, L. Smr¢ka, V. Novik,
V. Jurka, K. Hruska, Z. Vyborny, Z. R. Wasilewski, M. Potemski,
and K. Vyborny, New J. Phys. 14, 053002 (2012).

YN. Prodanovié, N. Vukmirovi¢, D. Indjin, Z. Ikonié, and P. Harrison,
J. Appl. Phys. 111, 073110 (2012).

20F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, Photophysics
of Molecular Materials (Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2006), Chap. 7, pp. 367—428.

2IE. D. Palik and J. K. Furdyna, Rep. Prog. Phys. 33, 1193 (1970).

075308-7


http://dx.doi.org/10.1364/JOSAB.7.002006
http://dx.doi.org/10.1103/PhysRevLett.78.1106
http://dx.doi.org/10.1103/PhysRevB.62.15764
http://dx.doi.org/10.1103/PhysRevB.62.15764
http://dx.doi.org/10.1016/j.jphotochem.2010.08.006
http://dx.doi.org/10.1016/j.jphotochem.2010.08.006
http://dx.doi.org/10.1063/1.1977213
http://dx.doi.org/10.1063/1.1977213
http://dx.doi.org/10.1103/PhysRevB.79.115309
http://dx.doi.org/10.1103/PhysRevB.79.115309
http://dx.doi.org/10.1021/jp025844e
http://dx.doi.org/10.1021/jp025844e
http://dx.doi.org/10.1021/nl0346777
http://dx.doi.org/10.1103/PhysRevB.73.193311
http://dx.doi.org/10.1103/PhysRevB.64.155106
http://dx.doi.org/10.1063/1.3313936
http://dx.doi.org/10.1063/1.3313936
http://dx.doi.org/10.1103/PhysRevB.83.155326
http://dx.doi.org/10.1021/nl803706c
http://dx.doi.org/10.1103/RevModPhys.83.543
http://dx.doi.org/10.1103/RevModPhys.83.543
http://dx.doi.org/10.1103/PhysRevLett.104.197401
http://dx.doi.org/10.1103/PhysRevLett.104.197401
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1088/1367-2630/14/5/053002
http://dx.doi.org/10.1063/1.3692069
http://dx.doi.org/10.1088/0034-4885/33/3/307



