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Bloch-Zener oscillations of strongly correlated electrons
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It is well known that an electron in a single-band tight-binding lattice coherently driven by an external dc
electric field undergoes Bloch oscillations. In the framework of the extended Hubbard model, here it is shown
theoretically that two strongly interacting electrons with on-site and nearest-neighbor site repulsion undergo
a sequence of Bloch oscillations and Zener tunneling, the so-called Bloch-Zener oscillations (BZOs), among
different narrow bands formed by bound particle states. Such a kind of BZOs arise because of nearest-neighbor
site particle interaction and are thus rather distinct than BZOs observed for a single electron in biperiodic lattices
supporting two single-particle minibands.
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I. INTRODUCTION

Bloch oscillations (BOs) and Zener tunneling (ZT) are
fundamental coherent transport phenomena that occur when
electrons in a periodic potential are accelerated by an external
dc electric field.1–3 While in natural crystals electronic BOs
can not be observed owing to dephasing effects, BOs and
ZT have been impressively demonstrated in a number of
experiments after the advent of semiconductor superlattices.4

Quantum and classical analogues of BOs and ZT have been
also proposed and observed in a wide variety of different
physical systems, including ultracold atoms5 and Bose-
Einstein condensates,6 optical waveguide arrays,7 photonic8

and acoustic9 superlattices. In a tight-binding (single band)
lattice model, BOs basically arise because the energy spectrum
changes from continuous (a band structure with delocalized
Bloch eigenstates) in absence of the external field, to a
discrete ladder energy spectrum and localized eigenfunctions
(the Wannier-Stark spectrum) when the external field is
applied. For biperiodic systems sustaining two bands ener-
getically separated from higher bands (miniband structure),
a characteristic sequence of BOs and ZT between the two
minibands, the so-called Bloch-Zener oscillations (BZOs),
have been predicted10–12 and recently observed for optical13

and matter waves.14 In the driven binary superlattice, the
single-particle energy spectrum is composed by two inter-
leaved Wannier-Stark ladders and BZOs are thus generally
aperiodic.

The onset of BOs may be affected rather dramatically
by particle interactions, lattice disorder, inhomogeneities,
and particle statistics (see, for instance, Refs. 15–23 and
references therein). In particular, several recent works have
investigated theoretically BOs in the framework of Hubbard
or Bose-Hubbard models beyond mean-field models.17–22

As correlation is generally responsible for decoherence of
BOs,17,18 interesting novel phenomena have been predicted
for BOs of few interacting particles in the strong interaction
regime,19–21 such as the frequency doubling of BOs of two
correlated particles19,20 and, more generally, fractional BOs
for N -bound particle states.21 Such a behavior basically stems
from the fact that two strongly interacting particles initially
occupying the same site form a bound pair,24 undergoing
correlated tunneling on the lattice.25

In this work, the coherent dynamics of two strongly inter-
acting electrons with opposite spins in driven one-dimensional
tight-binding lattices with on-site and nearest-neighbor site
repulsion is theoretically investigated in the framework of
the extended Hubbard model.26 The main result of the
analysis is that, as the tight-binding lattice supports a single
band and a single electron forced by an external dc field
undergoes ordinary BOs, two correlated electrons undergo
BZOs involving different bands of interaction-induced bound
particle states. Such a kind of BZOs are a clear signature of
the near-neighbor site repulsion and are thus rather distinct
than BZOs observed for a single electron in biperiodic lattices
supporting two single-particle minibands.

II. TWO-ELECTRON DYNAMICS IN THE EXTENDED
HUBBARD MODEL

The starting point of the analysis is provided by the
driven one-dimensional extended Hubbard model (EHM), that
describes the hopping dynamics of correlated electrons on a
one-dimensional tight-binding lattice driven by an external dc
electric field. The EHM is defined by the Hamiltonian26

Ĥ = −J
∑

l,σ=↑,↓
â
†
l,σ (âl−1,σ + âl+1,σ ) + U

∑
l

n̂l,↑n̂l,↓

+V
∑

l

n̂l n̂l+1 + eEd
∑

l

ln̂l . (1)

In Eq. (1), â
†
l,σ are âl,σ are the fermionic creation and

annihilation operators of electrons with spin σ =↑ , ↓ at lattice
sites l = 0, ± 1, ± 2, . . . , J is the single-particle hopping rate
between adjacent sites, U > 0 and V > 0 define the on-site
and nearest-neighbor Coulomb repulsion, respectively, d is
the lattice period, E is the external dc electric field, n̂l,σ =
â
†
l,σ âl,σ , and n̂l = n̂l,↑ + n̂l,↓ is the particle number operator.

The EHM is a prototype model in condensed matter theory,
which exhibits a rich phase diagram.26 As compared to the
standard Hubbard model [which is obtained by letting V = 0 in
Eq. (1)], the EHM accounts for the nonlocal interaction arising
from Coulomb repulsion of electrons in adjacent sites due to
nonperfect screening of electronic charges. Additional terms,
accounting for long-range Coulomb repulsion (for example,
between next-nearest neighbors), might be included in the
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Hamiltonian (1). It should be noted that Eq. (1) may also
describe fermionic ultracold atoms or molecules with magnetic
or electric dipole-dipole interactions in optical lattices. In this
case, the sign of U and V can be reversed, and the ratio
V/U can be tuned by modifying the trap geometry of the
condensate, additional external dc electric fields, combinations
with fast rotating external fields, etc. (see, for instance, Ref. 27
and references therein). In the present work, we will assume
for the sake of definiteness U,V > 0, and we will mainly
focus our analysis by considering only the nearest-neighbor
Coulomb repulsion. The Hubbard Hamiltonian (1) conserves
the total number of electrons, as well as the total number
of electrons N↓, N↑ with spin down and up. As in Refs. 19
and 20, we consider the coherent motion of two correlated
electrons with opposite spins driven by the external dc field,
i.e., N↓ = N↑ = 1, and we wish to highlight the impact of
the nearest-neighbor repulsion V on the BO dynamics. To this
aim, let us indicate by cn,m(t) the amplitude probability to find
the electron with spin ↑ at lattice site n and the electron with
spin ↓ at lattice site m, i.e., let us expand the state vector |ψ(t)〉
of the system in Fock space as

|ψ(t)〉 =
∑
n,m

cn,m(t)â†
n,↑â

†
m,↓|0〉. (2)

The evolution equations for the amplitude probabilities cn,m, as
obtained from the Schrödinger equation i∂t |ψ〉 = Ĥ |ψ〉 with
h̄ = 1, read explicitly

i
dcn,m

dt
= −J (cn+1,m + cn−1,m + cn,m−1 + cn,m+1)

+ [Uδn,m + V δn,m+1 + V δn,m−1 + F (n + m)]cn,m,

(3)

where we have set F = eEd. In the strong interaction and
low-field regimes, corresponding to J,F � U,V , at leading
order the dynamics in Fock space for the amplitudes cn,m with
m = n,n ± 1 decouples from the other states.28 Therefore, if
we assume that the two electrons are initially placed at the same
lattice site or in nearest sites, i.e., if we assume cn,m(0) = 0
for m �= n,n ± 1 as an initial condition, Eq. (3) reduce to the
following set of coupled equations:

i
dAn

dt
= −J (Bn + Bn−1 + Cn + Cn−1) + UAn + 2nFAn,

i
dBn

dt
= −J (An + An+1) + V Bn + (2n + 1)FBn, (4)

i
dCn

dt
= −J (An + An+1) + V Cn + (2n + 1)FCn,

where we have set

An = cn,n , Bn = cn,n+1 , Cn = cn+1,n. (5)

III. BLOCH-ZENER OSCILLATIONS OF STRONGLY
CORRELATED ELECTRONS

The effect of the on-site Coulomb interaction on BOs
for two strongly correlated electrons, corresponding to the
limiting case V = 0, has been studied in Refs. 19 and 20.
In those works, it was shown that two electrons initially
occupying the same site and driven by the external dc field

undergo correlated BOs with a frequency twice the BOs
frequency of the single-particle (noninteracting) problem. The
frequency doubling follows from the circumstance that two
strongly-interacting electrons initially occupying the same site
form a bound pair with an effective 2e charge and tunnel
together on the lattice.19,20

Here, we show that if nearest-neighbor repulsion is included
in the analysis, two strongly correlated electrons undergo
BZOs, rather than simple BOs. Let us first observe that in the
absence of the dc field, i.e., for F = 0, the energy spectrum
of the two-electron state comprises three Bloch bands, one of
which being collapsed and corresponding to localized states
(see Appendix and also Ref. 29). As the external field is
switched on, the energy spectrum ε of the two correlated
electrons becomes discrete and turns out to be composed by
three interleaved Wannier-Stark ladders:

ε
(j )
l = U + 2F (l − μj ) (6)

(l = 0, ± 1, ± 2, ± 3, . . . , j = 1,2,3), where μj are three
characteristic functions of [((U − V )/J,F/J ] corresponding
to the Floquet exponents of a linear periodic system. The
proof thereof as well as the determination of the Floquet
exponents μj [(U − V )/J,F/J ] are detailed in Appendix.
Therefore an initial wave packet undergoes a quasiperiod
dynamics, characterized by different temporal scales defined
by the energy level spacings of the discrete spectrum [see
Eq. (6)]. For special values of the Floquet exponents, the
energy levels can be arranged to be equally spaced. In this
case, the dynamics turns out to be periodic. More generally,
the dynamics turns out to be periodic whenever μ1, μ2, and μ3

are rational numbers. Similarly to the BZOs of single electrons
in binary superlattices,10,11 the onset of BZOs can be explained
as a sequence of BOs and ZT among the Bloch bands of bound
particle states induced by the external electric field.

It should be noted that, for an initial condition satisfying
the constraint cn,n+1(0) = cn+1,n(0) (for example, whenever
the two electrons are initially placed on the same lattice site
and thus cn,n+1(0) = cn+1,n(0) = 0), only two Wannier-Stark
ladders are excited, and a two-band dynamics is attained,
similar to the BZOs of a single electron in a binary superlattice.
In fact, if Bn(0) = Cn(0), the solution to Eq. (4) satisfies the
constraint Cn(t) = Bn(t) at any time t � 0. After setting

An(t) = f2n(t) exp[−i(U + V )t/2], (7)

Bn(t) = 1√
2
f2n+1(t) exp[−i(U + V )t/2], (8)

the dynamics of the amplitudes fn(t), as obtained from Eq. (4)
using Eqs. (7) and (8), reads

i
dfn

dt
= −

√
2J (fn+1 + fn−1) + Fnfn + (−1)nσfn, (9)

where we have set σ ≡ (U − V )/2. In their present form,
Eq. (9) are formally analogous to the tight-binding model
describing the hopping dynamics of a single electron in a
binary superlattice driven by the external dc force F = edE,10

the energy difference 2σ between adjacent lattice sites being
determined by the unbalance (U − V ) of on-site and nearest-
neighbor site repulsion in the original problem. Hence for
the initial conditions cn,m(0) = An(0)δn,m, the two strongly
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interacting electrons undergo BZOs involving solely two
bands. In particular, for U = V one obtains the ordinary BOs
of the single-particle problem. This means that, if U = V and
the two electrons are initially placed on the same lattice site,
frequency doubling of BOs predicted in the framework of the
ordinary Hubbard model20 disappears, and the two electrons
undergo correlated BOs with the same frequency as for the
single-particle problem.

We have checked the predictions of our analysis, based
on the truncated Eq. (4) and Floquet analysis provided in
Appendix, by direct numerical simulations of the EHM [see
Eq. (1)] for two strongly correlated electrons. The results are
obtained by numerical simulations of Eq. (3) using an accurate
fourth-order variable-step Runge-Kutta method in a truncated
lattice comprising 31 sites (−15 � n,m � 15). In a first set
of simulations, we typically fixed the values of on-site and
nearest-neighbor site repulsion to U/J = 20 and V/J = 19.2,
respectively, and vary the ratio F/J to explore different
dynamical regimes. Note that, since V �= U , BZOs—rather
than simple BOs—are expected to be observed according to
the previous analysis. The behavior of the Floquet exponents
μ1, μ2, and μ3 versus F/J , numerically computed using the
procedure outlined in Appendix, is depicted in Fig. 1. For an
initial condition corresponding to the two electrons placed

FIG. 1. (Color online) (a) Behavior of the Floquet exponents
μj (j = 1,2,3), defining the relative positions of the Wannier-Stark
ladders [see Eq. (6) in the text], vs F/J for (U − V )/J = 0.2. The
plot in (b) shows the behavior of the difference μ2 − μ3.

on the same lattice site, i.e., for cn,m(0) = An(0)δn,m with
some distribution An(0), only the two WS ladders ε

(2)
l and

ε
(3)
l are excited, and the dynamics turns out to be generally

quasiperiodic with the two characteristic time scales:10,13

T1 = π

F
, T2 = π

F |μ2 − μ3| . (10)

If the ratio T1/T2 = |μ2 − μ3| = N/M is a rational number
(with N and M irreducible integer numbers), then the

FIG. 2. (Color online) Numerically computed evolution of the
square root of the joint probability P (2)(n) = |cn,n(t)|2 (upper plots)
and of the revival probability Pr (t) (lower plots) for U/J = 20,
V/J = 19.2, and for a few values of the forcing: (a) F/J = 0.49,
(b) F/J = 0.55, and (c) F/J = 0.5167. The initial condition is
cn,m(0) = δn,0δm,0, corresponding to the two electrons initially placed
at the same lattice site n = 0.
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dynamics is periodic with a period

T = NT2 = MT1 = Mπ

F
. (11)

As an example, Figs. 2(a)–2(c) show the numerically com-
puted temporal evolution of the square root of the joint
probability P (2)

n (t) = |cn,n(t)|2 to find both electrons at the
same lattice site n for the initial condition An(0) = δn,0

(corresponding to the two electrons initially placed at the
same lattice site n = 0) and for three values of F/J , corre-
sponding to μ2 − μ3 	 1/2, μ2 − μ3 	 2/3, and μ2 − μ3 	
3/5, respectively. The evolution of the revival probability

FIG. 3. (Color online) Same as Fig. 2, but for the initial condition
cn,m(0) = δn,0δm,1.

Pr (t) = |〈ψ(t)|ψ(0)〉|2 is also depicted. For such an initial
condition (single-site excitation), BZOs are visualized as a
periodic or quasi-periodic breathing dynamics of the electronic
wave packet.10,13 In Figs. 2(a)–2(c), the breathing dynamics of
both revival and joint probabilities is appreciably periodic with
periods T = 2π/F , T = 3π/F , and T = 5π/F , respectively.
Such results are in excellent agreement with the theoretical
prediction [see Eq. (11) with M = 2, 3, and 5, respectively].

If the two electrons are initially placed at the nearest lattice
sites, the three WS ladders are simultaneously excited and
the dynamics generally involves three distinct time scales.
As an example, in Fig. 3, we show the evolution of the
revival probability Pr (t) and of the square root of the joint
probability P (2)

n (t) for the same parameter values as in Fig. 2,
except for the different initial condition cn,m(0) = δn,0δm,1.
Note that the periodicity of the revival probability, found in
Fig. 2, is now broken, in spite, the joint probability remains
periodic. This is due to the fact that the solution to cn,m(t)
is given by the superposition of the two WS ladders ε

(2,3)
l

solely for (n,m) �= (0, ± 1), whereas the amplitudes c0,±1(t)
show an additional contribution arising from the excitation of
the bound state with energy ε

(1)
l (see Appendix for details).

Such a circumstance explains why the evolution of the joint
probability in Fig. 3 remains periodic, whereas the revival
probability is not periodic.

FIG. 4. (Color online) Same as Fig. 2, but for V/J = U/J = 20.
In (a) F/J = 0.55, whereas in (b) F/J = 0.7. The initial condition
is cn,m(0) = δn,0δm,0. Note that the BO period is given by T = 2π/F .
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In a second set of simulations, we fixed V = U and checked
the disappearance of BO frequency doubling, predicted for two
strongly correlated electrons in the framework of the standard
Hubbard model, i.e., in the absence of the nearest-neighbor
site interaction (V = 0).19–21 As an example, Fig. 4 shows the
evolution of both revival and joint probabilities for U/J =
V/J = 20 and for two values of the external field, assuming
as an initial condition that the two electrons are placed at the
same lattice site n = 0 (i.e., cn,m = δn,0δm.0). According to
the theoretical analysis, in this case simple, BOs—rather than
BZOs—are observed, with a period T = 2π/F equal to the
single-particle BO period.

IV. CONCLUSIONS AND DISCUSSION

In this work, the coherent dynamics of two strongly
interacting electrons with opposite spins in one-dimensional
tight-binding lattices with on-site U and nearest-neighbor site
V repulsion driven by a dc electric field has been theoretically
investigated in the framework of the extended Hubbard model.
The analysis shows that in the strong interaction regime and
for V �= U the two electrons undergo a sequence of Bloch
oscillations and Zener tunneling, the so-called Bloch-Zener
oscillations, among different bands of bound particle states.
For V = U , ordinary BOs should be observed with a period
equal to the single-particle BO period. This result is rather
distinct than the prediction of frequency doubling of BOs for
two strongly correlated electrons that one would expect in the
framework of the standard Hubbard model.20,21

BZOs predicted in this work are a clear signature of
nearest-neighbor site particle interaction and are expected to
be observable in quantum27 or classical30 simulators of the
extended Hubbard model. For example, a photonic simulator
of the EHM for two interacting electrons with opposite spin
driven by an external dc field can be realized by considering
transport of classical light in a square array of coupled optical
waveguides with a circularly curved optical axis and with
defects along three adjacent diagonals, extending the optical
setup suggested in Ref. 30 to simulate correlated BOs in the
framework of the standard Hubbard model. In fact, Eq. (3)
clearly shows that the dynamics of the two interacting electrons
in a one-dimensional lattice is equivalent to the dynamics
of a single particle hopping on a two-dimensional square
lattice, with energy site impurities U and V on the main
(m = n) and nearest (m = n ± 1) diagonals of the lattice,
respectively.

As a final comment, it is worth briefly commenting on the
effects of non-nearest-neighbor (long-range) electron-electron
repulsions in the EHM, which have been neglected in Eq. (1).
For example, the inclusion of the next-nearest-neighbor re-
pulsion corresponds to add, in the Hamiltonian (1), a term

of the form W
∑

l n̂l n̂l+2, where W measures the strength of
the next-nearest-neighbor electron-electron repulsion. In the
strong interaction limit, assuming U,V,W � J , the dynamics
in Fock space of the amplitude probabilities cn,m(t) for
two electrons with opposite spins [see Eq. (3)] decouples
the amplitudes cn,n, cn,n±1, and cn,n±2 from the other ones.
Extending the procedure outlined in the Appendix, one then
would obtain that the energy spectrum of the Hamiltonian in
the truncated Fock space and in the absence of the electric field
comprises five bands, corresponding to five bound particle
states. As the electric field is switched on, the spectrum
becomes discrete and comprises five interleaved Wannier-
Stark ladders. Therefore two coherently driven strongly in-
teracting electrons undergo again BZOs, involving this time
five bands, which are generally aperiodic. Extending the setup
proposed in Ref. 30, the EHM with nearest and next-nearest
electron-electron repulsion can be simulated in a square
photonic lattice with defects on five (rather than three) lattice
diagonals.
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APPENDIX: DETERMINATION OF THE WANNIER-STARK
ENERGY SPECTRUM

The energy spectrum ε of two strongly-correlated electrons
is provided by the eigenvalues of the coupled equations (4),
i.e., by the eigenvalues of the linear system

εAn = −J (Bn + Bn−1 + Cn + Cn−1) + UAn + 2nFAn,

εBn = −J (An + An+1) + V Bn + (2n + 1)FBn, (A1)

εCn = −J (An + An+1) + V Cn + (2n + 1)FCn.

To determine the eigenvalues ε, let us introduce the three Bloch
functions

A(q) =
∞∑

n=−∞
An exp(iqn),

B(q) =
∞∑

n=−∞
Bn exp(iqn), (A2)

C(q) =
∞∑

n=−∞
Cn exp(iqn),

which are obviously periodic functions of q with period 2π .
From Eqs. (A1) and (A2), one can readily obtain the follow-
ing coupled equations for the Bloch functions A(q), B(q),
and C(q):

d

dq

⎛
⎜⎝

A

B

C

⎞
⎟⎠ = i

2F

⎛
⎜⎝

ε − U J [1 + exp(iq)] J [1 + exp(iq)]

J [1 + exp(−iq)] ε − V − F 0

J [1 + exp(−iq)] 0 ε − V − F

⎞
⎟⎠

⎛
⎜⎝

A

B

C

⎞
⎟⎠ . (A3)
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After setting ⎛
⎜⎝

A

B

C

⎞
⎟⎠ =

⎛
⎜⎝

a

b

c

⎞
⎟⎠ exp[i(ε − U )q/2F ], (A4)

the vector v(q) ≡ (a,b,c)T satisfies the following linear system with periodic coefficients:

dv
dq

= iM(q)v, (A5)

where the 2π -periodic matrix M(q) is given by

M(q) = J

2F

⎛
⎜⎝

0 1 + exp(iq) 1 + exp(iq)

1 + exp(−iq) (U − V − F )/J 0

1 + exp(−iq) 0 (U − V − F )/J,

⎞
⎟⎠ . (A6)

Equation (A5) should be integrated in the interval (0,2π ) with
the boundary condition

v(2π ) = v(0) exp[−iπ (ε − U )/F ], (A7)

which follows from the 2π periodicity of the Bloch functions
A(q), B(q), C(q) and from the ansatz (A4). On the other hand,
for the Floquet theorem of periodic linear systems, the solution
to Eq. (A5) has the form

v(q) = P(q) exp(iSq)v(0), (A8)

where P(0) = I is the identity matrix, P(q + 2π ) = P(q),
and S is a 3 × 3 constant matrix (i.e., independent of q).
The eigenvalues μ1, μ2, and μ3 of S are called the Floquet
exponents of the linear periodic system (A5). From Eqs. (A7)
and (A8) it then follows that

exp[−iπ (ε − U )/F ]v(0) = exp(2πiS)v(0), (A9)

i.e., exp[−iπ (ε − U )/F ) is an eigenvalue of the exponential
matrix exp(2πiS). Since the eigenvalues of exp(2πiS) are
exp(2πiμj ) (j = 1,2,3), where μj are the Floquet exponents,
one then obtains

ε = ε
(j )
l = U + 2F (l − μj ), (A10)

where l = 0, ± 1, ± 2, ± 3, . . . is an arbitrary integer. Note
that the Floquet exponents μj turn out to be continuous
functions of (U − V )/J and F/J [see Eq.(A6)]. They can
be numerically determined by standard methods by solving
the periodic system (A5) in the interval (0,2π ). According
to Eq. (A10), the energy spectrum of two strongly correlated
electrons is thus purely discrete and given by three interleaved
Wannier-Stark ladders. It is worth noticing that, owing to
the structure of the matrix M(q), the linearly independent
solutions to the system (A5) correspond to either b = c, a �= 0
or b = −c, a = 0. In the latter case, one obtains

dc

dq
= i

U − V − F

2F
c, (A11)

whereas in the former case one has

d

dq

(
a

b

)
= iR(q)

(
a

b

)
, (A12)

where the 2 × 2 periodic matrix R(q) is given by

R(q) = J

2F

(
0 2[1 + exp(iq)]

1 + exp(−iq) (U − V − F )/J

)
. (A13)

From Eq. (A11) it follows that one Floquet exponent, say μ1,
is merely given by

μ1 = U − V − F

2F
, (A14)

leading to the Wannier-Stark ladder

ε
(1)
l = (2l + 1)F + V. (A15)

The corresponding Wannier-Stark eigenstates are merely
given by An = cn,n = 0, Bn = cn,n+1 = (1/

√
2)δn,l , Cn =

cn+1,n = −(1/
√

2)δn,l , i.e., they are the entangled bound states
(1/

√
2)(â†

l,↑â
†
l+1,↓ − â

†
l+1,↑â

†
l,↓)|0〉. The other two Floquet ex-

ponents μ2 and μ3 are the Floquet exponents associated to the
system (A12).

Let us finally notice that, in the absence of the external field,
i.e., for F = 0, the energy spectrum ε is purely continuous and
composed by three bands. The dispersion relations εj (q) for
the three bands (j = 1,2,3) are readily obtained from Eq. (A3)
after setting F → 0, i.e., they are the roots of the determinantal
equation∣∣∣∣∣∣∣

ε(q) − U J [1 + exp(iq)] J [1 + exp(iq)]

J [1 + exp(−iq)] ε(q) − V 0

J [1 + exp(−iq)] 0 ε(q) − V

∣∣∣∣∣∣∣ = 0.

(A16)

One then obtains

ε1(q) = V, (A17)

ε2(q) = U + V

2
+

√(
U − V

2

)2

+ 8J 2 cos2
(q

2

)
, (A18)

ε3(q) = U + V

2
−

√(
U − V

2

)2

+ 8J 2 cos2
(q

2

)
. (A19)

Note that the first band ε1(q) is collapsed, and corresponds
to a degenerate set of bound states cn,n+1 = −cn+1,n =
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(1/
√

2) exp(−iV t) and cl,k = 0 otherwise. The collapse of
the band is a rigorous result in the strong interaction limit
U/J,V/J → ∞ considered in this work, which justifies trun-

cation (4) of the system (3). For finite values U/J,V/J , a reg-
ular (not collapsed) band is obtained, which corresponds to the
energy branch of asymmetric bound states discussed in Ref. 29.
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K. Köhler, and H. Kurz, ibid. 50, 8106 (1994); C. Waschke, H. G.
Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys. Rev.
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