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Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice
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The “spin-ice” state found in the rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7 offers a beautiful
realization of classical magnetostatics, complete with magnetic monopole excitations. It has been suggested
that in “quantum spin-ice” materials, quantum-mechanical tunneling between different ice configurations, could
convert the magnetostatics of spin ice into a quantum spin liquid that realizes a fully dynamical, lattice analogue
of quantum electromagnetism. Here, we explore how such a state might manifest itself in experiment, within
the minimal microscopic model of a such a quantum spin ice. We develop a lattice field theory for this model,
and use this to make explicit predictions for the dynamical structure factor that would be observed in neutron
scattering experiments on a quantum spin ice. We find that “pinch points,” which are the signal feature of a
classical spin ice, fade away as a quantum ice is cooled to its zero-temperature ground state. We also make
explicit predictions for the ghostly, linearly dispersing magnetic excitations which are the “photons” of this
emergent electromagnetism. The predictions of this field theory are shown to be in quantitative agreement with
quantum Monte Carlo simulations at zero temperature.
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I. INTRODUCTION

The idea that a strongly interacting quantum magnet might
support a spin liquid phase that remains disordered even at
zero temperature has fascinated—and frustrated—physicists
ever since the seminal “resonating valence bond” (RVB) paper
of Anderson in 1973.1 Such a phase, it was argued, need
not support the spin waves found in conventional magnets,
but could instead exhibit “spinons” with fractional quantum
numbers. Forty years later, the search for quantum spin liquids
goes on, but with strong grounds for encouragement: a growing
number of quantum magnets have been identified that do not
order down to the lowest temperatures measured, many of
which have low-temperature properties that hint at spinons.2,3

At the same time, the “spin ice” materials Ho2Ti2O7 and
Dy2Ti2O7 have emerged as textbook examples of classical
(i.e., entropy-driven) spin liquids.4–6 These highly frustrated
magnetic insulators show algebraic correlations of spins over
macroscopic distances7–10 and support magnetic monopole
excitations that provide classical analogues to the spinons
envisaged by Anderson.11–17

Recently, the idea of a “quantum spin ice” has also attracted
considerable interest. The family of rare-earth pyrochlores
to which Ho2Ti2O7 and Dy2Ti2O7 belong includes other
systems in which quantum effects play a much more important
role.6 Perhaps the most widely studied system of this type
is Tb2Ti2O7. Like the classical spin ices, the magnetism of
Tb2Ti2O7 is controlled by the competition between strong
Ising anisotropy and dipolar interactions, which are ferro-
magnetic on nearest-neighbour bonds, so it is expected to
be an “ice.” However, in Tb2Ti2O7, anisotropic exchange
interactions also play an important role and endow the spins
with dynamics.18–21 A diffuse, liquidlike structure is observed
in neutron scattering for a wide range of temperatures, with
no conventional magnetic order observed down to 50 mK,
despite the fact that the typical scale of interactions between
spins is closer to 11 K.22,23 Muon spin rotation experiments,

meanwhile, suggest that spins continue to fluctuate down to the
lowest temperatures,24 and the most recent quasielastic neutron
scattering experiments find evidence of power-law spin corre-
lations at 50 mK.25 Taken together, these facts make Tb2Ti2O7

a prime example of a three-dimensional quantum spin liquid.
The magnetism of Yb2Ti2O7 has also proved very inter-

esting, with neutron scattering finding no evidence of order
at temperatures above 210 mK, and evidence for frustrated,
anisotropic exchange interactions favoring significant dynam-
ics within an “icelike” manifold of states.26–30 Comparable
studies of Pr2Sn2O7 suggest that it does not order down
to 500 mK, but with spins continuing to fluctuate.31–33

There is also reason to believe that other Pr metal oxides,
including Pr2Zr2O7, may prove a worthwhile hunting ground
for quantum spin liquids.32–35 And while the dynamics of
the “classical” spin ices Ho2Ti2O7 and Dy2Ti2O7 become
very slow at low temperatures, neither system has ever been
observed to order, despite the fact that the dipolar interactions
present in these systems are expected to favor an ordered
state.36,37 All of this begs the question of how the classical
spin liquid found in spin ice might evolve into a quantum spin
liquid as quantum effects become more important?

In fact, spin ice is just one example of a much broader class
of systems that obey the “ice rules.” First introduced by Bernal
and Fowler in 1933 to describe the correlations of protons in
water ice,38 the ice rules have since found application in models
of frustrated charge order,39,40 proton bonded ferroelectrics41

and dense polymer melts.42 All of these systems possess a local
“two-in, two-out” constraint, which can most conveniently be
written in terms of a zero-divergence condition on a notional
magnetic field:

∇ · B = 0. (1)

In the case of spin ice, B has the physical meaning of the
local magnetization of the system, and we can associate a field
Bi with each spin on the lattice. For this reason, spin ice offers
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FIG. 1. (Color online) Spin correlations in a spin ice, as measured
by quasielastic neutron scattering. (a) Correlations within the clas-
sical spin ice configurations, showing the characteristic pinch-point
singularities at wave vector (1,1,1), etc. (b) Correlations in a quantum
ice at T = 0, showing the suppression of pinch points by quantum
fluctuations. (c) Correlations in a quantum ice at an intermediate
temperature T = ca−1

0 , showing how pinch points are progressively
restored by the thermal excitation of magnetic photons. In all cases,
results are shown for equal-time structure factors in the (h,h,0) plane,
for a polarized neutron scattering experiment in the spin-flip channel
considered by Fennell et al.9 Temperature is measured in units where
c is the speed of light associated with magnetic “photon” excitations,
a0 the lattice constant, and h̄ = kB = 1.

FIG. 2. (Color online) An illustration of the simplest tunneling
process between different spin-ice configurations. The ice rules
dictate that each tetrahedron within the lattice has two spins that
point “in” and two that point “out.” Where these spins form a closed
loop on a hexagonal plaquette—here shaded red—the sense of each
spin within the loop can be reversed to give a new configuration that
also obeys the ice rules.

a beautiful realization of classical magnetostatics, with local
violations of the ice rules entering as point magnetic charges
(magnetic monopoles11–17) and spin correlations that exhibit
“pinch point” singularities in k space,

〈Sμ(−k)Sν(k)〉classical ∝
(

δμν − kμkν

k2

)
, (2)

[see Fig. 1(a)] corresponding to algebraic (dipolar) correlations
in real space.7–10,41 Since the ice rules can be satisfied
by an exponentially large number of proton (spin, charge,
polymer, etc.) configurations,43 they explain the residual
entropy observed in both water ice44 and spin ice45 at low
temperatures. Given this enormous reservoir of entropy, both
spin ice and water ice are natural places to look for a quantum
liquid ground state.

The key ingredient needed to convert a classical ice
into a quantum liquid is tunneling between different ice
configurations (see Fig. 2). This opens the door to a “quantum
ice”: a unique, quantum mechanical ground state, formed
through the coherent superposition of an exponentially large
number of classical ice configurations. Such a state could have
a vanishing entropy at zero temperature, and so satisfy the
third law of thermodynamics, without sacrificing the algebraic
correlations and fractional excitations (magnetic monopoles)
associated with the degeneracy of the ice states. If realized
in a spin ice, it would provide a concrete, three-dimensional
example of the long-sought quantum spin liquid.

Precisely this scenario was proposed by Moessner and
Sondhi in the context of three-dimensional quantum dimer
models,46 by Hermele, Balents, and Fisher in a quantum,
ice-type model derived from an easy-axis antiferromagnet
on a pyrochlore lattice,47 and by Castro-Neto, Pujol, and
Fradkin in the context of a simplified model of water ice.48

All of these models included tunneling between ice (or dimer)
configurations of the type illustrated in Fig. 2. In a spin ice, the
dominant tunneling process involves flipping loops of spins
that point nose-to-tail on an hexagonal plaquette, and the
resulting dynamics are described symbolically by

Htunneling = −g
∑
� [|�〉〈�| + |�〉〈�|], (3)
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where g is the strength of the tunneling matrix element and
Htunneling acts on the space of all possible ice (or dimer)
configurations.

Both Moessner and Sondhi46 and Hermele et al.47 also in-
troduced an additional control parameter μ to the Hamiltonian

Hμ = Htunneling + δHμ, (4)

where

δHμ = μ
∑
� [|�〉〈�| + |�〉〈�|]. (5)

This makes it possible to fine tune the model to an exactly
soluble Rokhsar-Kivelson (RK) point g = μ, where the
ground-state wave is an equally-weighted sum of all possible
ice (dimer) configurations.49 The authors then argued, by
continuity, that a quantum liquid phase would occur for a finite
range of parameters μ � 1 bordering on the RK point.46,47

The most striking feature of this quantum liquid is “light.”
Attempts to construct models with “artificial light”—gapless
photon excitations of an effective, low-energy U (1) gauge
field—have a long history.50 In recent years, it has been
realized that large families of lattice models could, in principle,
be described by such theories. These include abstract models
of “quantum order,”51,52 Bose-Hubbard models bordering on
superfluidity,53 systems of screened dipoles,54 and suitably
adapted sigma models.56 Reviews of these ideas can be found
in papers by Motrunich and Senthil55 and Wen and Levin.57

The way in which light arises in three-dimensional quantum
ice and quantum dimer models is particularly simple. The
ice-rules constraint Eq. (1) is most conveniently resolved as

B(r) = ∇ × A(r). (6)

The new feature that enters where there is tunneling between
ice configurations is the fluctuation in time of the gauge field
A(r). In conventional electromagnetism, this gives rise to an
electric field

E(r) = −∂A(r)

∂t
. (7)

Then, following the heuristic arguments of Moessner and
Sondhi46—or the more microscopic derivation of Hermele
et al.47—it is reasonable to suppose that a quantum liquid
found bordering the RK point {Hμ [see Eq. (4)] with μ � 1},
would be governed by the Maxwell action

SMaxwell = 1

8π

∫
dtd3r[E(r)2 − c2B(r)2]. (8)

Any state described by SMaxwell [see Eq. (8)] automatically
supports linearly dispersing transverse excitations of the gauge
field A(r)—photons, with a speed of light c. On the lattice,
such a magnetic photon would have a dispersion ω(k) of the
form illustrated in Fig. 3.

Moreover, the fact that the spins now fluctuate in time as
well as space introduces an additional power of k in energy-
integrated (i.e., equal time) spin correlations,47,48

〈Sμ(−k)Sν(k)〉quantum ∝ k

(
δμν − kμkν

k2

)
, (9)

FIG. 3. (Color online) Ghostly magnetic “photon” excitation as
it might appear in an inelastic neutron scattering experiment on a
quantum spin ice realising a quantum ice ground state. The photon
dispersion ω(k) is taken from lattice gauge theory developed in
Sec. II C of this paper, convoluted with a Gaussian representing the
finite energy resolution of the instrument. The intensity of scattering
vanishes as I ∝ ω(k) at low energies.

which serves to eliminate the pinch points seen in quasielas-
tic neutron scattering experiments [see Fig. 1(b)].58 More
formally, this theory is a compact, frustrated U (1) gauge theory
on a diamond lattice, and we will refer to the liquid state it
describes as the quantum U (1) liquid below.

The degree of fine tuning in these arguments, and the
need to introduce additional parameter μ [see Eq. (5)], might
seem to render them of purely academic interest. However,
the idea of a quantum U (1) liquid found strong support in
finite-temperature quantum Monte Carlo simulations of an
ice-type model of frustrated charge order on the pyrochlore
lattice.59 Subsequently, it has proved possible to determine
the ground-state phase diagrams of both the quantum dimer
model of Moessner and Sondhi,46 and the quantum ice model
of Hermele et al.,47 from zero-temperature quantum Monte
Carlo simulations.58,60,61 Both models contains extended
regions of a quantum liquid phase, connecting to the RK
point. In both cases, this quantum liquid has low-energy
excitations, which are described by a lattice analog of quantum
electromagnetism.58,60,61 Significantly, in the case of the
quantum ice model, this quantum liquid phase encompasses
the “physical” point of the model μ = 0, and so does not
require any fine-tuning [see Fig. 4].58

The theoretical possibility of a three-dimensional spin-
liquid state with excitations described by a lattice analog
of quantum electromagnetism is now well established. What
remains is to connect these ideas with experiments. The
purpose of this paper is therefore to set out predictions for
the correlations that would be measured in neutron scattering
experiments, if such a state were realized in a spin-ice mate-
rial. For concreteness, we work with the minimal lattice model
introduced by Hermele et al.,47 transcribed to coordinates
appropriate for a spin ice. More realistic generalizations of
this model will be considered elsewhere.62
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FIG. 4. (Color online) Zero-temperature phase diagram of the
model of tunneling between ice states Hμ [see Eq. (16)], as
determined by quantum Monte Carlo simulation in Ref. 58. The
“quantum ice” point, μ = 0, lies deep within a quantum liquid phase
with low-energy excitations described by a lattice analog of quantum
electromagnetism This extends from a “squiggle” ordered phase,
found for μ < −0.5g, to the exactly-soluble RK point μ = g. (Here,
g is the strength of tunneling between ice states.)

In Sec. II of the paper, we develop the mathematical
formalism needed to describe the spin correlations and
low-energy spin excitations in a spin ice with a quantum
U (1)-liquid ground state. Using this theory, we make predic-
tions for the photon dispersion ω(k) and dynamical structure
factor Sαβ(k,ω), which would be measured in neutron scatter-
ing experiments.

In Sec. III, we make explicit comparison of the predic-
tions of this theory with zero-temperature quantum Monte
Carlo simulations of the minimal, microscopic model of
a quantum spin ice with tunneling between different ice
configurations, Hμ [see Eq. (16)]. We find essentially perfect,
quantitative agreement between simulation results and the
field theory solved on a finite-size lattice, for a range of
parameters 0 � μ � g, which interpolate from the mini-
mal model of a quantum spin ice (μ = 0) to the clas-
sical correlations of the RK point (μ = g). This analysis
reinforces the conclusions reached in Ref. 58 about the
existence of a quantum U (1) liquid in this model, and
puts the field-theory description on a quantitative foot-
ing.

In Sec. IV, we make predictions for neutron scattering
experiments carried out at finite temperature. In particular,
we analyze the way in which the characteristic pinch-point
structure in quasielastic scattering is lost as the system is
cooled towards its zero-temperature ground state. We conclude
that the loss of the pinch points coincides with the progressive
loss of the Pauling entropy as the system cools into a
unique, quantum coherent, liquid ground state. Thus the
signature features of the ice problem: pinch points and the
Pauling entropy die together at low temperatures. We also
give a brief discussion of the uniform magnetic suscepti-
bility and heat capacity, in the low-temperature quantum
regime.

Finally, in Sec. V, we conclude with a discussion of
some of the remaining issues relating to experiment. As
far as possible, each section of the paper is written so
as to be self-contained. Readers uninterested in the math-
ematical development of the theory are therefore invited
pass directly to Secs. III and IV, referring to Sec. II as
required.

II. FROM QUANTUM ICE TO QUANTUM
ELECTROMAGNETISM

At first sight, an assembly of magnetic ions on a lattice does
not look like a promising place to search for a gauge theory
that perfectly mimics quantum electromagnetism. However,
in the simplest microscopic model for quantum-mechanical
tunneling between spin configurations obeying the “two in,
two out” ice rule, this is exactly what happens.47,58,59 In what
follows, we retrace the steps that lead from a spin ice system
to a theory of electromagnetism on a lattice.

In Sec. II A, we review the relevant microscopic models. In
Sec. II B, we show how a lattice gauge theory resembling
electromagnetism arises in these problems, recasting the
earlier field-theoretical arguments of Hermele et al.47 in terms
appropriate for a spin ice. In Sec. II C, we explicitly construct
the magnetic photon excitations of this lattice gauge theory.
In Sec. II D, we use the mapping between spins and photons
to calculate the correlations between spins in a quantum spin
liquid described by this lattice gauge theory. Throughout this
analysis we set h̄ = kB = 1, restoring dimensional factors
only where we quote a result for the speed of light.

A. Spins on a pyrochlore lattice

The materials that we will seek to describe have magnetic
ions that (a) have a crystal-field ground state that is a doublet,
and (b) occupy the sites of the pyrochlore lattice shown in
Fig. 5. In the case of the spin ices Ho2Ti2O7 and Dy2Ti2O7,
this doublet has Ising character (rare-earth moments point into,
or out of, the tetrahedra that make up the lattice), and the
dominant interactions between these Ising spins are dipolar.63

However, since these dipolar interactions are effectively self-
screened, the correlations present in spin ice are extremely well
described by models with only nearest-neighbor interactions
between spins.4,36,37,64,65 This approximation gains further
justification in quantum-spin-ice materials such as Yb2Ti2O7,

FIG. 5. (Color online) Structure of the pyrochlore lattice realized
by the magnetic ions in spin-ice materials. (a) The lattice is built of
corner sharing tetrahedra, and can be decomposed into a set of A-
sublattice tetrahedra (here coloured red) and B-sublattice tetrahedra
(here coloured black), each of which forms an fcc lattice in its
own right. The primitive unit of the pyrchlore lattice consists of a
single tetrahedron with four lattice sites. However, it is also possible
to define a cubic unit cell, of side a0, containing 16 lattice sites.
(b) Bipartite, diamond lattice formed by the centers of tetrahedra that
make up the pyrochlore lattice. The bonds of this diamond lattice
define the easy axes for spins in a spin ice and play an important role
in the lattice gauge theory of its excitations.

075154-4



SEEING THE LIGHT: EXPERIMENTAL SIGNATURES OF . . . PHYSICAL REVIEW B 86, 075154 (2012)

where magnetic moments are smaller than for Ho2Ti2O7 and
Dy2Ti2O7, and exchange interactions play a much larger role.

As a starting point, we can therefore consider the Hamilto-
nian for a (pseudo) spin-1/2 degree of freedom on a pyrochlore
lattice, with the most general nearest-neighbor exchange
interactions allowed by symmetry:66

HS=1/2 =
∑
〈ij〉

{
JzzSz

i S
z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±[γijS+
i S+

j + γ ∗
ijS−

i S−
j ]

+ Jz±
[
Sz

i (ζijS+
j + ζ ∗

ijS−
j ) + i ↔ j

]}
. (10)

Here, we have followed the notation of Ross et al.27 in which
the Sz

i is aligned with the local trigonal axes of the pyrochlore
lattice on each site i, and γij and ζij are 4 × 4 complex
unimodular matrices encoding the rotations between these
local coordinate frames. In the quantum-spin-ice Yb2Ti2O7,
where the ground-state doublet of Yb has XY character,67–69

Eq. (10) gives a good account of diffuse structure observed
in neutron scattering experiments provided that the exchange
interactions J±, Jz±, and J±± are taken into account.26,29 It
also gives an excellent description of spin wave excitations
about the saturated state of Yb2Ti2O7 in applied magnetic
field, with parameters Jzz = 0.17 ± 0.04 meV, J± = 0.05 ±
0.01 meV, Jz± = −0.14 ± 0.01 meV, and J±± = 0.05 ± 0.01
meV obtained from fits to data.27 The phase diagram associated
with HS=1/2 [see Eq. (10)] is explored in Refs. 27,35, and 70.

We can further simplify the problem by setting J±± = 0,
and focusing on the limit Jzz � J±, Jz± > 0. In this limit, the
role of Jzz is to enforce the “ice rules” constraint, while J±
generates dynamics, and Jz± lifts the degeneracy of ice-rule
obeying states. Performing degenerate perturbation theory in
the basis of (spin) ice configurations, and dropping terms that
lead only to a constant energy shift, leads to the effective
Hamiltonian27

Heff = Htunneling + HJ3 (11)

with

Htunneling = −g
∑
� [S+

1 S−
2 S+

3 S−
4 S+

5 S−
6 + H.c.], (12)

where
∑� runs over all hexagonal plaquettes in the pyorchlore

lattice (see Fig. 2) with

g = 12J 3
±

J 2
zz

, (13)

and

HJ3 = −J3

∑
〈ij〉3

Sz
i S

z
j , (14)

where
∑

〈ij〉3
runs over third-neighbor bonds (parallel to the

nearest-neighbor bonds), with

J3 = 3J 2
z±

Jzz

> 0. (15)

We note that, by construction, the Hamiltonian (11) acts
only on spin configurations satisfying the ice rules. This

implies that, in performing the degenerate perturbation theory,
virtual excitations of magnetic monopoles have been projected
out of the problem. This approximation will have little effect
on the conclusions drawn in this paper, and could in principle
be relaxed.

It is also important to note that these spin ice configurations
may possess a nonzero net magnetisation M. The tunneling
term Htunneling [see Eq. (12)] generates dynamics by perform-
ing a cyclic exchange of spins on a hexagonal plaquette [see
Fig. 2]. This tunneling process can be written symbolically
as acting on a closed loop of spins [see Eq. (3)]. Under these
dynamics, the total magnetization M is a conserved quantity.

We make the final simplification of neglecting HJ3

[Eq. (14)] and focusing exclusively on the spin-liquid favored
by the tunneling term Htunneling—Eq. (12) or, symbolically,
Eq. (3). The neglected term HJ3 favors the six ice states
with the maximum possible magnetization per site m =
(±1/

√
3,0,0) × S, etc., where S is the moment of the magnetic

ion. We have confirmed through zero-temperature quantum
Monte Carlo simulation of Heff [see Eq. (11)] that the system
remains in quantum U (1) liquid ground state up to a value of
J3 ≈ 0.27 g at which point it undergoes first-order transition
into this ordered, ferromagnetic state. These results will
be discussed elsewhere.62 We note that a gauge mean-field
theory for HS=1/2 [see Eq. (10)] predicts an intermediate
“Coulombic ferromagnet” phase, in which the quantum U (1)
liquid spontaneously acquires a finite magnetization for any
finite Jz±.27,70 This does not appear to be a ground state of the
effective model Heff [see Eq. (11)].

Following Hermele et al.,47 it is useful to augment the
minimal model Htunneling with an additional, artificial, inter-
action term δHμ [see Eq. (5)]. This renders the model exactly
soluble for μ = g. Thus the most general microscopic model
we consider in this paper can be written symbolically as

Hμ = −g
∑
� [|�〉〈�| + |�〉〈�|]

+μ
∑
� [|�〉〈�| + |�〉〈�|], (16)

where Hμ acts on the space of all possible (spin) ice configu-
rations. This Hamiltonian is known to support a quantum U (1)
liquid ground state for −0.5g < μ � g.58

It is important to note that this effective description of
tunneling between ice configurations might equally have been
derived for the model of hardcore bosons on the pyrochlore
lattice considered by Banerjee et al.:59

Hcharge-ice = −t
∑
〈ij〉

(b†i bj + b
†
j bi )

+V
∑
〈ij〉

(
ni − 1

2

) (
nj − 1

2

)
(17)

with V � t . At 1/2-filling [〈n〉 ≡ 1/2], V selects charge
configurations with exactly two bosons in each tetrahedron
of the lattice, and Hcharge-ice is exactly equivalent to the
pseudospin-1/2 model Eq. (11), in the case where Jz± =
J±± ≡ 0. The leading tunneling matrix element between
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different (charge) ice configurations is then

g = 12t3

V 2
. (18)

We will return to this model below in the context of
predictions for experiment and simulations performed at finite
temperature.59

The manifold of ice configurations on the pyrochlore lattice
is equivalent to the set of possible close-packed loop coverings
of the diamond lattice.71 Exactly parallel arguments, leading
to a formally identical Hamiltonian, can also be constructed
for the closely related quantum dimer model on the diamond
lattice.46,72 This model also exhibits a quantum U (1) liquid
ground states for a smaller—but none the less finite—range of
parameters 0.75g < μ � g (see Refs. 60 and 61).

B. Electromagnetism on a diamond lattice

The mappings described in Sec. II A permit us to reduce
complicated interactions between magnetic ions to a problem
of tunneling between spin configurations obeying the “ice
rules” [see Fig. 2]. If we think of these spins as field lines
of a fictitious magnetic field B, these rules can conveniently
be written as

∇ · B = 0.

This naturally suggests an analogy with magnetostatics, with
magnetic field lines constrained to lie on the bonds of a
diamond lattice [see Fig. 6(a)]. And in the presence of
tunneling between ice configurations, this analogy can be
extended to a fully dynamical quantum electromagnetism.
Here, we review the mapping from an ice with tunneling,
to a compact, U (1) lattice gauge theory, before moving on to
an analysis of its “photon” excitations (see Sec. II C) and spin
correlations (see Sec. III C). In so doing, we follow closely
the arguments of Hermele et al.,47 but recast the discussion
in terms of the magnetic fields B usually associated with the
spins of a spin ice.

We begin by transcribing the spin variables of Htunneling
[see Eq. (12)] in terms of a quantum rotor variable θi , and its
conjugate number operator ni :

Sz
i = (

ni − 1
2

)
, (19)

S+
i = √

ni exp [iθi]
√

1 − ni, (20)

S−
i =

√
1 − ni exp [−iθi]

√
ni, (21)

where

[θi,nj ] = iδij . (22)

The number operator ni could equally be associated with the
density of (hard-core) bosons in a charge ice, and in order to
remain in the physical subspace where ni = 0 or 1, we add the
term

HU = U

2

∑
i

(ni − 1/2)2 (23)

to the Hamiltonian, subsequently taking the limit U →
∞. With this restriction in place, the Hamiltonian

FIG. 6. (Color online) The different fields used in Sec. II B to
construct lattice gauge theory of the spin liquid state, and the different
lattices on which they are defined. (a) The “magnetic” field Brr′ [see
Eq. (26)], and its conjugate field Grr′ [see Eq. (27)] are defined on
the links of the diamond lattice, shown here in red. Each link of
this diamond lattice corresponds to a site of the original pyrochlore
lattice, and Brr′ encodes the orientation of the spin on this site. (b)
The compact U (1) gauge field Ass′ and the conjugate “electric” field
Ess′ are defined on the links of a second, dual, diamond lattice, shown
here in blue. The midpoints of these bonds also form a second, dual,
pyrochlore lattice, corresponding to the centers of hexagonal plaque-
ttes in the original pyrochlore lattice. (c) An illustration of taking the
lattice curl on the hexagonal plaquettes of the diamond lattice. The
resulting vector lives on the links of the dual, diamond lattice.

becomes

Hrotor = U

2

∑
i

(ni − 1/2)2

− 2g
∑
� cos (θ1 − θ2 + θ3 − θ4 + θ5 − θ6). (24)

It is from this rotor form of the Hamiltonian that we will make
the passage to a U (1) gauge theory on the diamond lattice.
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The site i of the pyrochlore lattice can be thought of as the
midpoint of the bond r → r′ of a diamond lattice [see Fig. 5].
Since this diamond lattice is bipartite, it is possible to define
directed variables on these bonds,

Brr′ = −Br′r Grr′ = −Gr′r, (25)

through the mapping

Brr′ = ± (
n̂i − 1

2

)
, (26)

Grr′ = ±θi, (27)

where the sign is taken to be positive if r belongs to the
A sublattice, and negative if r belongs to the B sublattice.
Taking this convention into account, we are left with a pair of
canonically conjugate variables

[Grr′ ,Br′′r′′′ ] = i (δrr′′δr′r′′′ − δrr′′′δr′r′′) . (28)

The field, Brr′ will take on the role of a magnetic field
in our lattice field theory. However, in order to recreate
“electromagnetism,” we need also to discover an analogue
to the electric field. The missing field, Ess′ , inhabits the bonds
s → s′ of a second diamond lattice, interpenetrating the first
[see Fig. 6(b)]. It is defined through a lattice curl:

Ess′ = (∇� × G)ss′ =
∑
�

Grr′ , (29)

where the sum
∑

� is taken with anticlockwise sense around
the hexagonal plaquette of pyrochlore lattice sites encircling
the bond s → s′. It follows that Ess′ is also a directed variable:

Ess′ = −Es′s. (30)

We are now in a position to transcribe Hrotor completely in
terms of “electromagnetic” fields:

Hrotor = U

2

∑
〈rr′〉

B2
rr′ − 2g

∑
〈ss′〉

cos (Ess′ ), (31)

where the sum
∑

〈rr′〉 runs over all bonds of the original
diamond lattice, while the sum

∑
〈ss′〉 runs over all bonds of the

second, dual diamond lattice. The fact that the Hamiltonian is
invariant under the transformation Ess′ → Ess′ + 2π makes it
evident that this theory is compact. It is also important to note
that each of the components of the total magnetic field

(Bx,By,Bz) =
∑
〈rr′〉

Brr′ êrr′ , (32)

where êrr′ is a unit vector directed from r to r′, is a conserved
quantity under the dynamics of Hrotor [see Eq. (31)].

More generally, reversing the sign of Brr′ on a closed loop
of spins will tunnel one ice configuration to another, without
changing the total magnetization of the system.

In deriving Eq. (31), we have assumed that the ice rules
hold, i.e.,

(∇ · B)r =
∑
〈r′〉

Brr′ = 0, (33)

where the sum
∑

〈r′〉 runs over all sites neighboring r. This
condition is automatically satisfied if we write Brr′ as the
lattice curl of a gauge fieldAss′ . However, we must also respect
the requirement that the field Brr′ take on half-integer values

[see Eq. (26)]. This can be accomplished by introducing a
static background fieldB0

rr′ , taken from any spin configuration,
which satisfies the ice rules, and writing(

Brr′ − B0
rr′

) = (∇� × A)rr′ (34)

to give

Hrotor = U

2

∑
〈rr′〉

[
(∇� × A)rr′ + B0

rr′
]2 − 2g

∑
〈ss′〉

cos (Ess′ ).

(35)

The fields Ess′ and Ass′ are canonically conjugate,

[Ess′ ,As′′s′′′ ] = i(δss′′δs′s′′′ − δss′′′δs′s′′ ). (36)

Moreover, the theory has a local gauge symmetry since one
can make the transformation

Ass′ → Ass′ + λs − λs′ (37)

on any bond without changing the value of (∇� × A)rr′—each
value of λs occurs twice, with opposite signs. The situation
now bears more than a passing resemblance to quantum
electromagnetism.

At this point, a subtlety enters the problem. In passing from
Eq. (12) to Eq. (35), we have performed a series of changes of
variable without making any new approximations. However,
it still remains to take the limit U → ∞. If the “magnetic”
field Brr′ were an integer variable, it could be eliminated from
the problem by setting Brr′ = 0 on all bonds. This would be
energetically favorable at large U/g and would imply a phase
transition from a spin liquid phase at small U/g, into a phase in
which spinon excitations (magnetic monopoles) were confined
at large U/g [see Ref. 73]. However, the fact that Brr′ takes on
half-integer values “frustrates” the lattice theory, and makes it
possible for a spin liquid phase to survive in the limit U → ∞.

Keeping this in mind, we now follow Hermele et al.47 in
assuming that an average over fast fluctuations of the gauge
field (a) softens the restriction that Brr′ take on half-integer
values and (b) restricts Ess′ to small values. Provided that both
of these assumptions hold true, we can drop the reference field
B0

rr′ and expand the cosine in Eq. (35), to obtain

HU(1) = U
2

∑
〈rr′〉

[(∇� × A)rr′]2 + K
2

∑
〈ss′〉

E2
ss′ , (38)

where both the normalization of the field Brr′ , and the
parameters of HU (1) may be renormalized from their bare
values |Brr′ | ∼ 1/2, U ∼ U , K ∼ g. This, finally, is the
Hamiltonian for noncompact quantum electromagnetism on
a diamond lattice.

At first sight, the final step of this derivation might
seem to involve an uncomfortably large leap of faith.10

However, this will be justified a posteriori in Sec. III B by the
excellent, quantitative, agreement of the predictions of HU (1)

[see Eq. (38)] with quantum Monte Carlo simulation of the
microscopic model Hμ [see Eq. (16)]. In order to extend this
comparison to finite values of the control parameter μ, we will
augment HU (1) with a term

δHU(1) = W
2

∑
〈ss′〉

[(∇� × (∇� × A))ss′]2, (39)
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which mimics the effect of the “RK” potential [see Eq. (5)].
Since this term is permitted by the gauge symmetry, in
principle, it might also be generated dynamically by an average
over fast fluctuations of Ass′ .

C. Constructing the photon

The lattice gauge theory described in Sec. II B supports
three types of excitation: magnetic charges (point sources of
B) and electric charges (point sources of E), together with
photons (transverse excitations of A) that mediate Coulomb
interactions between these emergent charges (see Refs. 46
and 47).

The magnetic charges are the magnetic monopoles of
the classical theory,12 now quantized and endowed with
dynamics.40,74,75 They correspond to the “spinon” excitations
of the spin liquid. Since they involve spin configurations lying
outside the ice manifold, they have an energy gap

2
B ∼ J zz

[see Eq (10)]. The electric charges are gapped topological
excitations that can be constructed as a wave packet of ice
configurations with suitably chosen phases.46,47 These also
have an energy gap


E ∼ K ∼ g = 12J 3
±/J 2

zz

[see Eq (13)].
However, the energy of the photons vanishes linearly at

small wave vector,

ω(k → 0) = c|k|,
and being gapless, the photons will control the low-energy
and low-temperature properties of the system. We therefore
concentrate on exploring the consequences of the photons in
this paper, leaving other excitations for future work.

In what follows, we will explicitly construct a photon basis
for the lattice gauge theory developed in Sec. II B, with a view
to calculating the spin-spin correlation functions of the original
model of a quantum spin ice. We take as a starting point

H′
U(1) = U

2

∑
r∈A,n

[(∇� × A)(r,n)]
2 + 1

2K
∑

s∈A′,m

[
∂A(s,m)

∂t

]2

+ W
2

∑
s∈A′,m

[(∇� × ∇� × A)(s,m)]
2, (40)

where we have used the fact that, in the absence of electric
charges,

E(s,m) = − 1

K
∂A(s,m)

∂t
. (41)

To avoid double counting of bonds, the sums over diamond
lattice sites {r} and {s} are restricted to a single sublattice, with

bonds labeled

(r,n) = (r,r + en), (s,m) = (s,s + em),

where

e0 = a0

4
(1,1,1) , e1 = a0

4
(1, − 1, − 1) ,

(42)
e2 = a0

4
(−1,1, − 1) , e3 = a0

4
(−1, − 1,1) ,

and a0 is the linear dimension of the cubic unit cell of the
lattice, shown in Fig. 5.

We proceed to quantize Asm by analogy with conventional
electromagnetism, introducing a Bose operator

[aλ,a
†
λ′ ] = δλλ′,

where the four sites of the tetrahedron in the primitive unit cell
of the pyrochlore lattice translate into four bands λ = 1 . . . 4.
We write

A(s,m) =
√

2

N

∑
k

4∑
λ=1

√
K

ωλ(k)

×{exp [−ik · (s + em/2)] ηmλ(k)aλ(k)

+ exp [ik · (s + em/2)] η∗
λm(k)a†

λ(k)}, (43)

where the sum
∑4

λ=1 runs over all four branches of photons
and η(k) is a unitary, 4 × 4 matrix whose columns, ηλ(k),

play the same role as the polarization vector in conventional
electromagnetism. By obvious extension,

E(s,m) = i

√
2

N

∑
k

4∑
λ=1

√
ωλ(k)

K

×{exp [−ik · (s + em/2)] ηmλ(k)aλ(k)

− exp[ik · (s + em/2)]η∗
λm(k)a†

λ(k)}. (44)

The Hamiltonian [see Eq. (40)] is already quadratic in aλ.
What remains is to eliminate all terms that do not conserve
photon number, by constructing a suitable matrix η∗

λm(k). To do
this, we need to evaluate the Fourier transform of the lattice curl
(∇� × A)(r,n). This operator is defined on a six-bond plaquette,
composed of pairs of bonds that enter with opposite signs in
the directed sum around the plaquette(see Figs. 2 and 6). These
bonds have midpoints located at

r − en/2 ± hnm,

where

hnm ≡ a0√
8

ên × êm

|ên × êm| . (45)

Hence

"

(∇� × A)(r,n) =
√

2

N

∑
k

4∑
λ=1

√
K

ωλ(k)

{
exp[−ik · (r − en/2)]aλ(k)

∑
m

[−2i sin(k · hnm)]ηmλ(k)

+ exp [ik · (r − en/2)] a
†
λ(k)

∑
m

[2i sin(k · hnm)] η∗
λm(k)

}
, (46)

where, by inspection, hnn ≡ 0.
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We can rewrite the sum
∑

m in Eq. (46) in a more convenient form by introducing a Hermitian, antisymmetric matrix

Z(k) = −2i

⎛
⎜⎜⎜⎝

0 sin(k · h01) sin(k · h02) sin(k · h03)

− sin(k · h01) 0 sin(k · h12) sin(k · h13)

− sin(k · h02) − sin(k · h12) 0 sin(k · h23)

− sin(k · h03) − sin(k · h13) − sin(k · h23) 0

⎞
⎟⎟⎟⎠ (47)

acting on the four component vectors ηλ(k).
Since Z(k) is Hermitian, we are free to construct the matrix η(k) from the eigenvectors of Z(k), such that

Z(k) ·

⎛
⎜⎜⎜⎝

ηλ0

ηλ1

ηλ2

ηλ3

⎞
⎟⎟⎟⎠ = ζλ(k)

⎛
⎜⎜⎜⎝

ηλ0

ηλ1

ηλ2

ηλ3

⎞
⎟⎟⎟⎠. (48)

A specific choice of η(k) corresponds to a choice of gauge, since using Eq. (43), the divergence of Ass′ is now fixed. The choice

here, which is made for maximum convenience in constructing the photon dispersion, is the radiation (or Coulomb) gauge

∇ · A = 0. (49)

It follows from Eqs. (46) and (48) that

(∇� × A)(r,n) =
√

2

N

∑
k

4∑
λ=1

√
K

ωλ(k)
{exp[−ik · (r − en/2)]aλ(k)ζλ(k)ηnλ(k) + exp[ik · (r − en/2)]a†

λ(k)ζλ(k)η∗
λn(k)}. (50)

Squaring and summing over r and n, we arrive at

∑
(r,n)

(∇� × A)2
(r,n) = 1

2

∑
k

4∑
λ=1

4∑
λ′=1

√
K

ωλ(k)

√
K

ωλ′(k)
ζλ(k)ζλ′(k′)

[
aλ(k)aλ′(−k)ζλ(k)ζλ′(−k)

∑
n

ηnλ(k)ηnλ′(−k)

+ a
†
λ(k)a†

λ′(k)ζλ(k)ζλ′(−k)
∑

n

η∗
λn(k)η∗

λ′n(−k) + aλ(k)a†
λ′(k)ζλ(k)ζλ′(k)

∑
n

ηnλ(k)η∗
λ′n(k)

+ a
†
λ(k)aλ′(k)ζλ(k)ζλ′(k)

∑
n

η∗
λn(k)ηnλ′(k)

]
. (51)

This rather dense expression can be simplified using the unitarity of η(k):

∑
n

η∗
λn(k)ηnλ′(k) = δλλ′ (52)

and the fact that

Z(−k) = Z(k)∗,

from which it follows that

ηλ(−k) = η∗
λ(k), (53)

ζλ(k) = ζλ(−k). (54)

Whence

∑
(r,n)

(∇� × A)2
(r,n) = K

2

∑
k

4∑
λ=1

ζλ(k)2

ωλ(k)
[aλ(k)aλ(−k) + a

†
λ(k)a†

λ(−k) + a
†
λ(k)aλ(k) + aλ(k)a†

λ(k)]. (55)

Applying the same procedure again to Eq. (50), we find

∑
(s,m)

(∇� × ∇� × A)2
(s,m) = K

2

∑
k

4∑
λ=1

ζλ(k)4

ωλ(k)
[aλ(k)aλ(−k) + a

†
λ(k)a†

λ(−k) + a
†
λ(k)aλ(k) + aλ(k)a†

λ(k)]. (56)
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The remaining, electric field, term in H0 [see Eq. (38)] yields

∑
(s,m)

(
∂A(s,m)

∂t

)2

= 1

2

∑
k

4∑
λ=1

ωλ(k)[−aλ(k)aλ(−k) − a
†
λ(k)a†

λ(−k) + a
†
λ(k)aλ(k) + aλ(k)a†

λ(k)]. (57)

Inserting all of this into the Hamiltonian (40) gives

H′
U(1) =

∑
k

4∑
λ=1

{[UKζλ(k)2

4ωλ(k)
+ WKζλ(k)4

4ωλ(k)
+ ωλ(k)

4

]
[aλ(k)a†

λ(k) + a
†
λ(k)aλ(k)]

+
[UKζλ(k)2

4ωλ(k)
+ WKζλ(k)4

4ωλ(k)
− ωλ(k)

4

]
[aλ(k)aλ(−k) + a

†
λ(k)a†

λ(−k)]

}
. (58)

To diagonalize the Hamiltonian, we require

UKζλ(k)2

4ωλ(k)
+ WKζλ(k)4

4ωλ(k)
= ωλ(k)

4
, (59)

which implies

H′
U(1) =

∑
k

4∑
λ=1

ωλ(k)

[
a
†
λ(k)aλ(k) + 1

2

]
(60)

with dispersion relation fixed by Eq. (59):

ωλ(k) = K
√
U
K ζλ(k)2 + W

K ζλ(k)4. (61)

All that now remains is to determine the eigenvalues of the
matrix Z(k), ζλ(k). We find

ζ1(k) = +
√

2

√∑
mn

sin (k · hmn)2, (62)

ζ2(k) = −
√

2

√∑
mn

sin (k · hmn)2, (63)

ζ3(k) = 0, (64)

ζ4(k) = 0. (65)

It follows that the four bands of excitations ζλ(k) correspond to
two, degenerate, physical photon modes, and two unphysical,
zero-energy modes. The unphysical modes arise because of the
gauge redundancy in A and make no contribution to either the
Hamiltonian or to any gauge invariant correlation functions.

Keeping only the physical photon modes from Eq. (60), we
finally arrive at

H′
U(1) =

∑
k

2∑
λ=1

ω(k)

[
a
†
λ(k)aλ(k) + 1

2

]
, (66)

where λ now has the interpretation of the polarization of
the photon. The photon dispersion ω(k) is independent of
polarization and can be written

ω(k) = K
√
U
K ζ (k) + W

K ζ (k)2, (67)

where

ζ (k) = ζ1(k) = −ζ2(k) =
√

2

√∑
mn

sin (k · hmn)2 (68)

with hmn defined by Eq. (45).

For all U/K > 0, the photon dispersion is linear in the
long-wavelength limit:

ω(k ≈ 0) ≈
√
UK a0|k|. (69)

This means that there is a well-defined speed of light:

c =
√
UK a0 h̄−1, (70)

where we have restored the dimensional factor of h̄.
However, in the limiting case U/K → 0, c → 0, and the

dispersion of the photon becomes quadratic in the long-
wavelength limit:

ω(k) ≈
√
WKa2

0 |k|2. (71)

Precisely this limit is realized at the RK point μ = g of the
quantum ice modelHμ [see Eq. (16)] and defines the boundary
of the quantum U (1) liquid phase.47,58 The photon dispersion
relations in the two extreme cases U/K = 0 and W/K = 0 are
plotted in Figs. 7 and 8.

D. From photons to structure factors

Spin correlations in real materials can be measured directly
by neutron scattering. Here, we convert the analysis of photons
in Sec. II C into concrete predictions for the dynamical
structure factors measured in such an experiment. We also
consider the structure factors that might be measured in,
e.g., x-ray scattering experiments on a charge ice of the type

FIG. 7. (Color online) Dispersion ω(k) of magnetic photon
excitations, calculated for the lattice field theory Eq. (40) in
the “quantum-ice” limit W/K → 0. The dispersion is plotted
in the (h,h,l) plane, following Eq. (67). The dispersion is linear in
|k| in the long-wavelength limit, with a speed of light c = √

UKa0.
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FIG. 8. (Color online) Dispersion ω(k) of magnetic photon
excitations, calculated for the lattice field theory Eq. (40) in the limit
U/K → 0. The dispersion is plotted in the (h,h,l) plane, following
Eq. (67). The dispersion is quadratic in k the long wavelength limit.
This situation is realised in the microscopic “quantum ice” model Hμ

[Eq. (16)], at the RK point, μ = g.

considered by Banerjee et al.59 Specifically, we will consider

S
αβ
spin(k,ω) =

∫
dte−iωt 〈Sα(−k,t)Sβ(k,0)〉 (72)

and

Scharge(k,ω) =
∫

dte−iωt 〈n(−k,t)n(k,0)〉. (73)

Possessing the full photon wave function [see Eq. (43)] permits
us to calculate these dynamical structure factors on a lattice,
passing directly from the correlations of A(s,m) to those of
S(r,n) or n(r,n).

We first consider the charge ice and, following Ref. 59,
introduce an additional (dimensionless) scale factor κ � 1 to
take account of any renormalization of the field B when an
average is taken over fast fluctuations of A(s,m) [see Eq. (35)
to Eq. (38)]:

Scharge(k,t) = κ2
∑
mn

〈B̃n(−k,t)B̃m(k,0)〉, (74)

where

B̃n(k,t) = 1√
N

∑
r

exp[−ik · (r + en/2)]Bn(r,t) (75)

with

Bn(r) ≡ B(r − en/2) = (∇� × A)(r,n) .

The time evolution of A(s,m) follows directly from H′
U(1) [see

Eq. (66)]:

B̃n(k,t) =
√

2

4

4∑
λ=1

√
K

ωλ(k)
ζλ(k)[ηnλ(−k)aλ(−k)e−iωλ(k)t

+ η∗
λn(k)a†

λ(k)eiωλ(k)t ], (76)

such that

Scharge(k,ω) = κ2

8

∑
mn

4∑
λ=1

K
ωλ(k)

ζλ(k)2ηmλ(k)η∗
λn

×〈aλ(k)a†
λ(k) + a

†
λ(k)aλ(k)〉δ [ω − ωλ(k)] ,

(77)

where we have dropped all terms that fail to preserve photon
number or polarization.

The unphysical photon polarisations λ = 3 and 4 do not
contribute to Eq. (77), since

ζλ(k)2/ωλ(k)|λ=3,4 ≡ 0. (78)

For the physical polarizations λ = 1 and 2,

〈a†
λ(k)aλ(k)〉 = 1

e
ω(k)
T − 1

≡ nB(k) (79)

since the photons are bosons. Noting that

4∑
λ=1

ζλ(k)2ηmλ(k)η∗
λn =

∑
mn

[Z(k)2]mn, (80)

we arrive at a result for the dynamical structure factor of a
quantum charge ice:

Scharge(k,ω) = κ2

2

K
ω(k)

∑
mn

∑
l

sin (k · hml) sin (k · hnl)

×{δ[ω − ωλ(k)][1 + nB(k)]

+ δ[ω + ωλ(k)]nB(k)}, (81)

where the vectors hnm are defined by Eq. (45).
In comparing with quantum Monte Carlo simulation, we

will also make extensive use of the zero-temperature, equal-
time (i.e., energy-integrated) structure factor:

Scharge(k,t = 0)T =0 =
∫

dω Scharge(k,ω)T =0. (82)

This can be written as a function of just two, dimensionless,
ratios of parameters U and W:

Scharge(k,t = 0)T =0 = S0(k)√
Uζ (k)2 + Wζ (k)4

, (83)

where ζ (k) is defined by Eq. (68),

S0(k) =
∑
mn

∑
l

sin (k · hml) sin (k · hnl), (84)

and the dimensionless ratios of parameters are given by

U = U
Kκ4

, W = W
Kκ4

. (85)

It is this form of the result, evaluated at the discrete set of
wave vectors {k} appropriate for a finite-size cluster with given
boundary conditions, which we will fit to simulation results in
Sec. III B.

Calculating the dynamical structure factor S
αβ
spin(k,ω) for a

spin ice means generalizing Eq. (81) to take account of neutron
polarization, and the local easy axes of spins in a spin ice.8

However, the underlying field-theoretical description of the
problem H′

U(1) [see Eq. (40)] is unchanged, and the two results
differ only in the way in which the contraction of fields on
different sublattices 〈Bn(−k)Bm(k)〉 contribute to correlation
functions. In a charge ice, we simply sum over m, n as in
Eq. (74). In a spin ice, we must account for the easy axes that
lie along the vectors ên [see Eq. (42)] and then calculate the
projection of the spin along the axis of interest.8 Thus the equal
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time structure factor is

S
αβ
spin(k,t = 0) = κ2

∑
mn

(êm · α̂)(ên · β̂)〈Bn(−k)Bm(k)〉,

(86)

where α̂ and β̂ are unit vectors in the α and β directions.
Following the same procedure as described above for the

charge ice, we come to the general result for the dynamical
structure factor in a spin ice:

S
αβ
spin(k,ω) = κ2

2

K
ω(k)

∑
mn

∑
l

sin (k · hml) sin (k · hnl)

×(êm · α̂)(ên · β̂){δ[ω − ωλ(k)][1 + nB(k)]

+ δ[ω + ωλ(k)]nB(k)}. (87)

For concreteness, where we come to plot results, we will
follow the conventions of Fennell et al.,9 who used neutrons
with polarization parallel to

nν = (1, − 1,0)

to measure the energy-integrated structure factor S
αβ
spin(k,t =

0), for transferred momentum k in the (h,h,l) plane. We also
follow the conventions of Ref. 9 in choosing a coordinate
system in which

x ‖ k , y ‖ nν × k , z ‖ nν, (88)

and consider the “spin-flip” channel S
yy
spin(k,ω). In this con-

vention, the non-spin-flip channel measures Szz
spin(k,ω).

It follows from Eq. (87) that the dynamical structure factor
in the spin-flip channel is given by

S
yy
spin(k,ω) = κ2

2

K
ω(k)

∑
mn

∑
l

sin (k · hml) sin (k · hnl)

×
[

êm · (nν × k)

|(nν × k)|
] [

ên · (nν × k)

|(nν × k)|
]

×{δ[ω − ωλ(k)][1 + nB(k)]

+ δ[ω + ωλ(k)]nB(k)}
and the corresponding zero-temperature, energy-integrated
(i.e., equal-time) structure factor is

S
yy
spin(k,t = 0)T =0 = κ2

2

K
ω(k)

×
∑
mn

∑
l

sin (k · hml) sin (k · hnl)

×
[

êm · (nν × k)

|(nν × k)|
] [

ên · (nν × k)

|(nν × k)|
]

. (89)

Once again, we will make extensive use of this result when
comparing with quantum Monte Carlo simulation. At finite
temperature we obtain, for the energy integrated structure
factor in SF channel,

S
yy
spin(k,t = 0) = κ2

2

K
ω(k)

coth

[
ω(k)

2T

]

×
∑
mn

∑
l

sin (k · hml) sin (k · hnl)

×
[

êm · (nν × k)

|(nν × k)|
] [

ên · (nν × k)

|(nν × k)|
]

. (90)

Where neutron scattering is performed with unpolarized
neutrons, experiments measure an average over different
components of the dynamical structure factor:

I (k,ω) ∝
∑
αβ

(
δαβ − kαkβ

k2

)
S

αβ
spin(k,ω). (91)

This is the result plotted where we illustrate photon dispersions
in Figs. 3 and 13. The corresponding quasielastic (energy
integrated) form of Eq. (91) is given by

I (k) ∝
∑
αβ

(
δαβ − kαkβ

k2

)
S

αβ
spin(k,t = 0). (92)

It is important to note the predictions for quasielastic
neutron scattering S

yy
spin(k,ω) [see Eq. (89)] and I (k,ω) [see

Eq. (91)], and their energy-integrated counterparts S
yy
spin(k,t =

0) [see Eq. (90)] and I (k) [see Eq. (92)] only include
contributions from the low-energy photon excitations of a
quantum spin ice. In a real quantum-spin-ice material, their
would also be contributions at higher energy from gapped
“electric charges” and magnetic monopole excitations. These
are not treated in the present theory.

III. “ELECTROMAGNETISM” IN A QUANTUM
SPIN ICE AT T = 0

The arguments presented in Sec. II B explain how a
spin liquid state with correlations described by an effective
electromagnetism can arise in a quantum spin ice, but stop
short of offering proof that this happens in any real material
or microscopic model. In what follows, we validate our
use of Gaussian electromagnetism HU(1) [see Eq. (38)] as
a description of the quantum ice model Hμ [see Eq. (16)],
by making explicit comparison with the results of zero-
temperature quantum Monte Carlo simulation.

However, before considering results on a lattice, it is useful
to ask how correlations in quantum spin ice might differ
from those in a classical spin ice, within a simple continuum
field theory. This is considered in Sec. III A. We then turn
to simulation of the lattice model Hμ [see Eq. (16)] in
Sec. III B, demonstrating that the lattice field theory HU(1)

[see Eq. (38)] provides an excellent quantitative description
of the results for S

αβ
spin(k,t = 0). In Sec. III C, we use the same

lattice field theory to make predictions for the magnetic photon
excitations which could be observed in inelastic neutron
scattering experiments. Finally, in Sec. III D, we use the
finite-size scaling of ground-state energies in simulation to put
an absolute scale on the speed of light c associated with these
magnetic photons. Throughout this analysis we set h̄ = 1,
restoring dimensional factors of h̄ only where we quote results
for the speed of light.

A. Structure factors within continuum theory

The long-wavelength properties of a quantum U (1) liquid
are well described by a continuum field theory of the form
considered in Ref. 46:

Seff = 1

8π

∫
dtd3r{E(r)2 − c2B(r)2 − ρc[∇ × B(r)]2}. (93)
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This therefore provides a convenient starting point for dis-
cussing the evolution of spin correlations in quantum spin
ice. We emphasize that such a theory can be derived as a
continuum limit of H′

U(1) [see Eq. (40)].47 And where we go
on to make comparison with quantum Monte Carlo simulation
in Sec. III B, we will use the appropriate results on a lattice,
i.e., Eqs. (83) and (90).

For ρc = 0, Seff reduces to the familiar Maxwell action
of quantum electromagnetism. Crucially, this action supports
photon excitations with dispersion ω(k) = c|k|. The additional
term ρc [∇ × B(r)]2 is invariant under gauge transformations
A(r) → A(r) + ∇φ(r) and is an irrelevant perturbation in the
RG sense.47 However, it introduces a new length scale into the
problem,

λc = 2π

√
ρc

c
, (94)

which controls the curvature of the photon dispersion

ω(k) = c|k|
√

1 +
(

λc

2π

)2

|k|2 (95)

and has an important impact on how correlations evolve as a
function of distance.

The role of λc can most easily be understood in the limit
c → 0, where correlations of B(r) are controlled entirely by
ρc. Precisely this limit is realized in the microscopic model
Hμ [see Eq. (16)] at the exactly soluble “RK” point μ = g.
At the RK point, all ice configurations are degenerate, and
the photons have dispersion ω(k) = √

ρc|k|2 (see Refs. 46
and 47). Correlations of the magnetic field,

CB
μν(k) = 〈Bμ(−k)Bν(k)〉, (96)

can be calculated from Eq. (93), and for c = 0, these behave
as

CB
μν(k) ≈ 8π4

√
ρc

(
δμν − kμkν

k2

)
(97)

exhibiting the pinch-point singularities characteristic of the
“Coulombic,” classical U (1) liquid phase.7,8,41 On Fourier
transform, Eq. (97) corresponds to dipolar correlations in a
three-dimensional space:

CB
μν(r) ∝ 3rμrν/r2 − δμν

r3
. (98)

The quantum U (1) liquid phase, with its linearly dispersing
photons, is stabilized by the emergence of finite value of the
speed of light c for μ < g (see Refs. 46,47, and 58). In this
case, we find

CB
μν(k) = 8π4k

c

√
1 + (

λck

2π

)2

(
δμν − kμkν

k2

)
(99)

(see Refs. 47 and 48). For wavelengths λ � λc, Eq. (99)
reduces to Eq. (97), and the system exhibits “classical” dipolar
correlations of the form (98). However, for long wavelengths
λ � λc, the additional factor of k in the numerator of Eq. (99)
“hollows out” the pinch point singularities. In this limit,
r � λc, Eq. (99) corresponds to dipolar correlations in a

four-dimensional space

CB
μν(r) ∝ 2rμrν/r2 − δμν

r4
, (100)

the additional dimension arising because of fluctuations in
time.47,48 We therefore associate λc with the length scale
over which the system crosses over from “classical” ice
correlations, decaying as 1/r3, to “quantum” ice correlations
decaying as 1/r4.

The length-scale λc will also play an important role where
we compare the predictions of field theory with simulation
of microscopic model Hμ [see Eq. (16)] as a function of μ.
We can gain some insight into the μ dependence of λc, from
degenerate perturbation theory about the RK point.47,58,60,61

We find that c2 ∼ (g − μ), while ρc ≈ const, and it follows
from Eq. (94) that λc diverges as λc ∼ 1/

√
g − μ. Exactly at

the RK point, where g = μ, λc is infinite and correlations have
the classical form Eq. (98) at all length scales, as expected.
However, as we move away from the RK point into the
quantum liquid phase for μ/g < 1, there will be a progressive
evolution of correlations from classical (pinch points) at short
distances to quantum (no pinch points) at long distances. This
expectation is born out by quantum Monte Carlo simulations,
described below.

For the purposes of these simulations, λc also sets the min-
imum size of cluster that is needed to capture quantum effects
at a given μ. At μ = 0, we find that λc ≈ 0.8a0, and hence a
cluster of linear dimension L = 5a0 (N = 2000) is comfort-
ably big enough to observe the quantum spin liquid phase.58

B. Comparison with quantum Monte Carlo simulation

We now turn to zero-temperature quantum Monte Carlo
simulation of the microscopic model Hμ [see Eq. (16)].
We have previously argued that this model supports a
quantum U (1) liquid ground state for a range of parameters
−0.5g < μ < g—see Fig. 4 and Ref. 58. In this earlier
work, evidence for the ground-state phase diagram was taken
from the finite-size scaling of energy spectra. Our main
tool here will be the equal time structure factor S(k,t = 0),
calculated from simulation, and from the lattice field theory
H′

U(1) [see Eq. (40)]. These two independent calculations are
found to be in excellent, quantitative agreement, confirming
the conclusions of Ref. 58. Making a direct comparison
between the field theory and simulation also serves to put the
field theory on a quantitative footing, providing information
about the evolution of the parameters of the field theory as a
function of the microscopic parameter μ.

Simulations were performed using a Green’s function
Monte Carlo (GFMC) technique based on the statistical
sampling of ice configurations. This sampling is weighted
using a variational estimate of the ground-state wave function,
which is optimized in a separate variational Monte Carlo
(VMC) calculation. In this sense, GMFC can be thought of a
systematic method of improving upon variational calculations.
There is no sign problem associated with Hμ, since all of
its off-diagonal matrix elements are equal to 0 or −g, with
g > 0. Where simulations converge, the results obtained are
numerically exact. Our implementation of VMC and GFMC
calculations for quantum ice58 exactly parallels our earlier
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FIG. 9. (Color online) Comparison between the predictions of the lattice field theory H′
U(1) [see Eq. (40)] and quantum Monte

Carlo simulation of the microscopic model Hμ [see Eq. (16)], for a quantum charge ice at T = 0. (First column) Equal-time
structure factor Scharge(k,t = 0) calculated using Green’s function Monte Carlo (GFMC) simulation of a 2000-site cubic cluster,
for a range of μ ranging from μ/g = 1 (RK point) to μ/g = 0 (quantum ice). (Second column) Best fit of the finite-size (FS)
prediction of the lattice field theory to simulation, following Eq. (83). There is excellent, quantitative, agreement between theory and
simulation for all values of μ/g. (Third column) Prediction of lattice field theory in the thermodynamic limit, for parameters obtained
from fits to simulation.

work on the quantum dimer model on a diamond lattice,60,61

with correlation functions calculated using techniques de-
scribed in Ref. 76. We refer the interested reader to these
papers for further details of the method.

In the left-hand column of Fig. 9, we present GFMC
simulation results for the equal-time correlations in a quantum
charge ice,

Scharge(k,t = 0)T =0 = 〈n(k)n(−k)〉T =0.

Simulations were performed for a 2000-site cubic cluster
possessing the full symmetry of the lattice, for parameters
μ/g = 1, 0.75, 0.5, 0.25, 0.

The classical, dipolar correlations at the RK point μ/g = 1
are clearly visible as sharp “bow-tie” motifs in Scharge(k,t =
0), centered on pinch points at k = (1,1,1), etc. As expected,
these pinch points are progressively eliminated as μ/g → 0,
and quantum effects come to dominate the long-length scale
physics of the problem. This erosion of the pinch points is
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FIG. 10. (Color online) Parameters of lattice field theory H′
U(1)

[see Eq. (40)] as a function of μ/g, from comparison with quantum
Monte Carlo simulation of spin correlations in the microscopic
model Hμ [see Eq. (16)] at T = 0. The dimensionless combinations
of parameters U and W [see Eq. (85)] were obtained by fitting
the predictions of the lattice field theory Scharge(k,t = 0)T =0 [see
Eq. (83)] to simulation results at fixed μ/g (see Fig 9).

accompanied by a gradual redistribution of spectral weight,
with high-intensity regions evolving from a triangular into an
oval shape.

In the central column of Fig. 9, we present the best fit to
simulation results obtained from the lattice field theory. Fits
were made using the result Scharge(k,t = 0)T =0 [see Eq. (83)],
evaluated for the same 2000-site cluster, as a function of the
two dimensionless parameters U and W [see Eq. (85)]. The
two results are indistinguishable by eye, and differ maximally
by a few percent, for values of k close to the Brillouin
zone boundary. The quality of these fits implies that they
can be used to accurately parametrize the lattice field theory
H′

U(1) [see Eq. (40)], and the values of U and W obtained
are shown in Fig. 10. We note that the values obtained at
the RK point, U = 0 and W = 1, are uniquely determined
by the known form of correlations within the classical ice
states.8 A separate evaluation of the speed of light c ∝ √

UK

from finite-size scaling of the ground-state energy is given in
Sec. III D below.

In Fig. 11, we show equivalent results for the equal-time
structure factor of a spin ice,

S
yy
spin(k,t = 0)T =0 = 〈Sy(k)Sy(−k)〉T =0,

in the spin-flip channel considered by Fennell et al.9 Super-
ficially, these results look very different to those presented
in Fig. 9. This is because the local easy axis is different for
each of the four sublattices, leading to a staggering of corre-
lations not present in the charge ice problem. However, the
information content of the two structure factors is exactly the
same.

At the RK point μ/g = 1, correlations are classical,
and S

yy
spin(k,t = 0) exhibits a characteristic “snow flake”

motif in the (h,h,l) plane, also seen in neutron scattering
experiments on Ho2Ti2O7 (see Ref. 9). Pinch point singu-

larities are clearly visible at the reciprocal lattice vectors
k = (1,1,1), etc.

Once again, these pinch points are progressively eroded as
the system is tuned away from the RK point into the quantum
spin liquid regime for μ/g < 1. Probably the most striking
change, however, occurs at k = (0,0,0). Here, for a classical
spin ice,

S
yy
spin(k → 0,t = 0)T =0 → const.

However, in a quantum spin ice,

S
yy
spin(k = 0,t = 0)T =0 ≡ 0,

and spectral weight is progressively excavated from the region
of reciprocal space around k = (0,0,0) for μ/g < 1. This has
important consequences for the evolution of correlations at
finite temperature, discussed in Sec. IV A and for the uniform
magnetic susceptibility, discussed in Sec. IV C.

We wish to emphasize that the results shown in Fig. 11 are
not the outcome of separate simulations of a quantum spin ice.
They are taken from the same simulations of the quantum ice
model Hμ [see Eq. (16)], recast in the coordinates appropriate
for a spin ice. It follows that the parameters obtained from fits
to field theory at finite size are exactly the same as those for a
charge ice, given in Fig. 10.

C. Seeing the light: photons and inelastic neutron scattering

Inelastic neutron scattering provides a direct method of
measuring the dynamical structure factor S

αβ
spin(k,ω), and

so of resolving photon excitations in a quantum spin ice.
These photons disperse linearly out of those reciprocal lattice
vectors where pinch points are observed in quasielastic
scattering experiments. However, since these experiments
measure the energy integral of the dynamical structure factor,
the suppression of pinch points in a quantum spin ice at
T = 0 has important implications for the observation of its
photon excitations. Specifically, for noninteracting photons,
the suppression of energy-integrated structure factor must
imply the suppression of the weight in the photon peak itself.
This is illustrated in Fig. 12.

To see how this works, we consider the result for the
dynamical structure factor in a quantum spin ice S

αβ
spin(k,ω)

[see Eq. (87)], in the (physically relevant) limit where W = 0.
In this case, weight in the photon peak is determined by the
ratio

S
αβ

0 (k)

ω(k)
,

where

S
αβ

0 (k) =
∑
mn

∑
l

sin (k · hml) sin (k · hnl)(êm · α̂)(ên · β̂)

(101)

and

ωλ(k) =
√
UKζλ(k). (102)
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FIG. 11. (Color online) Comparison between the predictions of the lattice field theory H′
U(1) [see Eq. (40)] and quantum Monte Carlo

simulation of the microscopic modelHμ [see Eq. (16)], for a quantum spin ice at T = 0. (First column) Equal-time structure factor S
yy
spin(k,t = 0),

as measured in neutron scattering by Fennell et al.,9 calculated using Green’s function Monte Carlo (GFMC) simulation of a 2000-site cubic
cluster for parameters ranging from μ/g = 1 (RK point) to μ/g = 0 (quantum ice). (Second column) Best fit of the finite-size (FS) prediction
of the lattice field theory to simulation, following Eq. (90). There is excellent, quantitative, agreement between theory and simulation for all
values of μ/g. (Third column) Prediction of lattice field theory in the thermodynamic limit, for parameters obtained from fits to simulation.
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FIG. 12. (Color online) Relationship between the dispersion of
the magnetic photon excitation ω(k) [see Eq. (67)], and the equal
time structure factor S

yy
spin(k,t = 0) [see Eq. (90)] in a quantum spin

ice. The photon dispersion ω(k) in the (h,h,l) plane is plotted above
the corresponding equal-time structure factor, demonstrating how the
photon disperses out of the (suppressed) pinch points at reciprocal
lattice vectors. Note that the intensity of the scattering S

yy
spin(k,t =

0) → 0 where ω(k) → 0 [see Eq. (105)]. Results were calculated
within the lattice field theory [see Eq. (40)] for W = 0, with energy
measured in units such that h̄ = 1.

We can use the spectral representation of Z(k) [see Eq. (80)]

to write

sin (k · hml) sin (k · hnl) = 1

4

4∑
λ=1

ωλ(k)2

KU ηmλ(k)η∗
λn(k).

(103)

Since the only contributions to the RHS of Eq. (103) come from
the two dispersing modes λ = 1, 2, [see Eq. (78)], Eq. (101)

simplifies to

S
αβ

0 (k) = 1

4

ω(k)2

KU

2∑
λ=1

∑
mn

ηmλ(k)η∗
λn(k)(êm · α̂)(ên · β̂).

(104)

Expanding in the first Brillouin zone, for k ≈ 0, we find∑
mn

ηmλ(k)η∗
λn(k)(êm · α̂)(ên · β̂) ≈ 1

3

for α = β = y,z and zero otherwise. It follows that

S
yy
spin(k ≈ 0,ω ≈ 0) = Szz

spin(k ≈ 0,ω ≈ 0)

∝ ω(k) δ[ω − ω(k)]. (105)

Therefore at low energies, in the first Brillouin zone,
inelastic neutron scattering experiments will resolve the
magnetic photon excitation as a ghostly, linearly dispersing
peak, with intensity vanishing as I ∝ ω(k), as noted in Ref. 70.
However, at higher energies and in other Brillouin zones, the
momentum dependence of ηmλ(k)η∗

λn(k) in Eq. (104) will
lead to a significant variation in the intensity of the signal
at fixed ω. This behavior is illustrated in Fig. 13, where we
have plotted the intensity of scattering I (k,ω) [see Eq. (91)]
for an experiment performed using unpolarised neutrons. The
corresponding quasielastic scattering, and the path within the
[h,h,l] plane, are shown in Fig. 14.

The phenomenology of this photon excitation stands in
stark contrast to conventional antiferromagnets, whose linearly
dispersing spin-wave excitations have the greatest intensity
approaching the zero-energy magnetic Bragg peak associated
with magnetic order. The difference between these two
problems stems from the fact that the photon is a quantized
excitation ofA, while neutron scattering measures correlations
of B. The lattice curl needed to relate one to the other
introduces additional factors of ζλ(k) in S

αβ
spin(k,ω) [see

Eq. (87)], which leads to the suppression of spectral weight at
low energies.

FIG. 13. (Color online) Ghostly magnetic “photon” excitation as it might appear in an inelastic neutron scattering experiment on a quantum
spin ice realising a quantum ice ground state, for a series of cuts along high symmetry directions in reciprocal space. The prediction of the lattice
field theory H′

U(1) [see Eq. (40)] for inelastic scattering by unpolarized neutrons, I (k,ω) [see Eq. (91)] has been convoluted with a Gaussian of
variance 0.3 c a−1

0 to represent the finite energy resolution of the instrument. The intensity of scattering vanishes as ω → 0 and is strongest at
high energies. Energy is measured in units such that h̄ = 1 and the photon dispersion calculated for W = 0.
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FIG. 14. (Color online) Prediction of the lattice field theory H′
U(1)

[see Eq. (40)] for quasielastic neutron scattering performed using
unpolarised neutrons, for comparison with Fig. 13. Results for I (k)
are taken from Eq. (92), and calculated for W = 0. The path within
the [h,h,l] plane used for plotting the photon dispersion in Fig. 13 is
shown using unbroken black arrows, with Brillouin zone boundaries
marked as dashed white lines.

A better point of comparison, in fact, is the scattering of
neutrons by real photons in models of a hot early universe.77

In both cases, photons are associated with a periodically
fluctuating magnetic field, transverse to the direction of their
propagation. And in both cases, neutrons scatter inelastically
from these locally fluctuating magnetic fields. In a spin ice, this
scattering can occur in both the spin-flip (SF) channel, in which
case there is a transfer of angular momentum to the sample,
and in the non spin-flip (NSF) channel (see Figs. 13, 14, and
16). It is also interesting to note that the same phenomenology
of linearly dispersing excitations, with a vanishing spectral
weight at long wavelengths, is encountered in quantum spin
nematics.78 In this case, low-energy spin fluctuations are
controlled by a time derivative of the underlying nematic order
parameter79 and so vanish for ω → 0.

D. Estimating the speed of light

The signal feature of the quantum U (1) liquid is its
photon excitations. One important consequence of these, so
far as the simulation of finite-size systems is concerned, is a
characteristic finite-size correction to the ground-state energy
per site E0/N , coming from the zero-point energy of the
photons:

δE0(L)

N
= 1

N
[E0(L) − E0(∞)] = x1L

−4 + · · · , (106)

where L ∼ N
1
3 is the linear dimension of the cluster, and

the coefficient x1 is proportional to the speed of light c (see
Ref. 61). This means that it is possible to extract the speed
of light from the finite-size scaling of the ground-state energy
found in simulations of Hμ [see Eq. (16)], shown in Fig. 15.

FIG. 15. (Color online) Finite-size scaling of the finite-size
correction to the ground-state energy per site δE0/N found in
quantum Monte Carlo simulations of the quantum ice model Hμ [see
Eq. (16)]. Results are shown for cubic clusters of N = 432, 1024,

and 2000 sites, for parameters μ/g = 0, 0.25, 0.5, 0.75, as function
of the linear dimension of the system L = (a0/2)(N/2)

1
3 . The fact

that δE0/N ∼ 1/L4 implies the existence of a linearly dispersing
excitation—the photon of the underlying lattice gauge theory.

Approaching this problem from the lattice field theoryH′
U(1)

[see Eq. (40)], we know that

c =
√
UKa0 = κ2K

√
Ua0, (107)

where the dimensionless parameter U = U
Kκ4 can be deter-

mined separately from fits to structure factors (see Fig. 10).
We also have enough information from the fits to the structure
factor to evaluate the sum

1

N

∑
k

ω(k)

κ2K = 1

κ2K

(
E0

N
+ const

)
, (108)

where E0/N is the ground-state energy per site found from
Monte Carlo simulations.

For U = 0, the LHS of Eq. (108) does not depend on L.
This is consistent with simulations of the microscopic model
at μ = g. For U > 0, we expect a scaling law ∼1/L4 for large
L. We write

ε(L) ≡ 1

N

∑
k

ω(k)

κ2K = ε(∞) − x2L
−4, (109)

and it follows that
x1

x2
= κ2K (110)

with

c = x2

x1

√
Ua0, (111)

where the coefficients x1 and x2 can be found from the
finite-size scaling of the ground state energy in simulation
(see Fig. 15), and through the numerical evaluation of the

∑
k

in Eq. (108) for a finite-size system.
We find that, for 0 � μ � 1, the evolution of the speed of

light as a function of μ is well described by

c2 = αδμ + βδμ2 + O(δμ3), (112)
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where

δμ = 1 − μ/g, (113)

α = 0.22 g2 a2
0, (114)

β = 0.13 g2 a2
0 . (115)

In particular, for μ = 0, the physical point of our model, we
find

c = (0.6 ± 0.1) g a0 h̄−1, (116)

where we have restored the dimensional factor of h̄. We have
also calculated an upper bound on c from a single mode
approximation, in the spirit of Ref. 46. We find

c � (0.6 ± 0.1) g a0 h̄−1. (117)

Within errors, the two numbers are indistinguishable.
It is interesting to use this result to make an order of

magnitude estimate of the speed of light in a quantum-spin-
ice material. Considering Yb2Ti2O7, as (presently) the best-
characterized material, and inserting the exchange parameters
obtained by Ross et al.27 into the expression for the tunneling
matrix element [see Eq. (13)], we obtain

gYb2Ti2O7 ≈ 0.05 meV. (118)

From Eq. (116) and the known size of the unit cell a0 =
10.026 Å (see Ref. 26), we find a speed of light

c ∼ 0.3 meV Å ∼ 50 ms−1, (119)

which implies a photon bandwidth


ω ∼ 0.1 meV, (120)

within the range accessible to modern inelastic neutron
scattering experiments.80

The accuracy of this estimate is limited by the approxi-
mations made in setting up the minimal model of a quantum
spin ice Htunneling [see Eq. (12)], and so it should only be
regarded as a “ballpark” figure. It should also be remembered
that Yb2Ti2O7 is believed to order ferromagnetically at the
lowest temperatures.29,70 However, as long as a given system
remains an “ice,” the inclusion of further tunneling processes
beyond Htunneling should only increase the speed of light.

IV. “ELECTROMAGNETISM” IN A QUANTUM SPIN ICE
AT FINITE TEMPERATURE

In Sec. III B, we have demonstrated that the field theory
H′

U(1) [see Eq. (40)]—quantum electromagnetism on a py-
rochlore lattice—gives an excellent account of the results
of zero-temperature quantum Monte Carlo simulations of
the minimal microscopic model of a quantum spin ice, Hμ

[see Eq. (16)]. These results confirm the conjecture that this
model could support a spin-liquid phase, down to T = 0.
Encouraged by this, we now use the same field theory to
explore how correlations in this spin liquid state develop at
finite temperature.

In Sec. IV A, we assess how the thermal excitation of
magnetic photons changes the temperature dependence of the
energy-integrated structure factors measured in quasielastic
scattering. We find that pinch points eliminated by quantum

fluctuations at zero temperature are progressively restored as
the temperature of the spin liquid is raised.

In Sec. IV B, we compare the results of the lattice field
theory with published results for quantum Monte Carlo
simulations of quantum charge ice at finite temperature.59 We
find that both the form and the temperature dependence of
the correlations are well described by the lattice field theory.
Finally, in Sec. IV C, we conclude with a few remarks about the
finite temperature behavior of the heat capacity and uniform
magnetic susceptibility in a quantum spin ice. Throughout this
analysis we set h̄ = kB = 1, restoring dimensional factors of
h̄ and kB only where we quote results for the coefficient of the
heat capacity associated with photons.

A. Temperature dependence of structure factors

The qualitative changes in correlations between spins at
finite temperature can most easily be understood within the
continuum field theory Seff [see Eq. (93)]. The thermal
excitation of photons enhances correlations of the magnetic
field B at small |k|:

CB
μν(k) = 8π4k

c

√
1 + (

λck

2π

)2

(
δμν − kμkν

k2

)

× coth

[
ck

√
1 + (

λck

2π

)2

2T

]
(121)

and introduces a thermal de Broglie wavelength for the
photons,

λT = πc

T
. (122)

Over sufficiently long distances, this enhancement of corre-
lations exactly cancels their suppression by quantum fluctu-
ations. Assuming that λc � λT and expanding Eq. (121) for
small wave number, we find

CB
μν(|k| � 2π/λT) = 16π4T

c2

(
δμν − kμkν

k2

)
+ · · · . (123)

This implies that, for these small wave vectors, the pinch
point is restored, but with a prefactor that depends linearly
on temperature.

This result has a very simple interpretation. At finite
temperature, photons are only coherent quantum excitations
over a length scale λT. Therefore while correlations in a
quantum spin ice may decay as 1/r4 over distances λc �
r � λT, at long distances for r � λT, the classical 1/r3 decay
of the spin correlations is restored.

All of these arguments generalize to the lattice field theory
H′

U(1) [see Eq. (40)], and to expressions for the equal-time

structure factor at finite temperatures derived from S
αβ
spin(k,ω)

[see Eq. (89)]. Thus we anticipate that they will apply equally
to a quantum spin ice at finite temperatures. This suggests
a simple diagnostic for a quantum spin ice in quasielastic
neutron scattering experiments—as the sample is cooled, and
photons become coherent over longer length scales, the pinch
points observed at reciprocal lattice vectors are progressively
“bleached out.” This slow, cold, death of pinch points is
illustrated in Fig. 16.
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FIG. 16. (Color online) Slow, cold death of pinch points in a quantum ice. Equal-time structure factor S
yy
spin(k,t = 0) [see Eq. (90)] in

the spin-flip channel measured by Fennell et al.,9 calculated from the lattice field theory H′
U(1) [see Eq. (40)], for comparison with neutron

scattering experiments on a quantum spin ice. Results are plotted for temperatures ranging from T = 0 to 4.0 c a−1
0 , where c is the speed of

light and a0 the linear dimension of the cubic unit cell, with temperature measured in units such that h̄ = kB = 1. The pinch-point structure
observed at finite temperature is progressively “hollowed out” as the system is cooled towards its zero-temperature ground state.

Since there is also a characteristic loss of spectral weight
in S

αβ
spin(k,t = 0) for k ≈ 0, exactly the same process could

be seen in the angle integrated structure factor measured in
neutron scattering experiments on powder samples. In this
case, the intensity of scattering is given by

I (k,T ) ∝
∑
αβ

∫
d�

(
δαβ − kαkβ

k2

)
S

αβ
spin(k,t = 0). (124)

For classical spin ice, or a quantum spin ice at sufficiently high
temperature,

I (k ≈ 0,T ) ≈ const.

However, as a quantum spin ice is cooled to zero temperature,
the growing coherence of photons will manifest itself as a
progressive loss of spectral weight at small k,

I (k = 0,T ) ∼ T ,

until, for T = 0, spectral weight at k = 0 is eliminated entirely:

I (k ≈ 0,T = 0) ∝ k.

This progression is illustrated in Fig. 17.

B. Comparison with quantum Monte Carlo simulation

It is also interesting to compare the predictions of the lattice
field theory H′

U(1) [see Eq. (40)], with the results of finite-

temperature quantum Monte Carlo simulations of a quantum
charge ice described by Ht-V [aee Eq. (17)], as published by
Banerjee et al.59 Banerjee et al. performed their simulations
for hard-core bosons on a pyrochlore lattice at half-filling,
with hopping integral t = 1, and nearest-neighbor repulsion
V = 19.4, at temperatures T = 1.05g and 1.57g, where

FIG. 17. (Color online) Angle-integrated scattering intensity
I (k ≈ 0,T ) [see Eq. (124)] calculated from the lattice field theory
H′

U(1) [see Eq. (40)], for comparison with neutron scattering experi-
ments on a powder sample of a quantum spin ice. Results are plotted
for temperatures ranging from T = 0 to 1.0ca−1

0 , where c is the
speed of light and a0 the linear dimension of the cubic unit cell, with
temperature measured in units such that h̄ = kB = 1. The progressive
elimination of pinch points as the sample is cooled manifests itself as
a steady loss of scattering for |k| → 0.
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FIG. 18. (Color online) Comparison of the predictions of the
lattice field theory H′

U(1) [see Eq. (40)] with the results of
finite-temperature quantum Monte Carlo simulations of a quantum
charge ice described by Ht-V [see Eq. (17)]. Results are shown for
the equal time, on-sublattice structure factor S00(k) = 〈n0(−k)n0(k)〉
Simulations are taken from Banerjee et al.59 and were performed at
temperatures T = 1.05g and 1.57g, where g = 12t3/V 2 is the size
of the leading tunneling matrix element between different charge ice
configurations. The temperature dependence of the spin correlations
makes it possible to estimate the speed of light c ≈ 1.8 g a0 h̄−1.

g = 12t3/V 2 is the size of the leading tunneling matrix
element between different charge ice configurations.

In Fig. 18, we plot simulation results for Scharge(k,t = 0)
at these temperatures, calculated within a single sublattice
of pyrochlore lattice sites, together with the best fit to
Eq. (83), projected onto a single sublattice. We assume that
the parameters of the field theory depend relatively weakly
on temperature, and attribute the temperature dependence of
correlations entirely to the thermal excitations of photons.
Under these assumptions, the lattice field theory gives a good
account of both the form and the temperature dependence of
Scharge(k,t = 0), within the error bars on points taken from
simulation.

These fits suggest a speed of light

c = (1.8 ± 0.2) g a0 h̄−1, (125)

which is ∼3 times larger than that found in Sec. III D
from finite-size scaling of the ground-state energy of Hμ

[see Eq. (16)]. This discrepancy can probably be attributed
to the fact that the simulations of Banerjee et al. were
performed close to the melting point of the charge ice,59 where
both interactions between photons, and tunneling processes
involving more than six lattice sites, are likely to play an
important role. Since all of these processes will contribute to
the rate at which the gauge field fluctuates in time, they can be
expected to increase the speed of light.

C. Heat capacity and magnetic susceptibility
at low temperatures

Neutron scattering experiments have the potential to give
decisive information about emergent electromagnetism in a

quantum spin ice. However, these experiments are expensive
and difficult to perform, and depend critically on the size and
quality of available samples. We therefore conclude with a few
brief remarks on potential signatures of a quantum U (1) liquid
in thermodynamic quantities. The results given will hold in
the low-temperature regime where the physics of a quantum
spin ice can be described as a gas of photons. At higher
temperatures, the thermal excitation of the gapped spinons
(monopoles) and electric charges also play an important
role.

We have seen in Sec. IV A how quantum fluctuations lead
to an equal-time structure factor which, in the limit k → 0,
vanishes at low temperatures as

lim
k→0

S(k,T ) ∝ T . (126)

This in turn implies a bulk magnetic susceptibility χ (T ), which
is independent of temperature at low temperatures:

χ−1(T � g) = 3U
κ2

, (127)

where U is the coefficient of B2 in the effective Hamiltonian
HU(1) [see Eq. (38)] and κ ≈ 1 is the dimensionless scale factor
introduced in Eq. (74).

This result provides another means of parameterizing the
lattice field theory. It is also a potentially useful diagnostic
for experiment, since, a classical spin ice which remains in
thermodynamic equilibrium at low temperatures, will exhibit
an effective Curie law11,81

χ−1(T ) ∼ T . (128)

This result follows directly from the fact that there are more
spin ice configurations with vanishing magnetization M = 0
than with any finite magnetization M �= 0, and so, in the
absence of any other considerations, a state with M = 0 is
selected by an entropic term δF = T δS ∼ T M2 in the free
energy.8 Nonetheless, any comparison with a classical spin
ice should be approached with some caution, as these systems
need not remain in equilibrium at low temperatures,82,83 and
the character of the spin fluctuations that control χ (T ) changes
as a function of temperature.16,84

As noted elsewhere,47,70 the fact that photons are linearly
dispersing excitations implies that they must make a T 3

contribution to the heat capacity at low temperatures. While
this contribution has exactly the same temperature dependence
as that from acoustic phonons, the large amount of entropy
available in ice states, and low speed of light (see Sec. III D),
mean that the heat capacity at low temperatures will be
dominated by photons. The photon contribution to the heat
capacity per mole is

Cphoton(mole) = BT 3 (129)

with the coefficient B given by

B =
(

π2

30

)
R

(
kBa0

h̄c

)3

. (130)

From the characterization of Yb2Ti2O7 by Ross et al.27,
and the analysis of the speed of light in Sec. III D, we
estimate

B ≈ 65 J mol−1 K−4, (131)
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which is several orders of magnitude larger than the expected
phonon contribution. This should be compared with the
value

1 J mol−1 K−4

obtained in Ref. 70. We note that, since the photons are
magnetic excitations, measurements of the heat capacity in
an applied magnetic field may also prove instructive.

V. DISCUSSION AND CONCLUSIONS

In this paper we have developed a detailed theory for
the simplest microscopic model that could describe quan-
tum tunneling between different spin ice configurations [see
Eq. (12)]. The striking claim that this type of model could
support a spin liquid phase that perfectly mimics quantum
electromagnetism47 has been verified by quantum Monte
Carlo simulations.58,59 Here we have explored how such a
quantum spin liquid might manifest itself in experiment,
parameterizing an “electromagnetic” lattice gauge theory from
quantum Monte Carlo simulations at zero temperature, and
using this to calculate the dynamical structure factor Sαβ(k,ω)
[see Eq. (89)], which would be measured in neutron scattering
experiments at finite temperature.

We find that a key signature of the emergent electro-
magnetism is the suppression of pinch points singularities
in the energy-integrated structure factor Sαβ(k,t = 0) as
the system is cooled to its zero-temperature ground state
(see Fig. 16). This will coincide with the appearance of a
gapless, linearly dispersing, mode—the photon of the lattice
gauge theory—in inelastic neutron scattering (see Fig. 13).
In sharp contrast with a conventional antiferromagnet, the
dispersing feature associated with this photon vanishes as
ω → 0. These photons will also strongly influence the low-
temperature thermodynamic properties of the system, giving
rise to a temperature-independent contribution to the magnetic
susceptibility [see Eq. (127)] and an anomalously large T 3

contribution to specific heat [see Eq. (129)].70

Neither the idea of “artificial light,”50–55 nor the observation
that there could be quantum tunneling between different spin
ice configurations,85 is new. However, the possibility that one
might lead to another is both new and exciting, and adds to
the general frisson surrounding pyrochlore magnets. Without
attempting to review all of this fast-developing field—but with
the possibility of observing photons in mind—it is interesting
to ask whether any of the materials currently studied “fit the
bill.”

The most widely studied example of a three-dimensional
spin liquid is the insulating pyrochlore oxide Tb2Ti2O7.6

Tb2Ti2O7 does not order down to 50 mK (see Ref. 23),
despite having a Curie-Weiss temperature θCW ∼ 14 K (see
Ref. 18), and a strong tendency to order under magnetic field
or pressure.86,87 In a series of papers, Gingras and coauthors
have argued that Tb2Ti2O7 is a quantum spin ice in which spins
fluctuate strongly about the crystallographic [111] axes. These
claims were made on the basis of a characteristic checkerboard
structure observed in diffuse neutron scattering experiments at
high temperatures,19,88 and a subsequent microscopic analysis
of crystal field levels,20,89 and find support in the recent

observation of partial magnetisation plateau for magnetic field
applied along a [111] axis.21,90

Within this framework, the field at which the plateau
is observed implies that the energy scale relevant for
“quantum-spin-ice” behavior in Tb2Ti2O7 is Jeff ≈ 0.2 K.90

Unfortunately, the interpretation of experiment at these low
temperatures is muddied by questions of sample quality,
with inconsistent results for spin-freezing obtained by dif-
ferent authors.23,24,91–93 Published thermodynamic data at
low temperatures is also less than conclusive, showing
hints of a saturation of χ (T ) at low temperatures, but
strong sample dependence.23,92–95 And the picture is fur-
ther complicated by strong fluctuations of the lattice,96,97

with alternative theories of Tb2Ti2O7 building on lattice
effects.98–100

At present, there is no published neutron scattering data
for Tb2Ti2O7 with the combination of k resolution, energy
resolution and low temperature needed to compare with the
predictions in Secs. II D and III C of this paper. However,
recent evidence of “pinch-point” structure in quasielastic
neutron scattering on single crystals of Tb2Ti2O7,25 taken
together with inelastic neutron scattering experiments on
powder samples,101 suggest that the comparison might be
interesting. The latter find evidence of a quasielastic feature
evolving into two bands of excitations at temperatures T <

0.4 K.101 If—and it remains a big if—the behavior of Tb2Ti2O7

is connected with the physics of the quantum ice described
in this paper, it would be tempting to identify these bands
with the excitations of electromagnetism on a lattice: gapless
photons, together with gapped “electric” and “magnetic”
charges (spinons). But more, and more delicate, experiments
will be needed to determine whether this is indeed the case.
And ultimately, Tb2Ti2O7 will remain a fascinating system to
study, regardless of whether or not it is a quantum spin ice.

Recently, there has also been intense experimental and
theoretical interest in the closely-related Yb pyrochlore,
Yb2Ti2O7. Originally identified in the pioneering survey of
Blöte et al.102 as a ferromagnet with Tc = 0.21 K and θCW =
0.4 K, Yb2Ti2O7 differs from the classical spin ice materials
Ho2Ti2O7 and Dy2Ti2O7 in that the lowest-lying crystal-field
state is a Kramers doublet with easy-plane anisotropy.32,67,68

An XY ferromagnet on a pyrochlore lattice—modern esti-
mates suggest θCW ≈ 0.65K for Yb2Ti2O7 (see Refs. 67 and
106)—would naturally be expected to order ferromagnetically
at low temperatures. However, Yb2Ti2O7 exhibits a far more
complicated phenomenology.

Neutron scattering experiments at temperatures below
10 K find diffuse liquidlike structure that offers evidence of
anisotopic exchange interactions.26,29 At temperature of order
1 K, rodlike structure emerges, reminiscent of a dimensional
crossover.26,28,103–105 Some authors have found evidence of a
first-order transition into a ferromagnetically ordered state at
Tc = 0.24 K,29,106 although this has been contested, and may
not occur in all samples.67,103,104,107,108

That Yb2Ti2O7 orders ferromagnetically in applied mag-
netic field is, however, uncontroversial. And this has made
it possible for Ross et al.27 to accurately characterise an
exchange Hamiltonian for Yb2Ti2O7 [see Eq. (10)] from fits
to spin wave excitations in the polarised state. The parameters
obtained confirm that the dominant interactions in Yb2Ti2O7
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favor “ice” states, but that these are complimented by terms
which will drive significant fluctuations at low temperatures.

Reassuringly, this description of Yb2Ti2O7 is also in
quantitative agreement with measurements of thermodynamic
properties over a wide range of temperatures.30 This makes
Yb2Ti2O7 the best-characterised quantum spin ice, and as such,
it is a natural place to look for emergent electromagnetism.
However, neutron scattering data with sufficient resolution to
compare with the predictions of this paper are not, as yet,
available.

Tb2Ti2O7 and Yb2Ti2O7 are by no means the only
pyrochlore systems with spin liquid properties,6 and some
of these other systems, notably Pr2Sn2O7

31,32,109 and
Pr2Zr2O7

32–34 are also worth investigating as potential re-
alisations of a quantum ice. It might also be interesting to
revisit two-dimensional ice-type materials, such as the proton
bonded ferroelectric copper formate tetrahydrate.41 While
two-dimensional quantum ice models are known to order at
low temperatures,110–115 they are described by the same class
of lattice gauge theory, and possess the same spinon excita-
tions as their three-dimensional counterparts.40,111,115 These
excitations will be confined in the ordered state, but might be
visible at finite energy, and above the ordering temperature.

Although the theoretical possibility of emergent elec-
tromagnetism in quantum ice47,48,58,59 and quantum

dimer46,60,61,72 models is now well -established, many theoret-
ical questions remain open. In this paper, we have considered
only the simplest microscopic model of a quantum spin ice [see
Eq. (16)], and fully characterized only its photon excitations.
The study of more realistic models, and of other excitations,
is still in its infancy.30,70,74 We have also made no attempt to
resolve the question of how the quantum ice state that we find at
low temperatures, becomes a classical ice at high temperatures.
All of these issues remain for future study. But we believe
that the best motivation for studying them is experiment,
and hope that the results in this paper will encourage further
experiments on spin liquid materials that might realize artificial
light.
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