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Luttinger-liquid theory of purple bronze Li0.9Mo6O17 in the charge regime
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Molybdenum purple bronze Li0.9Mo6O17 is an exceptional material known to exhibit one-dimensional (1D)
properties for energies down to a few meV. This fact seems to be well established both in experiments and in
band structure theory. We use the unusual, very 1D band dispersion obtained in ab initio DFT-LMTO band
calculations as our starting point to study the physics emerging below 300 meV. A dispersion perpendicular
to the main dispersive direction is obtained and investigated in detail. Based on this, we derive an effective
low-energy theory within the Tomonaga-Luttinger liquid (TLL) framework. We estimate the strength of the
possible interactions and from this deduce the values of the TLL parameters for charge modes. Finally, we
investigate possible instabilities of TLL by deriving renormalization group equations which allow us to predict
the size of potential gaps in the spectrum. While 2kF instabilities strongly suppress each other, the 4kF instabilities
cooperate, which paves the way for a possible charge-density wave at the lowest energies. The aim of this work
is to understand the experimental findings, in particular the ones which are certainly lying within the 1D regime.
We discuss the validity of our 1D approach and further perspectives for the lower-energy phases.
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I. INTRODUCTION

The molybdenum purple bronze, Li0.9Mo6O17, is a subject
of intensive experimental studies already for more than two
decades,1 but its unusual properties remain unclear. Several
very different experimental probes have been used: angle-
resolved photoemission spectroscopy (ARPES),2 scanning
tunneling microscopy (STM),3 dc,4 and magnetoresistivity,5

thermal conductivity,6 optical conductivity,7 Nernst signal,8

muons spectroscopy,9 x rays,10 thermal expansion,11 neutron
scattering.12 Although the main effort of those investigations
was focused on the nature of a mysterious phase transition at
around 25 K, interesting knowledge about higher energy phase
was also gathered. Certain properties of the one-dimensional
(1D) metal, the Tomonaga-Luttinger liquid (TLL), have been
invoked to explain the measured data2,3,13,14 and nowa-
days the presence of the 1D physics is well established
experimentally,15,16 at least in some energy range.

On the theoretical side, band structure calculations have
shown17–19 a quasi-1D character of molybdenum purple
bronze. A remarkably simple band structure emerges from
rather complex crystal structure. At the Fermi surface there
are only two bands, lying very close to each other, in the form
of flat sheets dispersing well only along the b axis. This gives
a hope that purple bronze can indeed be a rare realization of
the 1D physics.

The key problem is that several possible mechanisms have
been invoked to explain the observed properties, which made
the subject quite unclear and controversial. In our opinion
the reason for this situation is that each of previous attempts
was focused only on one of many peculiar properties of
Li0.9Mo6O17 and most of them searched for an explanation
in the low-energy regime (below 5 meV), where indeed the
properties of Li0.9Mo6O17 are the most spectacular. By now,
not enough attention has been paid even to the parameters of
the 1D state. It is only agreed that it emerges at energies
as high as 250 meV. The values of these parameters are
the first issue one must determine before pursuing research
towards low-energy regimes. The unusual physics observed in

Li0.9Mo6O17 at the energy scales of order 10 meV is obviously
a motivation for revising the question of the 1D physics.
In order to establish a proper low-energy effective theory
one has to begin at highest energies and move step by step
towards the physics taking place around Fermi energy. The
first step is to link the results of the DFT calculations with the
well-defined field theory describing the experimental results
at around 20 meV. It is this “high-energy” regime which must
be well understood first. This is the main task of this paper.

The central result of this paper consists of the values
of TLL parameters, which determine the physics taking
place in the high-energy regime. As the 1D theory un-
doubtedly holds for these energy scales this allows for a
meaningful comparison with experiments. We find a good
agreement with measured values and discuss possible finite
temperature deviations emerging from structural degrees of
freedom.17 We also assess the validity of our theory by
inspecting the amplitudes and relevancy of several possible
perturbations.

The plan of this work is as follows. In Sec. II we begin
with a brief introduction of the band structure. In Sec. III A we
propose a tight-binding model which is able to approximate
bands around the Fermi energy EF ; however, in addition,
it contains also the strong correlation terms beyond the
LDA-DFT. In Sec. III B we give basic notions of 1D physics
used in the rest of the paper. Section IV is dedicated to
intrachain physics: We give values parameterizing strong
correlations (Sec. IV A), estimate TLL parameters which this
implies (Sec. IV B), and give energy scales for the spin sector
(Sec. IV D). In Sec. V we introduce the interchain physics.
Once again, first we estimate the strength of these interactions
(Sec. V A) and then (Sec. V B) cast as many of them as
possible into effective LL description, now within the ladder
framework. Later in Sec. VI we study how the nonlinear
interaction terms will affect the Luttinger liquid parameters
and what instabilities they can potentially produce. Finally,
in Sec. VII we discuss our results for LL parameters in a
context of the experimental findings (Sec. VII A), as well as
the validity of the 1D approach itself in Sec. VII B. We also
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FIG. 1. (Color online) (a) The crystal structure of purple bronze,
after Ref. 10. A cut perpendicular to highly conductive b axis is
shown. The atoms which belongs to zig-zag chains are indicated.
(b) A simplified structure of the low energy model. We show the top
view on b-c plane. The t and t⊥ hoppings as given in the first line
of hamiltonian Eq. (2) are shown, sites 1 and 4 lie within the ladder,
site 2 is outside it but t⊥ hopping most likely goes through this site.
Dotted (red) boxes indicate the unit cell within a conducting plane.

discuss in Sec. VIII the role of substitutional disorder in our
model. The conclusions in Sec. IX close the paper.

II. BAND STRUCTURE

The lattice space group and atomic positions within the
structure are known from experiment done by Onoda et al.10

and recently have been confirmed by neutron diffraction
experiment.12 This rather complicated structure, which con-
sists of well separated slabs parallel to the b-c plane, is pre-
sented in Fig. 1(a). Based on this crystallography knowledge
the electronic structure of Li2Mo12O34 can be calculated using

density functional theory (DFT), for example, in the local
density approximation (LDA). Recent calculations17 lead to
results which are globally consistent with several previous
computations.18,19 Overall the band dispersions agree well
with the measured results obtained by ARPES.20 For example,
it shows a flattening of the two dispersive bands at about
0.4–0.5 eV below EF . Other bands are found at least 0.25 eV
below EF . The only visible discrepancies are the relative
vertical shifts of the bands of order 0.1 eV. The computed
ratio between the Fermi velocities along the b- and c-crystal
axes, about 40, is compatible with the reported anisotropic
1D-like resistivity.4,5,7,21 The velocity along �a is even smaller.
At low energies (around Fermi energy EF ) all calculations
gave qualitatively similar results. There are only two bands
which cross the Fermi energy and they are very close to each
other. They have a strong dispersion in the �-Y direction (b
axis) and barely any dispersion in the perpendicular directions.

The two bands originate from a pair of zig-zag chains built
out of Mo atoms inside O octahedra. The low-energy (close
to EF ) spectral function consists mostly of 4d (precisely t2g)
orbitals of Mo(1) and Mo(4) atoms, using the notation from
Fig. 1(a). These two corners of zig-zag are symmetrically
inequivalent; thus, dimerization is possible. However, their
distinction arises more from out-of-chain than in-chain envi-
ronment. The difference solely within a chain is hard to notice.
It is also hard to distinguish the corresponding gap on the edge
of Brillouin zone upon the analysis of the LDA band structure
(in the following we assume that it is not larger than ∼0.1 eV).

The standard procedure (see Appendix A) is to fit the
DFT band structure with an effective tight-binding model.
Along the b axis (along the chains) the LDA calculations
were done in the reduced Brillouin zone (because of the
above-described presence of two inequivalent Mo sites). Then,
in a tight-binding approximation, we expect that the band will
be backfolded with a gap at the boundary of a reduced Brillouin
zone which corresponds to the above-mentioned strength of
dimerization (not larger than ∼0.1 eV). In Li2Mo12O34, while
it is rather easy to distinguish the lower half of the dispersing
bands (however, there are some peculiarities at kc ≈ π ), the
upper half hybridizes strongly with other bands (originating
mostly from oxygen orbitals). Their proper identification is
then difficult. The band gap seems to be quite small; however,
the presence of hybridization makes the estimate quite difficult.
In the following we assume that it is �10%t , where t ≈ 0.8 eV
is hopping along the chain.

Along the c axis the dispersion relation is quite unusual
(there is a node at zero momenta along this axis) and
this peculiar feature appears within all independent DFT
calculations.17–19 Here we are also dealing with the reduced
Brillouin zone, but the presence of the node means that the
standard backfolding does not apply. One has to try possible
combinations of cosines (see Appendix A), keeping in mind
two facts: unequal distances for intra- and interladder hopping
and large distance between ladders (pairs of chains). These
imply that the next-nearest-neighbor hopping must be very
small [only the light dashed lines on Fig. 1(a) give nonzero
contribution].

We were able to deduce (see Appendix A for details) that
the hopping in the perpendicular direction t⊥ is ∼15 meV
[certainly smaller than 30 meV (≈300 K)]. One should also
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notice a large frustration, change of sign, when hopping to the
next-nearest chain (interladder hopping) with the amplitude of
this hopping ∼10 meV. This change of sign can be ascribed to
a phase shift acquired when hopping between pairs of chains,
between two Mo1 atoms via Mo2 octahedra [see Fig. 1(a)].

Along the a axis we have well separated slabs, with a void
between them filled by Li atoms and Mo(6), Mo(3) tetrahedra.
Electrons residing there (if any) stay on energies a few eVs
away from EF . This explains the very low band dispersion in
this direction.

Significant deviations from LDA were seen in ARPES only
below 0.2 eV, where the two bands seems to merge. This is also
the energy scale revealed by optics:7 It shows a formation of
a first plasmon edge for electrons along b axis (�-Y direction)
and a gap value in perpendicular direction. Thus, it seems
reasonable to take it as a point where the 1D physics forms.
This is the starting point (on the high-energy side) of the
present study.

III. EFFECTIVE LOW-ENERGY HAMILTONIANS

A. Tight-binding fermionic Hamiltonian

The LDA-DFT results presented in Sec. II treat electron-
electron interactions at the mean field level. It is assumed
that a single electron moves in an average electrostatic
potential. However, it is known that the higher-order terms in
electron-electron interaction can bring very different physics,
particularly in the case of reduced dimensionality. Thus, we
need to introduce them to our model.

The LDA results show that a majority of carriers at the
Fermi energy is localized on zig-zag chains formed by the
Mo(1) and Mo(4) octahedra [see Fig. 1(a)]. We can safely
assume that the low-energy physics is described by the
dynamics of these electrons. Then the low-energy Hamiltonian
formally writes

H = −tb1

∑
i∈evenb,σ

c
†
i,σ ci+�b,σ − tb2

∑
i∈oddb,σ

c
†
i,σ ci+�b,σ

−t c1

∑
i∈evenc,σ

c
†
i,σ ci+�c,σ − t c2

∑
i∈oddc,σ

c
†
i,σ ci+�c,σ

−ta
∑
i,σ

c
†
i,σ ci+�a,σ + H.c.

+
∑

m,n,σ,σ ′
VnLDA(rm − rn)c†m,σ c

†
n,σ ′cn,σ ′cm,σ , (1)

where the vectors �b = [0,b,0], �c = [0,0,c], and �a = [a,0,0]
define the Li0.9Mo6O19 crystal lattice, summation runs over
all ladder sites and depends on the parity of a given site
index along directions �b and �c. The VnLDA(rm − rn) are the
electron-electron interactions not included in the (mean field)
DFT calculation and the sum goes through positions of all
carriers. The ta−c are hopping parameters along each crystal
axis, as estimated in the previous section. As discussed
there ta ≈ 0 (down to 0.1 meV) so we can neglect it for
the high-energy range we are interested in. The electrons
are moving exclusively within one slab (and mostly along
the zig-zag chains). In Eq. (1) we kept only nearest-neighbor
hopping, since they are expected to be the dominant ones. The
t i1,2 indicate a possibility of dimerization, namely different

TABLE I. The values of parameters (given in meV) of the tight-
binding Hamiltonian given in Eq. (A1) which fits best the LDA result
(Ref. 17), the dispersion along the c axis.

t⊥1 t⊥2 t ′
⊥1 t ′

⊥2

15 5 −10 <5

hoppings along ith axis for even and odd bonds. Because
Mo(1) and Mo(4) are crystallographically different we in-
cluded the possibility that we are dealing with a dimerized
chain, half filled in the reduced Brillouin zone. We denote
the two corresponding hoppings by tb1 and tb2 . As explained
in the previous section we take tb1 ≈ tb2 (with 10% accuracy).
The t c1,2 describe intra- and interladder hopping, respectively
(see Appendix A). To simplify the notations we denote from
now on tb by t and t c by t⊥ to emphasize that they correspond
to hopping along and perpendicular to the chain direction,
respectively.

The resulting simplified tight-binding model is shown on
Fig. 1(b). We simplify the interactions in a similar way by
explicitly considering the intrachain and interchain parts of the
interactions. The microscopic Hamiltonian we take is given by

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ − t1⊥

∑
〈i,j1〉,σ

c
†
i,σ cj1,σ

− t2⊥
∑

〈i,j2〉,σ
c
†
i,σ cj2,σ + U

∑
i

ni↑ni↓

+
∑

m�=n,σ,σ ′
Vin(rm − rn)c†m,σ c

†
n,σ ′cn,σ ′cm,σ

+
∑

m�=n,σ,σ ′
Vout(rm − rn)c†m,σ c

†
n,σ ′cn,σ ′cm,σ , (2)

where t = 0.8 eV (see Table I) is hopping between nearest-
neighboring i,j (denoted 〈i,j 〉) molybdenum atoms along zig-
zag chains (b axis) and t1,2⊥ are a hoppings in a perpendicular
direction, within a slab (c axis), between nearest neighbors;
1 is intraladder while 2 is interladder. The values of t1,2⊥
are estimated in Appendix A and summarized in Table I.
As already mentioned t⊥ < 20 meV, so we can treat it as a
perturbation on the top of the intrachain physics.

The strong correlations [last two lines in Eq. (2)] are usually
parameterized by several quantities, which enter into the ef-
fective Hamiltonian: U is the local on-site interaction between
charge densities of opposite spin ni↑ = c

†
i↑ci↑ (Hubbard term),

Vin(r) is the interaction of two carriers placed inside the same
chain at a distance r �= 0, and Vout(r) is the interaction of
two carriers placed in two different chains in a distance r

[both Vin(r) and Vout(r) are defined assuming an environment
for which the LDA screening is included]. We discuss their
strength in Sec. IV A.

B. Bosonic field theory of a 1D system

In the following sections, it is shown that the interchain
couplings (both hopping and interactions) are reasonably weak
compared to the intrachain ones. We can thus anticipate the
need to describe a strongly interacting 1D system. In such a
case, a very convenient formalism to incorporate the strong
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intra-chain interactions from the start is provided by the
Luttinger liquid formalism.22 This formalism makes it possible
to describe non-Fermi liquid state, Tomonaga Luttinger liquid
(TLL), that occurs in 1D as a result of the interactions.

The low-energy dynamics of such a state is captured by
collective, bosonic modes representing charge and spin density
fluctuations. These fluctuations are connected to the two fields
φν(x), where ν = ρ for charge fluctuations and ν = σ for spin
fluctuations (linked with the fluctuations of charge and spin
density). These fields have two canonically conjugate fields
θν(x) linked with the respective currents fluctuations. In terms
of these collective variables the Hamiltonian reads22

H0 =
∑

ν

∫
dx

2π

[
(uνKν)(π	ν)2 +

(
uν

Kν

)
(∂xφν)2

]
, (3)

where 	ν(x) = 1
π
∇θν(x). All the intrachain interactions con-

serving the momentum are now only fixing the precise values
of the parameters uν (the velocities of the corresponding charge
or spin density modes) or Kν (the Luttinger parameters which
control the decay of the various correlation functions).

In particular, the local spectral function behaves as a power
law A(x = 0,ω,T = 0) ∼ ωα with the following (interaction
dependent) exponent:

α =
(
Kσ + K−1

σ + Kρ + K−1
ρ

)
4

− 1. (4)

For spin-rotationally invariant case Kσ = 1; thus, interactions
leading to the anomalous behavior affect only the charge sector.

We can thus take (3) as our starting point for the chain
physics and study in the bosonized representation the effects
of the various interchain coupling terms. This will ensure that
at least the upper energy scales of the high-energy regime will
be properly treated. The first step to determine the Luttinger
parameters uν and Kν is to estimate the strength of the
various interactions, which we do in the following section
(Sec. IV A). At energies lower than the Fermi energy EF only
two scattering channels are allowed: q ≈ 0 and q ≈ 2kF (plus
eventually higher harmonics). All density-density interactions,
with small q momentum exchange, can be incorporated into
the Hamiltonian given by Eq. (3). They contribute to a
highly nontrivial dependence of the TLL parameter Kρ (see
Sec. IV B).

The remaining interaction terms produce nonsolvable
Hamiltonians of sine-Gordon type, which in general is a
functional F [] of cosine terms:

Hcos = F [cos(
√

8pφν(x)), cos(
√

8qθν(x))], (5)

where p,q indicate higher harmonics (scattering with larger
momenta exchange). Due to these terms the total problem
allows only for an approximate solution (at least in terms of
continuous fields theory). The terms present in Hcos are derived
from large momentum exchange interactions (of both intra-
and interchain origin). This is why their presence is analyzed
carefully in the further sections. They are usually treated using
renormalization group (RG) transformations, which makes it
possible to extract the terms that affect the most TLL physics.
This usually enables one to find the existence of gaps in the
spectrum of bosonic modes, sometimes even to predict the

ground-state phase diagram. This kind of approach is applied
in Sec. VI.

IV. INTRACHAIN PHYSICS

Let us first consider the physics taking place within a single
chain. We want to obtain (in Sec. IV A) the values of the various
intrachain interactions in Eq. (2) and from there (in Sec. IV B)
the values of the Luttinger parameters for the Hamiltonian (3).

A. Strength of interactions

1. U: Local on-site interaction

A fully self-consistent calculation has been performed in
Ref. 18 and a value U = 6.4 eV was found. This value
seems at first sight surprisingly large (for 4d electrons), but
a recent study using constrained RPA23 makes it possible to
understand this result. Although for bulk Mo U ≈ 3.8 eV,
it was convincingly shown that the suppression of the pure
Coulomb value U0 ≈ 14 eV is mostly due to efficient screening
in 3D of the d electrons. In our case (as discussed in detail
below) the system is underscreened, which also leads to a
significantly reduced plasmon frequency in comparison with
that of pure Mo [from ∼15 to 0.65 eV (Ref. 23)]. Thus, the
value U = 6.4 eV is justified or probably even modest. Then,
if we take previously estimated hopping t , we get U/t ≈ 8.

Note that this makes the local repulsion by far the largest
energy scale in the problem.

2. Vin: Interaction inside a chain

In Hamiltonian Eq. (2) we defined intrachain nonlocal
interaction Vin(r). In this section we discuss its strength both
in real and in momentum space Vin(q). We are going to use
shorthand notation Vin ≡ Vin(r = b/2), as this is usually the
single parameter which enters into so-called U -V model for
a 1D chain. This parameter is much more difficult to estimate
than Vout (see Sec. V A) as it involves the dynamics of the
1D metal. Rather than trying to estimate it directly from the
interaction itself, we simply adjust the value to be put in
Eqs. (2) and (3) in order to reproduce the experimental data on
optical spectroscopy.

The idea24,25 is based on two independent estimates of
kinetic energy in the system. The first one is related (by the
optical sum rule) to the plasmon (edge) frequency Ip = ω2

p and
gives us the total possible kinetic energy available for the given
number of carriers. The same quantity can be computed as an
integral Iσ of the optical conductivity σ (ω) (taken only over
the highest conducting band). The point is that the second
estimate gives us the real kinetic energy, renormalized by
interactions.

Fortunately, the necessary data is available for Li0.9Mo6O17.
The value of of the plasmon frequency can be read out from
Fig. 2 in Ref. 7 and gives ωp = 0.65 eV (ωp extracted from the
LDA17 is even larger ≈1.1 eV). The sum rule integral Iσ was,
in fact, already evaluated in Fig. 3 of Ref. 7. Determining the
value of the first saturation from the plot has an unavoidable
error attached to it. We take Iσ ≈ 0.35 (±5%). This value is
reasonable because at higher energies one expects that the
other bands start to intervene. The rest of the procedure is
straightforward; the ratio of bare and interaction-suppressed
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FIG. 2. (Color online) A real-space image of strong interactions
terms possible in purple bronze; the top view of a conducting slab
is given. Interactions between an electron located on a dot site and
charges on different sites are indicated as red dashed lines of different
thicknesses. Both Vin (dashed lines within a black chain) and Vout

(dashed lines between the black and blue chains) are shown. The
numbering of sites is like on Fig. 1.

kinetic energy Iσ /Ip equals to ≈0.83. Then the results of
Ref. 25, together with the previously estimated value of U

makes it possible to predict Vin/t = 1.2, which means Vin =
0.95 eV (±>5%).

In addition to the interactions discussed up to now (which
fit within the U -V model for a single chain) there can also
exist interactions between more distant neighbors (see Fig. 2).
These interactions are nonzero because of the underscreening,
a characteristic property of the 1D systems. When the
separation is larger than that between nearest neighbor we can
approximate the interaction by a continuum limit Vin(r > b) =
VCoul(r)/ε(r), where b = 5.523 Å is a lattice constant along the
b axis10 and ε(r) is a real-space dielectric constant. In 2D and
3D systems the electrostatic potential is usually well screened;
thus, the Thomas-Fermi approximation, already used in the
DFT calculation, is sufficient. In our problem this means that
for the very long length scales r � a the potential is well
screened, V (r � a) = 0 (where a = 12.762 Å is the largest
lattice constant, along the a axis, perpendicular to the slabs
planes), because then the network of the zig-zag chains can
be thought as a homogenous 3D bulk. For shorter distances
between the interacting electrons r ≈ a and then the distance
between the neighboring chains does matter. The relation
a = 2.1b implies that there are a few nonzero interaction terms
Vin(r) for a � r > b.

The screened potential inside 1D wire behaves approxi-
mately like ln(1/r),22 and the same functional relation holds
for the screening induced by the presence of other wires.26 In
total we approximate that Vin(q = 0) will get renormalized by
a factor (1 + ln(a/b)) ≈ 1.6. This gives a reasonable estimate
for Vin(q = 0); however, one has to be aware that for the value
of charge mode TLL parameter the whole q structure has its
importance.

TABLE II. The real-space values of strong coupling parameters
(given in eV).

Vin Vin Vin Vout Vout2

U (r = b/2) (r = b) (r = 2b) (r = c) (r = 2c)

6.4 0.95(±>5%) 0.5 0.2 0.55 0.2

The values of real and momentum space interactions are
summarized in Tables II and III.

B. Values of TLL parameter in the charge sector

Clearly the density-density interactions caused by U and V

are not small perturbations compared to the kinetic energy. In
fact, they are the largest energy scale in the problem, larger than
hopping along the chains. Thus, they strongly affect the charge
sector; they are strong enough to give rise to well-pronounced
non-Fermi liquid properties. We thus need to estimate the TLL
parameters entering (3). As we prove in later sections, the
following hierarchy of energies holds U � Vin > t > Vout >

Jeff (where Jeff is an effective superexchange which determines
energy scales for spin sector).

We thus start by solving the TLL problem for a single chain
and consider later the interchain couplings.

Even when U � Vin > t we stay27 in a gapless phase within
the TLL universality class, but computing the values of the
Luttinger liquid parameters Kρ beyond the weak coupling
limit is usually a very difficult problem,22 since one cannot
compute them perturbatively.

In the present case we have to deal with a quarter-filled
system with a very small doping (δ around 2%), and a
small dimerization (as we mentioned in Sec. III A it t1 − t2
cannot be larger than 10%t, we take moderately 5%t in any
future calculations) and several nonzero interaction terms
Vin(r � b/2). As a first approximation we decided to analyze
the physics of these zig-zag chains by looking at a quarter-filled
extended Hubbard chain with a local interaction U and a
nearest neighbor V = Vin.

If U is the largest energy scale in the problem, then the
charge sector can be mapped onto a spinless chain of fermions
(or an XXZ spin chain) for which the exact TLL parameters
are known.22,28 For a certain value Vin we have

KXXZ
ρ = π

4 arccos
[ − Vin

V c
in(U )

] , (6)

where V c
in(U ) is the critical value of intrachain nearest neighbor

interaction for a given value U . When U → ∞ the mapping is
exact and the critical value is known V c

in(∞) = 2t . In this limit,
when we substitute our Vin in Eq. (6) then we get KXXZ

ρ =
0.3, which sets the lower limit for the TLL parameter in our
problem. This is a rough estimate, but suggests that for further

TABLE III. The reciprocal space values of strong coupling
parameters (given in eV).

Vin Vin Vout Vout Vout

(q = 0) (q = 2kF ) (q = 0) (q = 2kF ) (q = 4kF )

1.6 See Sec.VI B 0.55 <0.05 0.05
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analysis we should use approaches which are valid for the
gapless phase.

A more precise estimate can be obtained from a numerical
study of the extended Hubbard model and an estimation of
the TLL parameters in the usual way via thermodynamic
quantities.28–30 From the relevant plots one reads out that our
model is located somewhere in the range Kρ ∈ (0.3,0.37). One
can try to give an even better estimate using Eq. (6) even when
U is not infinite (but still with U much larger that any other
energy scale in the problem). It is commonly believed that
the value V c

in(U ) extracted from the numerics can give quite
good approximation when substituted into Eq. (6). Estimates of
critical V c

in(U ) are usually done with higher precision than for
arbitrary U,V . In our case U = 8t implies V c

in(U ) = 2.6t28,31

and V c
in(U ) = 2.75t from older work by Mila and Zotos.29

This gives Kρ = 0.330 (with V/Vc = 0.72) or Kρ = 0.340.
We have also followed the critical scaling analysis proposed
in Ref. 31 and found a similar value Kρ = 0.328.

The exact solutions, for example, Bethe ansatz, are available
for a few special cases. If we include a (quite weak) dimer-
ization and (very small) doping, then the problem is located
far away from any integrable model. However, the influence of
both these perturbations are known. The dimerization is able to
lower a bit value of Kρ , this effect can be present in particular
in our case when we are not far from V c

in (Ref. 30). The doping
has the opposite effect; however, when one is not very close to
critical point Kc

ρ = 1/4 and close to commensurate case then
the effect is negligible.

To conclude, the knowledge about the U,Vin we have
collected above allowed us to give a several estimates based
on complementary numerical calculations of U -V models. All
these estimates gives Kρ ∈ (0.3; 0.36) (we allowed for 10%
error in the U,Vin due to uncertainty of parameters). This is
also in agreement with a very recent study for a system with
finite range interaction:32 Kρ ≈ 1/3 when we take a similar
value of the on-site term and account for the presence of
Vin(r) interactions up to four to five Mo sites. However, in this
last paper32 interactions with an exponential character were
studied, which means that they decay much faster than those
in our problem.

Note that this Kρ value is reasonably close to the one K∗
ρ =

1/4 that would lead to a quarter-filled Mott insulator in the
presence of an infinitesimal Vin. The system will be thus very
susceptible to the precise value of Vin. Given the accuracy
of our estimation we take Kρ = 1/3 for further calculations.
This value corresponds to the case for which the 4kF charge
fluctuations decay with the same exponent as the 2kF charge
and spin density fluctuations.22

C. The remaining interaction terms

By now we have studied interactions in real space (which
we believe can be useful for numerical studies), while cosine
terms beyond the TLL general expression (3) are defined in
the reciprocal space representation. These values of scattering
for large momenta exchange will be used as an input for the
discussion done in Sec. VI.

The Hubbard U interaction has a form of a δ function in
real space; thus, in momentum space it contributes equally
to small and large momenta exchange scattering (provided

they are the intrachain ones). The previous considerations also
imply that, the Fourier transformed Vin(q) is a weakly decaying
function (slower than logarithm), so it affects the amplitude of
scattering processes with large momenta exchange. As it was
already expressed above, the intrachain interactions are much
larger than t ; thus, it is not straightforward to obtain the value
of backscattering they cause. In fact, the Kρ = 1/3 parameter
given above, known from numerical studies of similar models,
is a fixed point value K∗

ρ , which means that it contains a part
of these contributions. Precisely, it is the part included in the
simplified U -V model. The longer range and slower decaying
interaction leads to smaller value of K∗

ρ . This suggests that the
proper value of K∗

ρ in our problem, which contains long-range
interactions, can be even smaller.

In our case the charge sector is renormalized by the possible
umklapp terms g3, so the last statement can be rephrased: A
smaller final (fixed point) value of K∗

ρ can be linked to a
larger value of initial, bare g0

3. The precise estimation of the
amplitude of g0

3 is a very difficult task, the detailed discussion
of the bare large-q, intrachain, term is done in Sec. VI.

In addition, the ε(r) when computed using RPA (beyond
standard DFT) gives a well-known phenomena, the Friedel
oscillations (in real space). The effect comes from the peculiar
screening (singular susceptibility) at large momenta q = 2kF .
In our case, due to the value of kF along chains, it gives an
extra gain of energy for electrons located at every second site.
This affects the large momentum exchange part of interaction
Vin(q ∼ 4kF ). The value of this gain can be estimated using
the fact that, for 3D metal, the additional oscillating part
V (r) ∼ r−3. Thus, we give an estimation VFrid � Vin(r =
b)/8 = 0.1 eV. It is not as large as U or V , but can be significant
if we compare it with t⊥.

The U -V model that we have considered so far (in particular
in Sec. IV B) is, of course, only an approximation of the
intrachain physics and interactions. It should capture most of
the effects at the energy scales we are considering; however, it
may slightly underestimate the strength of interactions.

D. Spin mode

All the interactions considered up to now were connected
with the charge sector. In 1D systems, because of the spin-
charge separation, electron spin degree of freedom should be
discussed separately. For a half-filled chain the knowledge
about t and U makes it possible to estimate the spin-spin
exchange (superexchange) constant J = t 4t

U
. This determines

the energies at which the spin sector starts to play a role. The
problem of purple bronze is more complex since the compound
is quarter filled.

For such cases the formula for superexchange interaction
can be still obtained from second-order perturbation theory.30

It reads

Jeff = 4t2
2

8t1 + 2U + Vin − 2
√

(U − Vin)2 + 16t2
1

, (7)

where we have taken into a account the fact that due
to dimerization there are two slightly different alternating
hopping t1 and t2 along the chain. Taking t2 − t1 ≈ 0.05t
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and using the values of U and Vin obtained in Sec. IV A, we
obtain

Jeff = 0.2 eV. (8)

It is indeed significantly smaller than t (and also the charge
sector interactions U,Vin), which implies that charge dynamics
will dominate the 0.2- to 0.02-eV energy range. However, it is a
non-negligible value in the sense that even for energies as high
as ω ∼ 0.1 eV (in the middle of the considered high-energy
regime) the spin excitations are coherent and dispersion is
linear; thus, a TLL description with spin and charge modes is
applicable. The spin-incoherent TLL33 is not an appropriate
framework for our problem.

For a spin-rotational, SU(2) invariant model we have
Kσ (T = 0) = 1. For the interacting case the spin velocity uσ

is smaller than vF ≈ 2t ; in particular, vσ (U → ∞) → J . This
last value is comparable with the one observed in experiment.13

The only candidate to break the SU(2) symmetry would be
spin-orbit coupling DLS on the heaviest atom, molybdenum.
A series of experimental and LDA studies make it possible to
set its value in bulk bcc Mo (Ref. 34) to DLS = 100 meV. This
value was obtained for the � point of a Brillouin zone in the
Mo-bcc crystal. In our problem it should be smaller because
the active electrons have mostly t2g character (with a larger l

quantum number). Thus, DLS can be treated as a perturbation
for J , contrary to U for t in a charge sector. This implies that
Kσ deviates from the noninteracting value Kσ = 1 much less
than Kρ . To be precise, from weak coupling theory (applicable
in this case) we know22

Kσ =
√√√√1 + DLS

2πJ

1 − DLS

2πJ

, (9)

from which we predict Kσ = 1.1, which can increase the
Green’s function exponent α only by 0.01. The spin sector
thus cannot be responsible for the experimentally observed
values of the α exponent [defined in Eq. (4)], which are of
order ≈0.5. However, the influence of the spin-orbit coupling
should be taken into account when one studies the physics
taking place lower energy scales, which are beyond the scope
of this paper.

V. PHYSICS BETWEEN THE CHAINS

After giving the description of a single-chain physics we
move beyond this model and study the strength (and the role)
of interactions between carriers moving in different chains.

A. Vout: The values of interactions between the chains

The density-density interactions can be estimated as a
standard Coulomb interaction between charges in a 3D
dielectric, as was done in Ref. 18. Those authors gave an
estimate for a value of interaction from standard electrostatic
Coulomb law (with the simplest static screening):

Vout(r = a) = 1

κε0a
, (10)

which, in fact, gives the value for two electrons in two
different 2D slabs. We are more interested in interactions

inside the slab, which is obviously larger because (the smallest)
interchain distance is then c/2 = 0.4a. A more fundamental
problem is the value of the dielectric permittivity κ . In the
previous work18 the bulk κ̄ ≈ 10 was used, which is typical
for bulk semiconductors with similar value of a gap for oxygen
states(�O ≈ 2 eV). Taking into account the very weak metallic
character along the c axis the semiconductor approximation is
correct. For further neighbors, with many oxygen atoms in
between, one can take the bulk κ̄ value. However, for the
nearest chains, as there is only one row of oxygen atoms in the
space between them, such a large κ value overestimates
the screening.35 It is then convenient to take a function κ(r)
such that κ(c/2) is reduced by 30% in comparison with κ̄ .
For larger r distances, at approximately r ≈ a it saturates to
the bulk value κ̄ . With this set of values we estimate Vout =
0.55 eV. For r → ∞ the metallic character along the b axis
intervenes and κ(r) → ∞. Thus, the large distance interaction
is strongly suppressed. In such a case the above-estimated
value for Vout can be taken as the density-density interaction
[Vout(q ∼ 0)] between the nearest chains. The above estimate
was done between two nearest chains which form a pair (see
Fig. 2). On the other side of each chain there is another
neighbor which is placed two times further. According to
Eq. (10) these interactions Vout2 [we defined the inter-ladder
term in analogy with, for example, tc2 in Eq. (A1)] are at least
two times smaller. We then estimate [keeping κ(r) in mind]
Vout2 = 0.2 eV.

The treatment of terms with large momentum exchange
is more complex. There is a q = 2kF term which locks
the interchain density wave, the so-called π -CDW (where
CDW stands for charge-density wave), which is shown in
Fig. 3(a). From the figure it is clear that the distances rπ =√

(c/2)2 + (2kF )−2 between charges in such configuration
are rather large [around three times larger than the distance
entering to previous calculation for Vout(q = 0)]; thus, the
screening is quite efficient and κ[rπ ] is definitely not reduced,
but probably even enhanced with respect to the bulk value. In
fact, not only further chains, but also further slabs can intervene
(because rπ > a).

There will be either a very efficient screening (like in
a metal), or Coulomb potential approximation (but with
enhanced κ) is still applicable. We assume, optimistically, the
second case and use again Eq. (10). Two ways of proceeding
are possible when one is interested in the staggered component
of the interaction between two chains. In real space [direct
application of (10)] one computes interactions with a linear set
of dipoles. Due to increase of κ(r) the interaction (with further
dipoles) decays rapidly, which makes this straightforward
approach quite tedious. In the reciprocal space approach one
must take into account the fact that Fourier transform of Vout(q)
does decay in momentum space (it will be a 1/q decay in a 2D
case corresponding to a separate slab). The second approach
is simpler when one notices that the previously computed
Vout = 0.55 eV corresponds to q = 0 ± (a/2)−1 (a distance
between slabs sets the large distance cutoff). Then the 1/q

scaling makes it possible to estimate that the q = 2kF term
will be suppressed by an extra factor of four. Overall, we have

(i) a factor of 1.5–2 from the value κ(rπ );
(ii) a factor of 1.5–3 from the distance rπ ;
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(a)

(b)

FIG. 3. (Color online) A schematic side view of a ladder structure
(which enters the low-energy description of purple bronze) with
(a) the 2kF π -DW instability shown (the light, dashed line correspond
to the distance rπ ) and (b) the 4kF π -DW instability shown.

(iii) a factor of ≈4 because we compute the staggered (large
q) component.

Taking all these factors into account, we estimate that the
2kF component is reduced by at least one order of magnitude,
which means Vout(q = 2kF ) < 0.05 eV.

There is also the q = 4kF term. Now the distance is smaller;
thus, κ is unaffected. However, this term is strongly suppressed
due to above-mentioned Coulomb character of Vout(q). At short
distances corresponding to r = (4kF )−1 the interaction may
even have a 3D character (with no screening); thus, Vout ∼ q2.
By a similar reasoning as given above, we get Vout(q = 4kF ) ≈
0.05 eV. The smallness of interchain large momenta terms
(in comparison with density-density term) implies that the

local field corrections are small, so our mean field model of
screening is self-consistent. The influence of the interchain
exchange interactions (both 2kF and 4kF ) on 1D physics is
discussed in Sec. VI.

To summarize the results for values of the strong coupling
parameters found in the last two sections, we present all
parameters in the Tables II and III.

B. Luttinger liquid framework

The density-density interaction between the two neighbor-
ing chains Vout(q = 0) can be included on nonperturbative
level. Because of the hierarchy of energies the presence of Vout

should be included on the top of 1D chain Kρ . The zig-zag
chains are grouped in pairs as shown on Fig. 1(b). Inside
each pair we have two short links with interaction Vout while
in between them there is only one link with much smaller
interaction Vout2. The ladder picture is then justified.

In the case of the ladderlike system (which means that
there is either much stronger intraladder hopping t1⊥ � t2⊥ or
interaction) two more modes must be introduced. The problem
can then be expressed in two different possible bases. One may
work either in the chain basis with ν = σ1,σ2 spin modes or
in the total/transverse basis with symmetric and antisymmetric
spin modes ν = σS,σA (and respectively the same for the
charge sector). In general, the Green’s function α exponent
can be expressed as

α =
∑N

ν

(
Kν + K−1

ν

)
2N

− 1, (11)

where N is a number of modes. A significant Vout(q = 0) gives
a preference for symmetric and antisymmetric modes as it can
be diagonalized in this basis.

Thus, within the ladder picture the two degenerate charge
modes (in the two chains of the ladder) split into two holons
with two different velocities. One of the holons (symmetric)
describes the fluctuations of the total charge density, while the
other one (antisymmetric) describes the relative fluctuations
in two different zig-zag chains. The values of their TLL
parameters are

KρS,A = Kρ√
1 ∓ KρVout/(π2uρ)

, (12)

where in the above formula Vout ≡ Vout(q = 0), Kρ and uρ

are TLL parameter and velocity of intrachain holon without
interchain interactions included. The TLL parameter Kρ has
been discussed extensively in Sec. IV B and for our problem we
can take uρ ≈ vF (Ref. 37). Then the respective values, at the
TLL fixed point (� → 0), are KρS ≈ 0.32 and KρA ≈ 0.36.
The relation uρA/uρS = KρS/KρA implies that the velocities
of two holons differs by around 10%.

For energies well below Vout the Hamiltonian of the charge
sector is given as a sum of two bosonic modes plus a nonlinear
part Hcos caused by large-q (exchange) interactions:

Heff =
∑

ν

∫
dx

2π

[
(uνKν)(π	ν)2 +

(
uν

Kν

)
(∂xφν)2

]

+Hcos, (13)
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where, as explained in Sec. III B, now the summation goes
over four modes ν = ρS,ρA,σS,σA. If we neglect Hcos then
the single-hole propagator (relevant for ARPES), the density
Green’s function with chirality ϑ ,

G<
ϑ (x,t) = 〈ψ†

ϑ,σ (x,t)ψϑ,σ (0,0)〉, (14)

is known38 and can be written as a simple generalization of
the standard TLL result, as a product of four gapless modes.
For example, for the right-going hole,

G<
R (x,t) =

∏
ν

gζν
(x,t), (15)

where

gζν
= [(x − vνt)]

ζν [(x + vνt)]
ζν ,

with the exponents ζν = (Kν + K−1
ν )/8. For a numerical

values of these exponents in our model and their implications,
see Sec. VII A.

In the case when Hcos is able to open a gap in a given
mode, the respective term in the product in Eq. (15) should be
substituted by a modified Bessel function of a second kind,
which gives the expected exponential decay of correlation
function.

The interladder interaction Vout2 are significantly smaller
and thus will not bring any novel physics at higher energy
scales (above 10 meV), so this leaves them out of the scope of
this work.

VI. RENORMALIZATION GROUP STUDY

A. Statement of the problem with the interchain operators

The interactions with small momentum exchange can be
absorbed in a definition of TLL parameters, but obviously
there are also scattering channels with the large momentum
exchange. These generate cosine-type terms, which, in princi-
ple, can bring us away from TLL universality class as defined
in Eq. (3). There are several terms which are expressed as
cosine operators in the bosonization language. In addition
to previously incorporated umklapp terms there are the ones
which emerge from the interchain interactions. It is because
usually they are the most pertinent for the ladder system. They
are

q1 = 2kF these are interactions originating from
the presence of Vout(q = 2kF ), which have a form
cos(2φρA) cos(

√
2φσ1) cos(

√
2φσ2);

q2 = 4kF these are interactions originating from the pres-
ence of Vout(q = 4kF ), which have a form gπ

⊥ cos(4φρA),
and (only in the commensurate case) the interchain umklapp
gu

⊥ cos(4φρS);
t⊥ the single-particle hopping induces several

cosine operators,39 each of them in the form
cos(2θρA)F [cos(

√
2φσ1), cos(

√
2φσ2)], where functional

F [] is a linear combination (there are also higher-order
hopping terms, but as they are proportional to t2

⊥ we can safely
neglect them).

The standard way to treat these terms is deriving, perturba-
tively (usually on the single-loop level), the RG equations.22

The RG equations allows us to predict whether a given
term will increase and affect the low-energy physics (become

relevant) as the running energy variable � ≈ max[ω,T ] de-
creases. To be precise, the quantity l entering to RG equations
is defined as � ∼ exp(−l) or to be precise l = ln(�/W ),
where W = 2t . This last formula makes it possible to link two
quantities (which we do throughout this section); however, one
should remember that while l is just a number, � has an energy
unit. In the following we apply the following convention
gπ

⊥[�1] = Vout(q = 4kF )/�̄ where �̄ = πvF .
The naive way would be to add RG equations describing

these terms into the previously determined TLL fixed point.
Unfortunately, in our particular problem this approach is not
justified. Our problem can be stated as follows: How do we
incorporate the above given operators into the intrachain,
umklapp RG flow, which was already accounted for?

We expect that the following physics takes place. Around
200 meV a gappless TLL appears and later undergoes the
renormalization flow. At this finite energy we know the values
of interchain terms caused by V⊥(q = 4kF ) as they were
estimated in the previous section, but g3 cannot be taken to
be equal to zero (it is not yet a fixed point, as explained
in Sec. VI B). If we want to treat all instabilities with 4kF

periodicity on equal footing then we have to begin the flow
with nonzero intrachain g3 and see how it will compete or
conspire with interchain instabilities. Estimating the value of
the initial g3 which we need to substitute into RG equations is
a highly nontrivial task, our proposition on how to tackle this
problem is given in Appendix C.

B. The intrachain, umklapp RG flow

In Sec. IV B we have given the values of intrachain TLL
parameter Kρ within the U -V model approximation. The
point is that these are already renormalized, the fixed-point
values K∗

ρ , and as such already contain influence of intrachain
umklapp scattering.

The fact that this operator is there and affects K∗
ρ becomes

clear from the following reasoning. As mentioned above, we
are working with weakly dimerized chains close to half-filling.
In the reduced Brillouin zone kF = 0.487π/b according
to DFT18 and kF = 0.51π/b according to ARPES.40 This
discrepancy can be understood. One should remember that
the precise value of kF can vary as it depends on the relative
value of chemical potential inside a chain (determined also by
strong correlations) with respect to the local potential on the
Li ion (donor of electron). In any case one must admit that the
doping is low enough, so in the high-energy regime the zig-zag
chain is not able to recognize whether it is doped or not.

In addition, an important remark has to be kept in mind: The
above form of umklapp operator is appropriate for a quarter-
filled chain. This approach holds for a weakly dimerized
zig-zag chain, to be precise, for the case when amplitude of
the umklapp interaction is larger than dimerization. From the
analysis of the DFT band structure we know that t1 − t2 <

0.1 eV. After evaluating the strength g3 we also check if this
assumption was consistent.

In this case the umklapp terms (so-called g3), in the
ith chain, in the form cos(

√
8φρi), have to be taken into

consideration. The RG equation for this instability reads

∂g3

∂l
= 8g3(1/4 − Kρ). (16)
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The critical value of TLL parameter for this operator is Kc
ρ =

1/4, so it seems to be irrelevant in our problem. However,
in the case of Berezinskii-Kosterlitz-Thouless (BKT) flow,
like the one described by Eq. (16) there exists a straight line
on the g3 − Kρ plane, a separatrix between relevance and
irrelevance regime (gapped and critical phase). Essentially,
this is because the compressibility of the charge mode will
also change,

∂Kρ

∂l
= −8g2

3K
2
ρJ0(δeff(l)), (17)

and for large-enough values of initial g3, this equation cannot
be neglected, the RG flow cannot be assumed to be vertical
as we did before. Thus, the amplitude of bare coupling g3 can
play a role. As we see below, in our problem the amplitude g3

does matter.
In Eq. (17) we kept the doping dependence which is

encoded inside the Bessel function of the first kind J0(δ(l)).
However, below we assume that doping is essentially equal to
zero and we work in a commensurate case. This assumption
comes from the fact that as we work in a constant chemical
potential (the chain is embedded in a whole crystal and
one knows the chemical potential of such a system from
DFT solution) the effective doping will get renormalized
∼−g2

3J0(δeff(l)) already at higher energies. Because of the
same reason we neglect the renormalization of the charge
modes’ velocity ∼g2

3KρJ2(δeff(l)). From now on all we neglect
all doping dependence and set δeff = 0 in the high-energy
regime.

C. The RG analysis of the 4kF terms

If the interchain 4kF terms are considered alone then we
immediately see that they are less relevant than the 2kF

instabilities described in Sec. VI D (it is because Kc
ρν = 1/2).

However, there are several reasons why we think that the 4kF

will be more important and decided to investigate it first. The
4kF depends only on charge modes, which can be particularly
important for energies larger than or comparable with J . What
is more, as we deduced before, Kρ < 1/3, and then it is the
4kF CDW instabilities which are decaying slower. Finally,
there is an intrachain umklapp term with the same periodicity
and large, bare amplitude.

Section VI B gave us the necessary understanding of the
intrachain RG flow; now we can proceed and introduce
interchain terms. The q2 = 4kF π -wave scattering has the RG
equation

∂gπ
⊥

∂l
= 2(1 − 2KρA)gπ

⊥ − g3g
u
⊥ (18)

and the interchain umklapp

∂gu
⊥

∂l
= 2(1 − 2KρS)gu

⊥ − g3g
π
⊥. (19)

In the above equations we have already introduced the so-
called mixed terms caused by the presence of g3 term (see
below for an explanation). We need to take the interchain
terms together with the standard umklapp g3 to get a complete
RG flow. These terms will also affect the flow TLL parameters,
the KρS,A, and the symmetric/antisymmetric TLL parameters,
which are defined in different basis than the intrachain Kρ1,2

ones [used in Eqs. (16) and (17)]. The intrachain umklapp
scattering may be rewritten in different basis than using the
fact that the combination of two umklapps can be expressed in
a rather simple form,

g3[cos(2
√

8φρ1) + cos(2
√

8φρ2)]

= 2g3 cos(4φρA) · cos(4φρS), (20)

where we assumed that umklapp g3 is identical in both chains 1
and 2. This can be justified by the crystal symmetry argument.

In the following we work with the perturbation described
by Eq. (20) in the symmetric/asymmetric basis. We need to
rewrite the RG equations for the combined intrachain umklapp.
Instead of Eqs. (16) and (17) now we have

∂g3

∂l
= g3(2 − 4(KρS + KρA)) + 2gu

⊥gπ
⊥, (21)

∂KρS

∂l
= −K2

ρS

(
8g2

3 + (gu
⊥)2

)
, (22)

∂KρA

∂l
= −K2

ρA

(
8g2

3 + (gπ
⊥)2

)
, (23)

where (in the last two equations) we have distinguished the
two RG flows of symmetric and antisymmetric Kρs [instead
of single Eq. (17)] and already included their dependence on
interchain interactions Vout. These equations should be taken
together with Eqs. (18) and (19) to obtain the full RG flow.
Below we show in Fig. 4 the result of a direct integration of this
system of differential equations as well as a semiquantitative
analysis of RG flow between energy scales corresponding to
�1 = 0.2 eV (where TLL is likely to form) and �2 = 0.02 eV.
These are the limits of interest for the high-energy regime
study. The physical reason for this limit is given below.

One can dispute whether a direct integration is valid
when g3 and y‖ (see Appendix C y‖ definition) are of

FIG. 4. (Color online) Three RG flows of KρS (red, three bottom
curves at l = 0) and KρA (green, three top curves at l = 0) TLL
parameters for different choices of initial parameters. The energy
scale �2 corresponds to l ≈ 3.5. If all Kν tend to be constant for
increasing l, then the RG flow is called “vertical.” The initial values
for three curves are (from top to bottom) 0.03, 0.025, 0.35, 0.45, 0.35;
0.04, 0.035, 0.4, 0.45, 0.35; and 0.05, 0.04, 0.4, 0.45, 0.35, where the
following notations are used: gπ

⊥�̄, gu
⊥�̄, g3�̄, KρA, KρS . For the

RG flow which gives the bottom KρS,A curves, the instabilities (not
shown) are large gi ≈ 1/2 at the scale l ≈ 5 (�2 ⇔ l = 3.8, which
means that the RG flow should be stopped. The other flow does not
suffer from this limitation.
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order O(1). Such large terms could, in principle, generate
significant higher-order operators along RG. However, there
are no higher-order terms proportional to gn

3 (n � 2). Then the
higher-order mixed terms will be either irrelevant [because of
large p value in functional Eq. (5)] or of quite small amplitude.
Qualitatively, the full RG flow can be thought as superposition
of two BKT flows, two hyperbolas on the gi-Kν plane.

Let us first determine the amplitudes of different instabili-
ties gi at �2 in the first-order approximation. If we neglect the
flow of Kν(l), then the solution of Eqs. (18), (19), and (21) is
an exponential function:

gν[2t ∗ exp(−l)] = gν[�1] exp(η∗
ν (−l − ln(�1/2t))), (24)

where ην is the dimension of the operator gν , for example,
ηπ∗

⊥ = 2(1 − 2K∗
ρA). The crucial approximation we made in

Eq. (24) is that we assumed exactly vertical flows and took
the fixed-point values of K∗

ν , which tends to overestimate the
strength of all instabilities. As a result of Eq. (24) we get
g3[�2]�̄ ≈ 0.1 eV, gπ

⊥[�2]�̄ ≈ 0.075 eV, and gu
⊥[�2]�̄ ≈

0.08 eV. Note that because initially KρS[�1] < KρA[�1], the
interchain umklapp gu

⊥ renormalizes more than the π -DW one
gπ

⊥; however, one has to remember that its bare amplitude is
smaller due to doping effects. Already this simplified reasoning
shows that the amplitude of the irrelevant term even at �2 is
still larger than amplitudes of the relevant terms. This is a
peculiarity of our problem. The presence of a mixed term will,
in fact, enhance this property: Because gu

⊥ ≈ gπ
⊥ < g3 then

one can interpret Eqs. (18) and (19) as if Kc
ρS,A was shifted

from 1/2 downwards. On the other hand, in Eq. (21) we see
that interchain instabilities push (weakly) the RG flow of g3

towards its separatrix.
Now let us move to the analysis of the KρS,A RG flows.

From Eqs. (22) and (23) we immediately realize that intra-
and interchain terms support each other in lowering the values
KρS,A. Taking into account the initial (at �1) hierarchy of
energies we can be sure that the initial flow of Kρν ∼ g2

i

will be dominated by g2
3 while the reasoning of the previous

paragraph showed that around �2 both terms are equally
important. Initially the flow slows down because an irrelevant
g3 decreases, but later it can speed up again due to relevant
interchain instabilities as seen on figure Fig. 4, where the
result of numerically solving of Eqs. (22) and (23) is shown.
Estimating quantitatively KρS,A[�2] can be achieved in two
ways.

The first way (i) assumes the independence of intra- and
interchain BKT RG flows. We already know the influence of
g3 term alone; now we want to compute how much the Kν[�2]
would be lowered during the BKT RG flow caused only by
the interchain term, for example, if we keep only gπ

⊥ term in
Eq. (23) for KρA[�2]. We can use the procedure very similar
to the one applied in Appendix C, just that now we are moving
towards l → ∞ along the RG trajectory. By analogy with the
Appendix C reasoning we define the flow invariant A⊥. In
the case of this RG flow g0

⊥ ≈ 0.01 � 1; thus, A⊥ ≈ (y⊥)0
‖,

where (y⊥)0
‖ = 0.11 is the distance of the bare K0

ρA = 0.39
to Kc

ρA = 1/2. We then obtain [from an analog of Eq. (C2)]
that y⊥

‖ [�2] = 0.15, which means that the RG flow caused
�y⊥

‖ [�2] = y⊥
‖ [�2] − A⊥ ≈ 0.05 of the KρA[�2] decrease.41

This additional change of KρA[�2] should be added on the

FIG. 5. (Color online) A comparison between BKT flow caused
by a nonzero g3 only (blue, bottom curve) and the result of our full
RG flow (red, top curve). This is a parametric plot with g3[l] on the
vertical axis and an average K[l] = (KρS + KρA)/2 on the horizontal
axis. The initial values are (for the blue line) 0.0, 0.0, 0.35, 0.45, and
0.35 and (for the red line) 0.03, 0.025, 0.35, 0.45, 0.35, with the same
notation as in Fig. 4. The flow is shown down to l = 5.

top of the value previously found from the U -V model (see
Sec. IV B) K∗

ρA ≈ 1/3. However, because of the g3 influence,
the A⊥ is not a constant but it increases during the flow so
the above value of the �y⊥

‖ [�2] is underestimated. Such a
deviation from a single BKT flow, particularly pertinent at
lowest energies, is clear from figure Fig. 5.

The second way (ii) comes from the fact that, as pointed
out above, the g3 term dominates most of the RG flow between
�1 and �2. Let us assume that the interchain terms effectively
add up to the initial amplitude of g3[�1] [see Eq. (20)],

geff
3 [�1] ≈ g3[�1] + Aaux ∗ 2 ∗ Vout(4kF )/�̄, (25)

where the origin of the Aaux = 0.6 factor is explained in the end
of this section. Taking into account the results of Appendix C
we see that with this new effective amplitude of the umklapp
the initial point of the RG is located quite close to the separatrix
of intrachain flow. The resulting value of K∗

ρν is then going
to be close to Kc

ρν = 1/4. This obviously overestimates the
change of Kρν[�2] because effectively in Eq. (22) we took a
square of a sum instead of a sum of squares. There is also a
hidden assumption here that KρA ≈ KρS , but looking at Fig. 4
we see that this works well for all cases.

From the reasonings (i) (upper limit) and (ii) (lower
limit) we conclude that within our approximation KρS,A ∈
(0.25,0.29). This is in agreement with the results presented in
Figs. 4 and 5.

Finally, we can try to estimate the value of a gap in the holon
spectrum. We choose to work with gπ

⊥ as it has the strongest
tendency to open a gap. We estimate the gap in the case if
this instability was acting on its own when � ≈ W exp(−l∗),
where gπ

⊥[W exp(−l∗)] = 1. For the specific cases the l∗ is
known,22 for example, deep inside the gapped phase (self-
consistent harmonic approximation) or close to the separatrix
of RG. Unfortunately, our problem does not belong to any
of these, because A⊥ ≈ 0.12, which for �2 energy scale is
neither very small nor very large. We approximate the flow of
the considered gπ

⊥ by BKT flow, which can be integrated out
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(see also Appendix C):

arctan

(
y0

‖
A⊥

)
− arctan

(
y‖
A⊥

)
= A⊥l. (26)

If we use the fact that y0
‖ ≈ A⊥ and y‖[2t exp(−l∗)] � A⊥

(we are not far from the separatrix), then we get A⊥l∗ ≈ π/4.
In fact, this value of l∗ is quite close to the ones we get from
numerical integration of the full flow. Then the gap is

�π
⊥ = 2t exp[−π/(4A⊥)], (27)

which gives ≈2 meV. The low initial value of the Vout(q =
4kF ) translates into quite small expected value of the gap in
the spectrum.

The lowest energy (below �2) flow of umklapp processes
are seriously affected by doping. If the gπ

⊥ is able to open a gap
before that, then these other RG equations will be changed by
the presence of the gapped mode. For the intrachain umklapp
instability the initial point lies very close (especially if we
include terms beyond the U -V model) to the separatrix, which
means that it is very susceptible to these modifications.

Usually in such a case one thinks about two competing
instabilities taking place in two different basis (intra- and
interchain). Our problem is different; the cooperation of
instabilities is realized. This becomes clear if one assumes
that the system tends to be locked at minimum, for example,
corresponding to

√
8φρ1,2 = π [then cos(

√
8φρ1,2) = −1]. For

this specific value of φ0
ρ1,2 the combined interchain terms [see

Eq. (20)] give nonzero and negative value (Aaux ≈ −0.6). This
corresponds to an additional energy gain caused by an auxiliary
instability. It is a rare case when the two gaps do not exclude but
can help each other. In particular this validates the assumption
made in Eq. (25).

D. The analysis of the 2kF terms

The RG equation for the 2kF backscattering operator
reads22

∂g2kF
π

∂l
= (2 − KρA − KσA)g2kF

π . (28)

It is the most relevant instability (already for KρA < 1) if one
assumes SU(2) symmetric case in the spin sector when KσA =
1, so naively we would expect it to dominate the low-energy
physics. However, there are details that matter. First, the initial
amplitude of this term is quite low. Second, the RG flow of
this term will be strongly perturbed.

(i) At high energies (� ≈ 0.2 eV) the spin sector is still in
the incoherent regime; certainly the dispersion is not yet linear
(mind the value of Jeff). Thus, all terms which contain spin
dynamics, like cos(φσ ), will strongly fluctuate

(ii) The 2kF terms have to compete with 4kF instabilities
described in the previous section: large g3 (in the initial part
of the flow) and relevant gπ

⊥ and gu
⊥ in the lower energies

(iii) At lower energies (≈0.015 eV) several terms generated
by the perpendicular hopping (∼t⊥) will start to intervene.
Although they are irrelevant [connected with the field θρA

(Ref. 39)], still their initial amplitude is significantly (three
times) larger than Vout(q = 2kF ). We then expect that physics
will be dominated by a competition between these two types of
cosine terms, as was studied in Refs. 42 and 43, where the term

confinement-deconfinement transition was coined to describe
the physics.

Based on results from Refs. 42 and 43, one may expect that,
due to last mechanism, the 2kF instability is weakened. In any
case, because KρA � Kc

ρA = 1 the 2kF -RG flow is vertical.
This implies that the KρA value (and thus also Green’s function
α exponent) is very weakly affected by the presence of the 2kF

terms.

VII. DISCUSSION

A. Comparison with experiment

In this last part we wish to compare the estimated Luttinger
liquid parameters with experimental findings. Experiments
look at low-energy (l > 1), long-distance behavior (r > k−1

F ),
which we should keep in mind for the rest of this section. The
crucial question is as follows: What are the values of TLL
parameters Kν that enter into measured correlation functions?
Obviously, the answer cannot depend on the point where we
arbitrarily decide to stop the RG flow; one has to keep in mind
that gi terms usually are still finite at such a point. As discussed
in Ref. 44, the correlation functions are of the form:

R(r) =
(

r

W

)Kc

exp

(∫ r/W

0
y‖[l]dl

)
, (29)

where |r| =
√

x2 + (vντ )2 is a distance in a time-space
domain, W is an ultraviolet cutoff of the problem (∼2t), and
y‖[l] = Kρ − Kc

ρ is a deviation of TLL parameter from the
critical value Kc

ρ of the considered flow. Thus, the observed
value could be interpreted not as K[l], but rather as weighted
average of K[l] over longer and longer length scales. In
particular, if we flow to a gapless phase, then the observed
Kν corresponds to K∗

ν , which is then equal to the invariant of
the flow A.

Our problem is particularly difficult, because the answer
to the above question strongly depends on yet unknown
lowest-energy physics. Indeed, in our reasoning we have
neglected several effects [t⊥, DLS(q = 2kF ), proximity to Mott
insulator, disorder] whose amplitudes are certainly smaller
than �2 ≈ 20 meV and which seriously harm TLL below this
energy scale. Based on this we can reassure the validity of our
approach only down to ∼20 meV.

Basically, there are two distinct behaviors which can
occur at these lowest-energy scales. First, one of the above-
mentioned perturbations can become pertinent just below the
�2 energy scale and thus stop the RG flow. In fact, all these
perturbation in one way or another would not support further
lowering of the Kρ value; thus, the further Kρ[l] can be then
taken as vertical. The observed TLL parameter should then be
close to Kρ[�2]. The second possibility, which is not unlikely,
is that 1D RG will remain valid down to much lower energies
∼1 meV (see Sec. VII B). Then, as indicated in Fig. 5, the RG
trajectory always stays close to the separatrix. This statement
is, in fact, quantified by the values of invariants of the intra-
and interchain RG flows: A3 ≈ A⊥, so it is always either g3[l]
or g⊥[l], keeping us close to the separatrix. Then Eq. (29) gives
a power low with a Kc

rho = 1/4 exponent times a logarithmic
corrections in the form log(r/W ).
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We are able to compare our results only with the exper-
imental data corresponding to the high-energy range � ∈
(0.02; 0.2) eV. In fact, this is also the energy scale down to
which, with no experimental doubt, the TLL persists. One
should also keep in mind that the TLL α exponent should
be computed within the ladder model introduced in Sec. V B.
In the following we assume that it is only Kρ responsible
for α �= 0, while Kσ = 1. Several different techniques have
been used to measure the α exponent. These include PES20

and ARPES45,46 (4–150 meV; 5 K–300 K), STM3(0–50 meV;
10 K–50 K), and resistivity5,21(30 K–300 K), where in paren-
theses we have indicated temperature and frequency ranges
where the fits were performed. We see that at least one of them
is always larger than �2, which makes our theory applicable.
All probes are consistent and gave the spectral function
exponent α ≈ 0.55–0.6, which means K̄ρ ≈ 0.24–0.25. This
is reasonably close to KρS,A[�2] ∈ (0.25,0.29) predicted
theoretically in Sec. VI C, but also to Kc

ρ = 1/4. This shows
the importance of the proximity to the Mott transition: It can
cause a strong renormalization of Kρ TLL parameters towards
lower values and thus observe a large value of α exponent.

One can be even more explicit: The only way to obtain
values α > 1/2 (which translate into Kρ < 0.27) in our model
is by assuming that the combined 4kF perturbations (intrachain
g3 together with gπ

⊥ and gu
⊥ terms) can drive the RG flow and

lead to strong renormalization of the charge TLL parameters.
There is one more argument which supports this scenario. It
is the lack of a spinon peak which has not been observed in
any PES (or ARPES) experiment in the last two decades. This
can be justified theoretically only if α > 1/2, which provides
strong limitations for the expected K̄∗

ρ values.
There is one experimental result which requires a comment.

It is the temperature dependence of α invoked in Ref. 20, based
on ARPES results. There the value α = 0.9 was measured
at high temperatures. This means (KρS + KρA)/2 + (K−1

ρS +
K−1

ρA)/2 ≈ 6, which translates to K̄∗
ρ ≈ 0.17. This value is

much smaller than our predictions. We would like to emphasize
that within TLL theory such behavior is very unlikely. To
be precise, as explained above, it is not allowed to say that
different points along the RG trajectory produce different
observed values of K. One model can possibly have only one
ground state described by K̄∗

ρ . In our opinion the observed tem-
perature dependence can originate from a significant influence
which phonon occupancy has on the LDA band broadening.17

The fact that α(T ) dependence seems to change with sample
preparation [see Fig. 3(d) in Ref. 20] strongly supports this
interpretation. Then the real value of α is the low-energy
one.

The other result is the estimate of a gap which, according
to our reasoning, may be potentially opened by the 4kF insta-
bilities. However, the value has been found to be extremely
small, ∼1 meV; thus, our procedure, which relies on the RG
analysis starting from 200 meV, is insufficient to make any
definite claims. What is more, this value is much smaller
than �2, while there are several effects (like disorder or the
interchain hopping t⊥) which are potentially of order �2 and
destructive for such a gap. If the hierarchy of amplitudes
was opposite (gap much larger than t⊥), then the gap would
suppress single-particle hopping. In our case the outcome is
unclear. Certainly, a more sophisticated theory is necessary to

understand the unusual physics taking place below 20 meV.
Experimentally, this is also a controversial issue. Such a gap
[in the charge sector or in ATLL(ω)] has never been seen in any
experiment probing ω > 3 meV. So far the only exceptions
are low temperature resistivity measurements,5 but even there
a clear Arhenius-type activation behavior (at around 1 meV)
is preceded by an unusual power-law-like behavior.

B. The validity of 1D approximation

It is known22 that the strong correlation effects (the
formation of Luttinger liquid) are able to strongly reduce the
value of t⊥. To be more precise, they strongly reduce the energy
scale where the system gains coherence along the c axis. With
the value of the α exponent discussed above, the perpendicular
hopping t⊥ will get strongly renormalized down to an effective
value,

teff
⊥ = t

(
t⊥
t

)( 1
2−ζ

)

, (30)

where ζ = α + 1 is a single-particle Green’s function expo-
nent, and ηt⊥ = 2 − ζ is a scaling dimension of the hopping
operator. This gives a suppression of t⊥ by a factor ≈20.
To be precise, this means that, due to the presence of
strong interactions, the hopping in the perpendicular direction
becomes coherent only ≈1 meV.

On the top of it there is also another source of t⊥
renormalization, which originates from the competition with
the terms Vout(q = 2kF ) (as described in Sec. VI D). The 2kF

terms, which are a functional of a charge asymmetric mode
φρA (e.g., the one inducing a π -DW), tend to suppress t⊥
(Ref. 43). Their influence is nonzero only when spin sector
becomes coherent and t⊥ is sufficiently small [there is a
Bessel function J0(t⊥[l]) involved, which arises in a very
similar way like the one in Eq. (17)]. It was shown42,43

that the significant suppression of t⊥ may happen only when
t⊥[l] ≈ Vout(q = 2kF ), which [according to scaling given in
Eq. (30)] can be the case in our problem but only for energies
below �2.

The frustration of the nearest and the next-nearest perpen-
dicular hopping also suppress the coherence of perpendicular
hopping also on second order when, for example, particle-hole
processes are considered. This is immediately visible if one
writes a formula for any susceptibility χ (q,q⊥,ω) within the
mean field, RPA level:

χ (q,q⊥,ω)

= χTLL(q,ω)

1 + (2t⊥ cos(q⊥c/2) + 2t ′⊥ cos(q⊥c))χTLL(q,ω)
, (31)

where we are using a simplified version of perpendicular
dispersion ε( �q⊥) known from Eq. (A1). We see that the sign
difference between t⊥ and t ′⊥ can cause a suppression of a
second term in the denominator. This obviously weakens the
q⊥ dependence of susceptibility (thus also a corresponding
observable), but also has its influence if one wished to develop
a perturbative series to study the influence of t⊥.

Finally, there are also disorder effects which can localize
carriers in the perpendicular direction. They are described in
the next section.
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From experiments (optical spectroscopy, Kadowaki-Woods
ratio) we know that 1D physics seems to be correct even down
to 2 meV. In light of the above discussion, these statements
are not unreasonable. Thus, the assumption about the validity
of 1D physics should be valid even down to few meV’s and
certainly in the high-energy range of energies (200–20 meV)
on which this paper focuses. The values of TLL parameters
indeed strongly support the idea that the 1D regime should
be able to persist to temperatures much lower than the bare
perpendicular hopping.

VIII. HOW PERTINENT IS SUBSTITUTIONAL
DISORDER?

It seems that the most likely source of a disorder in
purple bronze are random vacancies of Li atoms. From the
DFT results17 we know that energy shifts caused in this
way within dispersive bands can be, at most, 15 meV (when
the Li are completely removed). This sets the strength of
the substitutional disorder potential. Because Li atoms are
placed well outside zig-zag chains it is reasonable to assume
the Coulomb potential interaction (∼q2) between impurity
and TLL, with predominant small q-exchange scattering.
Thus, the disorder will have primarily forward character and
Df ≈ 15 meV.

Thus, we can assume the model of TLL with a forward
disorder to check if it explains the observed temperature
anomalies of ARPES below 200 K. The spectral function for
forward disorder is known in real space,22

A(x,t) = ATLL(x,t) exp

(
−Df K2

ρ

u2
ρ

|x|
)

, (32)

where ATLL is the pure Luttinger liquid spectral function,
which is known [e.g., see Eq. (15)]. From this we immediately
see that momentum integrated PES (response at x = 0) is the
same as for a standard TLL. The additional broadening [second
term in Eq. (32)] comes from random forward scattering with
an assumption that scatterers are independently distributed in
real space:

〈W (xi)W (xj )〉 = Df δ(xi − xj ), (33)

where W (x) is a long-wavelength, real-space scattering po-
tential at a given position x. The quantity which is observed
in ARPES is a Fourier transform of Eq. (32), which is given
by a convolution of TLL spectral function with the Lorentzian
broadening:

A(q,ω) = ATLL(q,ω) ⊗
(√

2

π

Df K2
ρ/u2

ρ[
Df K2

ρ/u2
ρ

]2 + q2

)
. (34)

The behavior of the Fourier transform is easy to extract in
the certain limits, for example, of large and small ω. For the
high-energy (15–150 meV) range we expect the ATLL power
law scaling (because we work above the energy range disorder
can affect). This is definitely not seen in experimental data.45

For the low energies (2–15 meV) we expect a convolution of
standard TLL signal with an exponential decay. A broadening
of ATLL was indeed observed, however, already at 20 meV,
which is larger than the maximal amplitude of disorder
15 meV. In addition, it was suggested46 that the Gaussian

convoluted with the LL ATLL(q,ω) provides better fit of the
ARPES data. The assumption Eq. (33) was essential to get
linear function of x in the exponent in Eq. (32). Thus, the
Gaussian broadening suggested by experiment implies that the
approximation of uncorrelated scattering events is not obeyed.
The presumable presence of Gaussian broadening, in an analog
of Eq. (34), suggests that the scattering events are not random,
but momentum conserving.

Let us now move to a discussion of the random backward
scattering. We expect that the forward (small q component)
scattering Df is accompanied with random scattering events
with large momentum exchange Db. By analogy with the
reasoning done for Vout(q) (see Sec. V A), which also has
Coulomb-like character, we expect that Db � Df [for a
further estimation we take Db/Df ≈ Vout(q = 2kF )/Vout(q =
0)]. The amplitude of Db should thus be <1 meV and thus
should potentially affect only the lowest energy scales, lying
beyond the scope of this paper. However, a brief discussion
within TLL framework can be done. The Db term has a cosine
form, so it needs to be treated using the RG approach. We
follow the same path as the one used for a single chain in
Ref. 47:

∂Db

∂l

= (
3 − 1/2(KρA + KρS) − 1/2(KσA + KσS) − 2g2kF

π

)
Db.

(35)

Taking into account that Kρ < 1 and Kσ ≈ 1 the Db has to
be highly relevant. However, the bare Db[�0] is extremely
small; thus, its dominance is questionable. The simplest way
to answer this issue is by integrating the flow Eq. (35) with an
extremely small initial Db[�1], the previously estimated Kν[l]
(Sec. VI), and checking the value of disorder at energy scale
�2. This procedure suggests that localization length ξloc ∼
D−1

b [�2] would be rather long ξloc � 30b. This implies that the
system is not prone to localization, in particular in the charge
regime considered in this paper. However, the above-estimated
ξloc is comparable with characteristic length caused by the
doping δ away from quarter filling.

One can also notice that the Db term competes with 2kF

instabilities which have larger bare amplitude and similar
relevance than Db. The RG equation for the 2kF term also
changes [compare with Eq. (28)],

∂g2kF
π

∂l
= (2 − KρA − KσA)g2kF

π − D̃b, (36)

where D̃b = 2Db�0/πu2
ρ . The 2kF terms do not have any

simple, second-order contractions with the Db term. There is
also a change in the RG flow of the TLL parameters [e.g.,
in Eq. (17)], �K̇ρ ∼ −K2

ρD̃b, induced by the presence of the
backward disorder but we expect it to be negligibly small; thus,
the RG flow is nearly vertical. In such a case the experimentally
measurable α exponent should not be affected. The disorder
breaks space-time invariance; thus, it induces renormalization
(downwards) of holons velocity �u̇ρ ∼ −KρD̃b, which is
similar to the umklapp-induced velocity renormalization.

If one assumes the validity of the 1D TLL regime below the
�2 energy scale, then certain comparisons with experiments

075147-14



LUTTINGER-LIQUID THEORY OF PURPLE BRONZE Li . . . PHYSICAL REVIEW B 86, 075147 (2012)

are possible. These experimental findings suggest that the
backward disorder does not dominate the low-temperature
physics. It is known that in 1D systems the backward disorder,
when present, kills the superconductivity.22 This has been
indeed observed for more disordered samples of purple
bronze where the superconductivity disappears.21 However,
the physics at higher energies ∼�2 was unaffected by the Db.
The unusually broad ARPES lines (the strongest indication
of a new physics at energies around 100 K) were clearly
observed for all samples including the superconducting ones.46

The pertinence of disorder also does not fit well with either
magnetoresistivity5 or STM3 experiments. The power laws
implied by weak localization do not fit with resistivity
temperature dependence between 20 K and 300 K.21,48 It is
also claimed (from optical spectroscopy7) that the mass of
remaining mobile carriers decreases below 30 K.

In conclusion, this simplest notion of disorder in TLL is
incompatible with observed effects. However, the discussion
is not yet closed. The crystal structure is quite complex and
supports much more sophisticated mechanisms, for example,
the relative rotations of different Mo octahedra which may
strongly affect the hopping (overlap integrals) between Mo
sites. Such rotations could provide another source of disorder
in the material; this time the t ′i s parameters will be affected.
Some of these effects were studied (via atoms shifting)
in Ref. 17, and it was found that the amplitude of such
effects is similar to Df . What is certain is that all these
microscopic effects should affect t⊥ more strongly than the
inside-chain TLL physics, because t⊥ ≈ Df (while t is two
orders of magnitude larger). This means that the relative
strength of disorder is quite large when the perpendicular
coherence is considered. One has to remember that, although
discussing standard disorder within the TLL framework is
a straightforward extensions of previous works,47 the other
mechanisms requires a separate study, clearly beyond the scope
of the present paper.

IX. CONCLUSION

We studied the low-energy physics of a quasi-1D material,
lithium molybdenum purple bronze. Already before it has been
shown that this material is extremely anisotropic, there is a
linear dispersion along the b axis extending down to 0.4 eV,
while in the perpendicular direction dispersion is at least
two orders of magnitude weaker. In this study the physics is
expressed in terms of field theory. Our work covers the energy
range where the physics of charge modes, holons, describes
well the dynamics of the compound. It begins at around 0.2 eV,
where the experiment has clearly shown an emergence of 1D
spectral properties, in particular the fermionic bands seem to
merge at this energy scale giving rise to a single entity. The
regime of our interest extends as low as 1D physics is strictly
valid. To be on the safe side we set it at around 20 meV, which
is larger than any of the possible disturbances.

The starting point of our study is the recent LDA-DFT result
where the peculiar band structure of the material has been
reconfirmed. Based on this we construct the effective low-
energy theory: The band structure around Fermi energy is cast
into a tight-binding model. In addition, a minimal model has to
contain the strong correlation terms, laying beyond LDA-DFT

approximation. The aim of the next few sections is to provide
the quantitative description of these strong interactions.

We begin with parametrizing the interactions inside a single
zig-zag chain. From previous experimental and numerical
works we are able to extract an effective real-space model
with a physically reasonable values of strong correlation
parameters. Due to sparse arrangement of the chains, the
interactions have a finite range character; however, in the first
approximation we use the U -V model to obtain the values
of Luttinger liquid parameter Kρ . This estimate is based on
several numerical works dedicated for models which are very
similar to ours. All values converge at Kρ ≈ 1/3, which is a
rather low value; in particular, it may allow 4kF instabilities
to dominate the physics. It also suggests that the umklapp
processes are at play. In addition we also investigate the effects
which can arise if one goes beyond the simplistic U -V model.
A separate section is dedicated to the spin sector, where we
estimate basic energy scales.

Later parts of this work are devoted to interchain physics.
As the chains are grouped in well-distinguishable pairs, it is
tempting to propose a description within a ladderlike model.
We use dielectric approximation in order to estimate strength of
interchain interactions, considering processes with both small
and large momenta exchange. With this knowledge we propose
that the description of physics in the considered charge regime
should be done within the framework of Luttinger liquid
consisting of four modes, the two charge modes corresponding
to the total (symmetric) and the transverse (asymmetric)
fluctuations. This description fully incorporates the interchain
processes with small momentum exchange together with the
intrachain physics.

The interchain processes with large momentum exchange
can be taken as perturbation and treated within the RG
approach. However, we claim that in order to achieve a valid
description of the system one has to consider the intrachain
umklapp together with them. We derive a full system of RG
equations which cover intra- as well as interchain instabilities
and study possible trajectory of the flow. This allows us to
develop a description of purple bronze down to the limits of
validity of 1D theory. In the discussion we show that these
limits can be safely extended to energy scales two or even
three times smaller than 20 meV. This allowed us to make
a more extensive, quantitative comparison with experimental
results, which basically confirms our theoretical insight into
this complicated compound.

We have achieved the effective low-energy description of
Li0.9Mo6O17 compound, which is able to explain convincingly
experimental findings down to 20 meV. In particular, we
showed that for the specific combination of parameters, which
are present in this material, an unusual situation may occur.
Due to their mutual competition, the critical phase (the
Luttinger liquid) is able to survive down to the very low
energy scales. Despite the two leg ladder formation, no gap
opens in the holon spectra (at least not above 20 meV). This is
contrary to the usual case where a significant gap is present in a
transverse (asymmetric) mode of a ladderlike low-dimensional
system. Such an unusual physics is in agreement with the
physics extracted from experimental investigations.

It is likely that for the lowest energies the purple bronze falls
into the category of doped Mott insulators with extremely small
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gap, but further developments of the theory are necessary to
make any definite claims about this highly interesting regime.

Note added. Recently, we became aware of a study by
Merino et al.,49 which uses a different methodology to obtain
similar values for the effective parameters as the ones we obtain
in Table II.
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APPENDIX A: DERIVATION OF TIGHT-BINDING
PARAMETERS

The central result of DFT calculation is a band structure of
a given material. As it contains a huge amount of information,
usually it is difficult to deal with when the effective, low-energy
theory is constructed. In such a case a standard procedure
is to approximate a solid by a tight-binding model with a
selected sites located at their positions ri and unknown hopping
parameters between them. Usually only the nearest t and the
next-nearest t ′ neighbor hoppings are taken into account. We
are interested in the low-energy physics; thus, the aim is to
fit bands crossing Fermi energy EF (in the given direction d)
with the properly chosen parameters td t ′d .

As described in Sec. II in the case of Li0.9Mo6O17 most
of the low-energy spectral weight is located on Mo(1) and
Mo(4) sites [see Fig. 1(a)] so we take only them into further
considerations. As explained, only two bands cross EF ; thus,
our aim is to fit these two dispersions.

The dispersion relation for tight-binding model defined
above is known:

ε(�k) = −t cos(kbb/2) − t ′ cos(kbb)

− t⊥1 + t⊥2

2
cos(kcc/2) − t⊥1 − t⊥2

2
sin(kcc/2)

− t ′⊥1 + t ′⊥2

2
cos(kcc) − t ′⊥1 − t ′⊥2

2
sin(kcc), (A1)

where the first line describes the dispersion along the b axis and
the last two lines describe the dispersion along the c axis (with
the dimerization included). We neglected dispersion along the
a axis. For the b-axis dispersion we assumed the simplest
tight-binding model, as the LDA result suggests a rather
straightforward interpretation of the bands. We introduced
next-nearest-neighbor hopping t ′ mostly because the zig-zag
chain structure seems to allow for this refinement; however,
from the general shape of bands in the �b direction, it does not
seem to be necessary.

For the c-axis dispersion the situation is quite different.
We introduced many more terms because the curve is quite
unusual, with a well-pronounced double minima and a node
at kc = 0, a feature quite difficult to fit within standard model.
Based on the analysis of the structure presented in Fig. 1(a)
we deduce that

(i) there are two times more intraladder than interladder
links [they are linked either directly through Mo(1)-Mo(4)
bond or auxiliaries through Mo(2)-Mo(5) bond];

1
0

1

k
πc

0.02
0.01

0.00
0.01

0.02

tdd

0.00

0.02

0.04

E k

FIG. 6. (Color online) The dispersion along c axis shown for
varying direct δ hopping tdd ≡ t⊥1 along Mo(1)-Mo(4) bond. The
strength of the other hopping path [through Mo(2)-Mo(5)] t ′

⊥1 is
taken as −0.02 while the interladder one t ′

⊥2 is −0.01.

(ii) the interladder hopping goes always though Mo(2) [or
Mo(5)] atoms, these are two paths which can interfere (these
hoppings are possible only every second site);

(iii) the next-nearest-neighbor hopping is allowed only
through Mo(2)-Mo(5) and thus should be much smaller than
the one above (these hoppings are also possible only every
second site).

All of the hoppings go either via a δ bonds or π bonds
(the second are allowed only due to octahedra tilting). None
of the links should be very much stronger than the others.
From the crystal structure analysis all other hoppings should
be negligible; thus, the task is to fit the dispersion with the
above given model Eq. (A1).

In Fig. 6 we show an example of kc dispersion with
conditions (i)–(iii) fulfilled. We see that it is possible to
obtain a shape quite similar to the LDA one provided that two
interfering paths have the hopping parameters of the opposite
sign. The only quantitative issue would be a relatively large
value of band splitting found in Ref. 17. It may appear from
the Hartree interaction term if the two bands had different
orbital character. One should also remember that the value of
splitting found in Ref. 18 was a bit smaller. We will leave
this issue for further specialized studies like, for example,
Nth-order Muffin-Tin Orbital (NMTO) method.

These findings are summarized in Table I. Similar values
were found in Ref. 49.

APPENDIX B: DERIVATIONS OF THE COSINE TERMS

We begin with a fermionic for the considered scattering
processes: (1) the intrachain umklapp,

Hi
cos3 = g3

∑
qi

(ψ†
+q1i↑ψ

†
+q2i↓ψ−q3i↓ψ−q4i↑

+ψ
†
−q1i↑ψ

†
−q2i↓ψ+q3i↓ψ+q4i↑); (B1)

(2) interchain umklapp scattering (4kF ),

H⊥
cos3 = g⊥

3

∑
qi

(ψ†
+q11↑ψ

†
+q22↓ψ−q32↓ψ−q41↑

+ψ
†
−q11↑ψ

†
−q22↓ψ+q32↓ψ+q41↑), (B2)
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where the following relation between momenta holds q1 +
q1 − q1 − q1 = 0 in order to preserve momentum conservation
during scattering (the low-energy limit implies that for each
momenta there exist the ultraviolet cutoff |qi | < �);

(3) interchain exchange scattering (4kF ),

Hπ
cos = g4kF

π

∫ L

0
dxρ

4kF

1 ρ
4kF

2 ; (B3)

(4) interchain exchange scattering (2kF ),

Hπ
cos = g2kF

π

∫ L

0
dxρ

2kF

1 ρ
2kF

2 , (B4)

where ρ
2kF

i is the 2kF charge density in the ith chain.
Usually one is also interested in correlation functions,

which have the general form

RO = 〈TτO(x,t)O†(0,0)〉, (B5)

where the simplest intrachain examples of possible operators
O are

(i) in Peierls channel, the charge density wave (CDW),

OCDW(x,t) =
∑
r,σ,σ ′

ψr (x,t)†δσσ ′ψr̄(x,t);

(ii) in Cooper channel, the singles superconductivity (SS),

OSS(x,t) =
∑
r,σ,σ ′

σψr (x,t)δσ σ̄ ′ψr̄ (x,t).

When we consider a single chain, then a chiral fermion
creation operator is related to bosonic spin and charge fields
as follows (in the continuum limit):

ψr,σ (x) = 1√
2πα

ηr,σ exp(ırkF x) exp −ı/
√

2(rφρ(x) − θρ(x)

+ σ (rφσ (x) − θσ (x))), (B6)

where the coefficient ηr,σ is the Majorana fermion which does
not have any spatial dependance and it is introduced only in
order to preserve anticommutation for the fermion operators ψ .
Usually they do not play any role in the physical description of
the system but they are able to change signs of some correlation
functions, so one has to take care about them.

In the case of the ladder one has a straightforward
generalization:

ψr,σ,ν(x,t) ∼ ησ,ν exp(ırkF x) exp

[
− ı

2
(rφ+ρ + θ+ρ

+ σ (rφ+σ + θ+σ ) + ν(rφ−ρ + θ−ρ

+ σ (rφ−σ + θ−σ )))

]
. (B7)

The above-given equations [Eqs. (B6) and (B7)] make it
possible to rewrite all fermionic terms in the Hamiltonian like,
for example, the one in Eq. (B1) or, in general, any interesting
operator in the language of bosonic fields. In our particular
case we are interested in the following interaction terms:

(1) umklapp scattering (at quarter filling) in the ith chain,

Hcos3 = g3

∫ L

0
dx cos(2

√
8φiρ(x) + δ), (B8)

where δ indicates the doping away from a commensurate
case, quarter filling in our case [where exp ı(π − 4kF )x is
not oscillating];

(2) interchain umklapp scattering (4kF ),

H⊥
cos3 = g⊥

3

∫ L

0
dx cos(4φSρ(x) + δ); (B9)

(3) interchain exchange scattering (4kF ),

Hπ
cos = g4kF

π

∫ L

0
dx cos(4φAρ(x)); (B10)

(4) interchain exchange scattering (2kF ),

Hπ
cos = g2kF

π

∫ L

0
dx cos(2φAρ(x)) cos(

√
2φ1σ (x))

× cos(
√

2φ2σ (x)). (B11)

These are the terms for which RG equations are derived in
Sec. VI. In all the above we took the convention

φS,A(x) = φ1(x) ± φ2(x)√
2

, (B12)

which makes it possible to go from one basis to another.

APPENDIX C: INITIAL VALUES OF UMKLAPP TERMS

Estimating the value of g3 at certain energy scale �0 is an
impossible task, so all of our results cannot be taken strictly
quantitatively. This is a generic problem of the RG method
present for any model even a simple half-filled chain. The
complexity of our system makes the task even more tedious.

We propose the approach, based on the first-order expansion
of RG equations, to get a reasonable value of g3(�0). However,
one has to keep in mind that because we are are working
with rather large couplings, of order 0.1 (but always smaller
than 0.25), higher-order terms can introduce non-negligible
corrections even within single instability flow. Thus, the results
have to be taken with caution and can be thought of as only
approximation.

With these remarks being said we can proceed. One can, in
principle, integrate out BKT equations to get values for along
the flow. One gets the following result:22

g[l] = A

sinh[Al + tanh−1(A/y0
‖ )]

, (C1)

y‖[l] = A

tanh[Al + tanh−1(A/y0
‖ )]

, (C2)

where A is an invariant of the flow, in our case A = 1/12. Every
point on an RG trajectory leads us to fixed point value K∗

rho.
From numerics based on U -V model we found (Sec. IV B)
K∗

rho = 1/3 and we know that for quarter-filled chain Kc
rho =

1/4. Thus, in our case A = K∗
rho − Kc

rho = 1/12. Our aim is to
extract the value of Krho[l] = Kc

rho + y‖[l] at a certain energy
scale �1 (corresponding to ≈0.2 eV), which upon RG leads to
known K∗

rho. This procedure can be thought as moving against
the direction of the RG flow.

The only missing quantity in Eq. (C1) is y‖[l = 0], which
should be interpreted as the distance of an initial point of
the flow Krho[l = 0] (formally in the infinite energy, i.e.,
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somewhere around UV-cutoff of the model) from Kc
rho =

1/4. Although around the fixed point the flow is rather
vertical, we decided to take the most conservative [and
giving the most modest value of g3(�0)] assumption that
Krho[l = 0] = 1/2 ⇒ y‖[l = 0] = 1/4. It is because certainly
at Krho = 1/2 the quarter-filled chain remains insensitive to
Mott localization.

With this we are able to estimate the bare g3[�1]�̄ to be
around 0.4 eV. The position of the separatrix of RG flow in the
first order is set by y‖ = g and from our considerations we see
that the difference y‖[�1] − g[�1] is an order of magnitude
smaller than y‖[�1]. The distance from the separatrix is of
the same order as additional intrachain terms described in
Sec. IV C. From the remarks above we know this is only
an estimate, but it certainly implies that the umklapp, even
in intrachain U -V approximation, is an order of magnitude
larger than any of the V⊥(q = 4kF ). Although it seems to be
irrelevant, its bare amplitude is large and quite close to
the separatrix so the intrachain umklapp has to be taken with
care in the RG analysis below.

The fact that bare g0
3 falls very close to the separatrix

can be confirmed by an independent reasoning. The position
of the separatrix is frequently constrained by symmetry
considerations. Taking into account the hierarchy of energy
scales, we take simplistic approximation of spinless fermions
in U → ∞ (like in Sec. IV B). This obviously overestimates
g3, but numerics29 show us that beyond a threshold U = 4t ,
the dependence on U is weak; thus, the corrections breaking
(particle-hole) symmetry should be quite small. The advantage
is that now one can map the charge sector on the pseudospin
model (empty and occupied sites), for which the position of
the separatrix of RG flow (phase transition) in terms of bare
parameters is known exactly thanks to SU(2) symmetry. It is
located at V effc

in = 2teff , where V eff
in accounts for all unscreened

interactions along the chain (while teff ≈ t , if one wants to
be more precise, one would find it slightly reduced with
respect to t because of dimerization). If we use values found
before (in Table III for V eff

in ) we indeed find ourself very close
to V effc

in .
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B 83, 121101 (2011).

24C. S. Jacobsen, J. Phys. C 19, 5643 (1986).
25Frédéric Mila, Phys. Rev. B 52, 4788 (1995).
26Alejandro M. Lobos and Thierry Giamarchi, Phys. Rev. B 82,

104517 (2010).
27F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
28S. Ejima, F. Gebhard, and S. Nishimoto, Europhys. Lett. 70, 492

(2005).
29F. Mila and X. Zotos, Europhys. Lett. 24, 133 (1993).
30Satoshi Ejima, Florian Gebhard, and Satoshi Nishimoto, Phys. Rev.

B 74, 245110 (2006).
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