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Dynamical mean-field theory of indirect magnetic exchange
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To analyze the physical properties arising from indirect magnetic exchange between several magnetic adatoms
and between complex magnetic nanostructures on metallic surfaces, the real-space extension of dynamical
mean-field theory (R-DMFT) appears attractive as it can be applied to systems of almost arbitrary geometry and
complexity. While R-DMFT describes the Kondo effect of a single adatom exactly, indirect magnetic (RKKY)
exchange is taken into account on an approximate level only. Here, we consider a simplified model system
consisting of two magnetic Hubbard sites (“adatoms”) hybridizing with a noninteracting tight-binding chain
(“substrate surface”). This two-impurity Anderson model incorporates the competition between the Kondo effect
and indirect exchange but is amenable to an exact numerical solution via the density-matrix renormalization
group (DMRG). The particle-hole symmetric model at half filling and zero temperature is used to benchmark
R-DMFT results for the magnetic coupling between the two adatoms and for the magnetic properties induced in the
substrate. In particular, the dependence of the local adatom and the nonlocal adatom-adatom static susceptibilities
as well as the magnetic response of the substrate on the distance between the adatoms and on the strength of their
coupling with the substrate is studied. We find excellent agreement with the DMRG data even on subtle details
of the competition between RKKY exchange and the Kondo effect but also complete failure of the R-DMFT,
depending on the parameter regime considered. R-DMFT calculations are performed using the Lanczos method
as impurity solver. With the real-space extension of the two-site DMFT, we also benchmark a simplified R-DMFT
variant.

DOI: 10.1103/PhysRevB.86.075141 PACS number(s): 75.75.−c, 75.20.Hr, 71.10.Fd, 71.27.+a

I. INTRODUCTION

The rapidly improving experimental techniques to probe
magnetic adatoms on nonmagnetic surfaces allow for direct
studies of fundamental magnetic exchange mechanisms on an
atomic scale. Besides access to the structural and the electronic
properties of such adatoms and of the underlying substrate
for a given system, the construction of tailored magnetic
model systems represents an exciting perspective.1–4 Magnetic
structures of nanometer size provide extremely small systems
suitable to store and to transport information and may realize
efficient nano spintronics devices.5

The competition between an indirect magnetic exchange of
the adatoms via the substrate electrons on the one hand and the
screening of the adatom magnetic moment by the conduction-
band electrons of the substrate on the other represents a
prominent example for a physical problem becoming acces-
sible to new real-space techniques. The scanning tunneling
microscope (STM)6 has been used to investigate the Kondo
physics7 of single magnetic adatoms2,8,9 and the magnetic
properties of the individual magnetic islands10,11 on non-
magnetic substrates. Using STM, it is possible to investigate
the direct magnetic interaction of atom pairs.3,12,13 Indirect
magnetic exchange, i.e., the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction14 between two adatoms, was detected
through the Kondo effect.15 A direct real-space study of the
RKKY coupling, however, comes in reach with spin-polarized
scanning-tunneling spectroscopy only.16–18

The most simple model which captures this competition
is displayed schematically in Fig. 1. Here the electronic
and magnetic properties of a magnetic adatom are mod-
eled by a single nondegenerate orbital. A local magnetic
moment is formed by a strong local Hubbard interaction.
The adatom orbital hybridizes with a valence orbital of the

nearest-neighboring substrate atom. The substrate electronic
structure itself is modeled by a tight-binding valence band
resulting from nondegenerate and uncorrelated orbitals on a
bipartite lattice with nearest-neighbor hopping. Considering
two adatoms yields a variant of the two-impurity Anderson
model (TIAM)19 in a surface geometry. The main goal of our
study is to benchmark the real-space variant20 of the dynamical
mean-field theory21,22 that can be employed for theoretical
studies of the electronic and magnetic properties of a single, of
two, and/or of more magnetic adatoms in different geometries
on metal surfaces. For this purpose the TIAM represents a
fundamental starting point. In the Kondo limit of the TIAM,
charge fluctuations on the adatom site are largely suppressed,
and the adatom spin Sf couples antiferromagnetically to the
local spin at the nearest-neighboring substrate site Sc via
a spin-spin coupling −J Sf Sc given by the local exchange
J ∝ −V 2/U < 0.

The interplay between the Kondo effect and the RKKY
interaction has extensively been studied in the Kondo limit of
the TIAM or in the two-impurity Kondo model by different
analytical as well as numerical techniques.19,23–44 The physics
is governed by two energy scales, the nonlocal indirect
magnetic interaction JRKKY ∝ J 2 and the Kondo temperature
TK ∝ exp(−1/|J |) below which the magnetic moment of the
adatom (impurity) is screened locally. In the Kondo regime
for TK � |JRKKY|, the conventional picture is that the local
magnetic moments at the two impurities are individually
screened by forming local singlet states with two Kondo clouds
of itinerant electron spins from the substrate (conduction
band). For large |JRKKY|, on the other hand, and in the
antiferromagnetic case JRKKY < 0, the two adatom spins form
a nonlocal singlet state and there is no Kondo effect. If
JRKKY > 0 is ferromagnetic and large as compared to TK ,
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FIG. 1. (Color online) Schematic picture of real-space dynamical
mean-field theory (R-DMFT) for the two-impurity Anderson model
(TIAM). The system is given by two “magnetic” sites with strong
Hubbard interaction U (orange) at a distance d coupled via a
hybridization term of strength V to a one-dimensional “substrate”
consisting of L noninteracting sites (blue) with nearest-neighbor
hopping t = 1. In the R-DMFT, the TIAM is self-consistently
mapped onto two single-impurity Anderson models which are solved
independently by means of exact diagonalization (ED) to get the local
self-energies. These are used to set up the TIAM Dyson equation the
solution of which gives the local Green’s functions which define
via the R-DMFT self-consistency conditions the parameters of the
impurity models (see text for details).

a nonlocal spin-triplet state is formed. This may subsequently
be Kondo screened. In the generic case and as a function of J

there is no quantum phase transition but a smooth crossover
from the RKKY regime at weak J to the Kondo regime at
strong J . For a dense system, i.e., the Kondo or Anderson
lattice model, a static mean-field approach would sharpen this
to a phase transition.23

Dynamical mean-field theory is a comprehensive, thermo-
dynamically consistent, and nonperturbative approximation
for correlated lattice-fermion models.22 DMFT treats the
Kondo effect exactly. On the other hand, one has to tolerate an
approximate treatment of the effects of the RKKY interaction.
It is important to note that there is no approximation of RKKY
coupling itself: Integrating out the noninteracting substrate
degrees of freedom, the effective second-order-in-J RKKY
coupling, JRKKY,ij = J 2χ

0,sub
ij (ω = 0), is given in terms of the

nonlocal static susceptibility of the substrate. It was pointed out
by Peters and Pruschke45 that JRKKY,ij is still finite but reduces
to an interaction between nearest neighbors for the case of a
lattice in infinite spatial dimensions where the DMFT becomes
exact. For finite dimensions, it is a long-ranged and oscillating
function of the distance d = |i − j |. What is neglected in fact
for a finite-dimensional lattice is the feedback of nonlocal, e.g.,
magnetic, correlations, which result from the nonlocal RKKY
coupling, on the self-energy and thus on the one-particle
Green’s function. This is a rather subtle approximation the
quality of which can be estimated by concrete numerical
calculations only.

The same argumentation holds for the real-space DMFT
(R-DMFT).20 R-DMFT generalizes the standard DMFT to
systems with missing or reduced translational symmetry by

self-consistently mapping the original (lattice) model to a set
of single-impurity Anderson models (SIAM), one for each
of the geometrically or electronically inequivalent sites. Even
for the TIAM (see Fig. 1), this real-space generalization is
necessary if one wants to apply DMFT in order to test the
local approximation for the self-energy.

Previous applications of the R-DMFT concentrated on
the Mott metal-insulator transition at surfaces and in thin
films,20,46 on surface effects in correlated Fermi liquids,47

on multilayered nanostructures, heterostructures, and
interfaces,48 on disordered systems,49 as well as on ultracold
atomic gases in optical lattices with harmonic confinement.50

It has not been employed, however, to study the effects of the
indirect magnetic exchange.

The main purpose of the present study is to apply the
R-DMFT to the particle-hole symmetric TIAM at half filling
and zero temperature and to study the magnetic response, i.e.,
different static magnetic susceptibilities, by applying a weak
local magnetic field to one of the adatoms. Calculations are
performed as a function of the distance between the adatoms
and as a function of the hybridization strength V to cross over
from the Kondo to the RKKY regime. To test the reliability of
the dynamical mean-field approach, the substrate electronic
structure is modeled as a one-dimensional tight-binding
chain (see Fig. 1). The resulting essentially one-dimensional
model is accessible to the density-matrix renormalization
group (DMRG).51–53 Extensive comparison with numerically
exact DMRG results obtained from an implementation based
on matrix-product states54 and operators along the lines
described in Ref. 55 helps to benchmark the mean-field
approach.

Our intention is that by comparing with DMRG, the
strengths but also the mean-field artifacts of R-DMFT become
more transparent. A failure of R-DMFT for the weak-coupling
limit, where nonlocal correlations due to the RKKY coupling
are strong, can be expected from the very beginning. How-
ever, there are several interesting questions left, e.g., Where
precisely are the limits of the mean-field approach? How does
a failure of the approach manifest itself in the observables?
Which physical effects are accessible to a description on
the R-DMFT level? To what extent can the physics be
reproduced quantitatively in the strong-coupling limit? Such
benchmarking of the R-DMFT, at the level of the two-impurity
Anderson model, will be important for future studies of similar
systems in higher spatial dimensions, with more correlated
adatoms forming more complex geometries such as chains
or clusters. By choosing the one-dimensional two-impurity
Anderson model at half filling, the above-mentioned questions
are tackled in a situation that is very unfavorable for R-DMFT.
The benchmark will thus serve as a “lower limit” for the
applicability of R-DMFT for future applications.

Our interest in the R-DMFT approach to study magnetic
nanostructures on surfaces results from its extremely large flex-
ibility. Opposed to DMRG, for example, the R-DMFT is able to
investigate inhomogeneous systems in arbitrary geometries in
higher dimensions. While this is actually characteristic for any
mean-field approach, the R-DMFT is distinguished by the fact
that it is nonperturbative and thermodynamically consistent.
To account for the effects of short-range correlations, the
theory can be improved by certain cluster extensions, such
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as cellular DMFT.56 This is, in principle, also conceivable for
complicated inhomogeneous geometries but requires further
methodical advances as there is no straightforward tiling of
the lattice in most cases.

The paper is organized as the follows: The next sections
introduces the model, notations, and quantities of interest.
Sections III and IV briefly describe our real-space DMFT and
our DMRG approach to the problem, respectively. Results of
both approaches are presented, compared, and discussed in
detail in Sec. V. Finally, Sec. VI concludes the paper.

II. MODEL AND BASIC THEORY

The Hamiltonian of the two-impurity Anderson model19

displayed in Fig. 1 is given by

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + U

2∑
α=1

n
f

α,↑n
f

α,↓ + ε

2∑
α=1

nf
α

+V

2∑
α=1

∑
σ

(f †
α,σ ciα,σ + H.c.) − μ

(
2∑

α=1

nf
α +

L∑
i=1

nc
i

)
.

(1)

Here f †
α,σ and c

†
i,σ create an electron with spin projection σ =

↑,↓ at the adatom sites α = 1,2 or at the substrate sites i =
1,2, . . . ,L, respectively. n

f
α,σ = f †

α,σ fα,σ and nc
i,σ = c

†
i,σ ci,σ

denote the corresponding occupation-number operators. The
spin-summed occupation at one of the adatom sites and at one
of the substrate sites are given by n

f
α = n

f

α,↑ + n
f

α,↓ and nc
i =

nc
i,↑ + nc

i,↓, respectively. The hopping amplitude t between
neighboring substrate lattice sites is used to fix the energy
unit, i.e., t = 1. V is the hybridization between an adatom site
α and the nearest-neighbored substrate lattice site which is
denoted by iα . U and ε are the on-site Hubbard interaction and
the local on-site energy for the adatom sites. μ is chemical
potential. In all our calculations we consider the particle-hole
symmetric case with μ = 0 and ε = −U/2 where the system
is half filled, i.e., where the average occupation numbers in
thermal equilibrium are given by 〈nf

α 〉 = 1 and 〈nc
i 〉 = 1 for

both α and all i.
The magnetic properties of the system are best character-

ized by site-dependent local and nonlocal susceptibilities. We
consider the adatom-adatom susceptibilities,

χαβ = ∂m
f
α

∂hβ

∣∣∣∣
hβ=0

= −
∫ 1/T

0
dτ

〈
Sf

α,z(τ )Sf

β,z(0)
〉
, (2)

i.e., the local adatom susceptibilities χαα for α = 1,2 and
the inter-adatom susceptibility χ12 = χ21. These provide in-
formation on the local adatom magnetic moment and, most
important, on the indirect magnetic coupling. Further, we are
interested in the linear magnetic response of the substrate
which is accessible via the adatom-substrate susceptibilities

χ sub
iβ = ∂mc

i

∂hβ

∣∣∣∣
hβ=0

= −
∫ 1/T

0
dτ

〈
Sc

i,z(τ )Sf

β,z(0)
〉
. (3)

Here m
f
α = 〈Sf

α,z〉 and mc
i = 〈Sc

i,z〉, with S
f
α,z = 1

2 (nf

α,↑ − n
f

α,↓)
and Sc

i,z = 1
2 (nc

i,↑ − nc
i,↓), are magnetic moments on the adatom

site α and on the substrate lattice site i, respectively. Further-
more, the imaginary-time dependence of an operator A is given
by A(τ ) = eHτAe−Hτ . In our calculations the susceptibilities,
Eqs. (2) and (3), are computed as a numerical derivative with
respect to a local magnetic field of strength hβ coupling as
H → H − hβSβ,z to the Hamiltonian. Calculations are done
for zero temperature in the present study. Nevertheless, the
formalism is set up for arbitrary finite T below.

The main task is to compute, for a finite but weak field hβ ,
the spin-dependent average occupation numbers. These can be
obtained via 〈

nf
α,σ

〉 = 1

2
+ 2T

∑
n�0

Re Gimp
αα,σ (iωn), (4)

〈
nc

i,σ

〉 = 1

2
+ 2T

∑
n�0

Re Gsub
ii,σ (iωn) (5)

from the local single-electron adatom Green’s function
G

imp
αα,σ (iωn) = 〈〈fα,σ ; f †

α,σ 〉〉ωn
and the local substrate Green’s

function Gsub
ii,σ (iωn) = 〈〈ci,σ ; c†i,σ 〉〉ωn

given at the fermionic
Matsubara frequencies ωn = (2n + 1)πT . The local Green’s
functions are the diagonal elements of the Green’s function
matrix Ĝσ (iωn). The latter can be obtained from the real-space
Dyson equation:

Ĝ−1
σ (iωn) = (iωn + μ)Î − ε̂σ − T̂ − �̂σ (iωn), (6)

where Î is the unity matrix, ε̂σ the diagonal local energy
matrix, and T̂ is the hopping matrix. ε̂σ also includes the
field term and is thus possibly spin dependent. T̂ not only
includes the hopping t between substrate sites but also hopping
V between the substrate and the adatom sites. For a system
with L substrate sites and two adatoms, the matrix dimension
is L + 2 for each spin direction σ .

As there is a local Hubbard interaction on the adatom sites
only, the self-energy �̂σ (iωn) is a L + 2-dimensional matrix
with nonzero elements �αβ,σ (iωn) in the 2 × 2 adatom-sites
block only. Hence, Eq. (6) can be written as

Ĝσ (iωn) =
⎛
⎝ ζ1,σ −�12,σ

−�21,σ ζ2,σ

V̂

V̂ † (Ĝ0)−1

⎞
⎠

−1

, (7)

where ζα,σ = ζα,σ (iωn) = iωn + μ − εσ − �αα,σ (iωn), and
where V̂ is the 2 × L hybridization matrix including hopping
between adatoms and substrate only. Its nonzero elements are
given by V1,i1 = V2,i2 = V . Further, Ĝ0 is the noninteracting
substrate Green’s function matrix. In case of periodic boundary
conditions, its elements are

G0
ij (iωn) = 1

L

L−1∑
m=0

cos [km(i − j )]

iωn + μ − ε(km)
, (8)

where km = 2πm/L with m = 0,1, . . . ,L − 1, while for open
boundary conditions

G0
ij (iωn) = 2

L + 1

L∑
m=1

sin(kmi) sin(kmj )

iωn + μ − ε(km)
, (9)

where km = πm/(L + 1) with m = 1,2, . . . ,L. In both cases
ε(k) = −2t cos(k) is noninteracting dispersion.
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Generally, to calculate for a given self-energy the local
Green’s functions, one has to numerically invert the matrix
given by Eq. (6). In our case for the TIAM, however, it is
possible to “integrate out” the substrate degrees of freedom
and to find analytical expressions which substantially reduce
the numerical effort: Using the identity(

Â B̂

Ĉ D̂

)−1

=
(

F̂ −F̂ B̂D̂−1

−D̂−1ĈF̂ D̂−1+D̂−1ĈF̂ B̂D̂−1

)
(10)

with F̂ = (Â − B̂D̂−1Ĉ)−1 which is valid for arbitrary
quadratic matrices Â and D̂ and arbitrary rectangular matrices
B̂ and Ĉ, we find

Ĝσ (iωn) =
(

Ĝ
imp
σ −Ĝ

imp
σ V̂ Ĝ0

−Ĝ0V̂ †Ĝ
imp
σ Ĝsub

σ

)
, (11)

where

Ĝimp
σ (iωn) =

[(
ζ1,σ −�12,σ

−�21,σ ζ2,σ

)
− V̂ Ĝ0V̂ †

]−1

(12)

is the 2 × 2 adatom Green’s function matrix and

Ĝsub
σ = Ĝ0 + Ĝ0V̂ †Ĝimp

σ V̂ Ĝ0 (13)

is the L × L substrate Green’s function matrix. The remaining
task thus consists of the inversion of a 2 × 2 matrix

Ĝimp
σ (iωn) =

(
ζ1,σ − 11 −�12,σ − 12

−�21 − 21,σ ζ2,σ (iωn) − 22

)−1

, (14)

where

αβ(iωn) = V G0
iα iβ

(iωn)V (15)

is the hybridization function. This is readily done:

G
imp
11,σ (iωn) = ζ2,σ (iωn) − 22(iωn)

[ζ1,σ (iωn) − 11(iωn)][ζ2,σ (iωn) − 22(iωn)] − [12(iωn) + �12,σ (iωn)]2
, (16)

G
imp
22,σ (iωn) = ζ1,σ (iωn) − 11(iωn)

[ζ1,σ (iωn) − 11(iωn)][ζ2,σ (iωn) − 22(iωn)] − [12(iωn) + �12,σ (iωn)]2
, (17)

G
imp
12,σ (iωn) = G

imp
21,σ (iωn) = 12(iωn) + �12,σ (iωn)

[ζ1,σ (iωn) − 11(iωn)][ζ2,σ (iωn) − 22(iωn)] − [12(iωn) + �12,σ (iωn)]2
. (18)

This provides us with the local adatom Green’s functions in particular and, using Eq. (13), with the local Green’s functions for
each substrate site via

Gsub
ii,σ (iωn) = G0

ii(iωn) +
∑
α,β

G0
iiα

(iωn)V G
imp
αβ,σ (iωn)V G0

iβ i(iωn). (19)

III. REAL-SPACE DYNAMICAL MEAN-FIELD THEORY

To complete the theory, we need the self-energy matrix
�αβ,σ (iωn). This requires an approximation. Within real-
space DMFT,20 the self-energy is obtained by considering
weak-coupling perturbation theory in U to all orders and
by summing all local diagrams in the skeleton-diagram
expansion of the self-energy, �̂ = �̂[Ĝ]. This implies that
the resulting self-energy is local, �αβ,σ (iωn) = δαβ�α,σ (iωn),
but possibly site dependent. For correlated lattice models
with full translational symmetries, the approach reduces to
the conventional DMFT.22 As in the conventional DMFT,
the local diagrams are not summed explicitly; the problem is
rather reformulated by introducing a self-consistent mapping
onto an effective single-impurity problem. Here, however, the
self-consistent cycle is more complicated since a lattice model
with M geometrically or electronically inequivalent sites has
to be self-consistently mapped onto a set of M effective
single-impurity models. In our case we have to consider at
most M = 2 single-impurity Anderson models (see Fig. 1).

We start with a guess for the local self-energies �α,σ (iωn),
i.e., for ζα,σ (iωn). This is used in the Dyson equation of the
lattice model to compute the Green’s function matrix, and in
particular the local elements of the Green’s function matrix at

the correlated sites. In our case, we can profit from Eqs. (16)
and (17) to get the local adatom Green’s functions G

imp
αα,σ (iωn)

directly. The R-DMFT self-consistency conditions,

1

G0
α,σ (iωn)

= 1

G
imp
αα,σ (iωn)

+ �α,σ (iωn), (20)

then provide us with the Weiss Green’s functions G0
α,σ (iωn) for

α = 1, . . . ,M , i.e., with the noninteracting Green’s functions
of the M effective impurity models. These can be written
as G0

α,σ (iωn) = iωn + μ − ε − α(iωn). The one-particle pa-
rameters of each effective SIAM, the one-particle energies
of the bath sites, as well as the corresponding hybridization
strengths are found from the poles and the residues of the
corresponding hybridization function α(iωn) [which should
not be mixed up with αβ(iωn); see Eq. (15)]. Once the
effective impurity models are fixed, the crucial step consists of
the solution of the models which can be done independently for
any α = 1, . . . ,M . This yields the self-energies �α,σ (iωn) and
thus closes the self-consistency cycle (Fig. 1). This procedure
is iterated until converged self-energies are obtained.

As an impurity solver to get the self-energy �α,σ (iωn)
of the αth SIAM we use the exact-diagonalization (ED)
method.57,58 Here, a finite small number ns − 1 of auxiliary
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bath degrees of freedom in the effective SIAM is considered.
We use full diagonalization with ns = 6 and the Lanczos
method59,60 with ns = 8 and ns = 10. Exploiting the fact that
the total particle number and the z component of the total
spin are conserved quantities, the diagonalization can be done
in smaller invariant subspaces of the full Hilbert space. All
calculations have been done, if not stated differently, with
ns = 10. For a given Weiss Green’s function, the one-particle
bath parameters of the SIAM are found by a minimization
procedure on the imaginary-frequency axis as described in
Ref. 57 using high-frequency cutoff of the order of U and
low-frequency cutoff specified by the fictitious temperature
T/t = 0.001. With the latter we can formally work in the
finite-temperature Matsubara framework as outlined above.
On the other and, the value of the fictitious temperature chosen
is clearly lower than the smallest energy scale that can be
accessed by means of the ED solver for ns = 10. We have
regularly checked that the results do not significantly depend
on the cutoff and on ns .

The computational effort of the R-DMFT scheme roughly
scales linearly with the number of impurity models, i.e., with
the number of inequivalent sites in the original system. While
here we focus on the M = 2 case for benchmarking purposes,
future applications are intended that address systems with
up to O(100) inequivalent magnetic atoms. We expect that
those applications can still be performed conveniently using
ED as a solver. It might nevertheless be interesting to have a
scheme at hand that is considerably faster. Here, the two-site
DMFT61 represents an alternative. The main idea is the use
a single bath degree of freedom only, as in the so-called
linearized DMFT62 for the Mott-Hubbard transition. The
resulting effective two-site impurity model is readily solved.
On the other hand, the DMFT self-consistency condition can
obviously no longer be satisfied exactly or to a high level
of accuracy as in the ED approach with, say, ns = 10 sites.
It has therefore been suggested61 to take into account the
leading orders in systematic expansions of the self-consistency
condition for high and for low frequencies only. This results in
a simplified but extremely fast approach which is suitable to
get a quick overview of magnetic phase diagrams, for example.
The real-space extension of two-site DMFT to systems with
reduced translational symmetries is straightforward and will
be discussed in detail elsewhere.

IV. DENSITY-MATRIX RENORMALIZATION

The two-impurity Anderson model in an essentially one-
dimensional geometry (see Fig. 1) is amenable to a numerically
exact solution by using the density-matrix renormalization
group.51–53 Therefore, DMRG calculations can be used to
benchmark the quality of the magnetic susceptibilities ob-
tained from the R-DMFT approach. The calculation of the
ground state and of ground-state expectation values for the
TIAM is a standard problem within DMRG. Here we have
been following Ref. 55 and have implemented a code which is
based on the variation of matrix-product states (MPS).54 The
main idea is to optimize a test wave function |ψ〉 of the form

|ψ〉 =
∑

n1,...,nL

A(n1) · · · A(nL)|n1〉 · · · |nL〉, (21)

where {|nq〉} is a local basis at the site q of a one-dimensional

chain with L sites in total. The elements A
(nq )
iq−1iq

of the matrices

A(nq ) are considered as variational parameters which are locally
and iteratively optimized during a sweep through the chain by
exploiting the Ritz variational principle. Several sweeps are
necessary to obtain a converged ground state.

In practice, the local optimization can be reformulated as
a generalized eigenvalue problem which is simplified to an
ordinary one by exploiting a local gauge invariance of |ψ〉
to properly (left- and right-) orthogonalize the A matrices.
The eigenvalue problem is then efficiently solved by means
of the Davidson method.63 We profit from the so-called
wave-function transformation64 to reduce the number of
iterations necessary for convergence of the Davidson algorithm
and exploit the two U (1) symmetries of the Hamiltonian
corresponding to conservation of the total particle number and
the z component of the total spin.

Observables and the Hamiltonian in particular are rep-
resented as matrix-product operators.55 Besides an elegant
and flexible coding this allows us to easily consider different
implementations of the Hamiltonian. For the present case of
the TIAM there are two possibilities to treat the adatoms
suggesting themselves: (i) An adatom orbital α and the
substrate orbital iα “below” α are treated as a single “site” q

in the DMRG context. The disadvantage is that therewith the
local Hilbert-space dimension at q is enlarged. (ii) The adatom
orbitals α are treated as separate sites; i.e., a chain of length
L + 2 is formed. This leaves the local Hilbert-space dimension
constant but introduces next-nearest-neighbor hopping terms.
We have tested both variants and found the differences
in computational costs and accuracy to be marginal only.
Routinely, variant (ii) is employed.

An important aspect is to prevent the sweep algorithm from
getting stuck in a local energy minimum. This can be cir-
cumvented by implementing a mixed single-site approach55,65

to introduce fluctuations in the reduced density matrix. The
additional coupling to a larger set of states considerably
improves the convergence properties when optimizing |ψ〉.
It furthermore also allows us to dynamically adapt the
dimensions of the A matrices. Converged results for typical
situations with long-range spin-spin correlations in a TIAM
with about L = 50 sites are obtained with matrix dimensions
of the order of m = 400 in the largest invariant blocks of
the A matrices. A reliable error measure is the variance
r = 〈ψ |(H − E)2|ψ〉 which is easily accessible within an
MPS-based implementation. We have checked that typically
the standard deviation

√
r < 10−4.

V. RESULTS

R-DMFT and DMRG calculations have been performed
for the TIAM at half filling and zero temperature. We consider
systems with an even number L of substrate sites and two
adatoms at positions symmetric to the chain center at a distance
d = |i1 − i2| as displayed in Fig. 1. As this implies an even
number of electrons, there is no Kramers degeneracy of the
ground state. All calculations are done using open boundary
conditions.
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FIG. 2. (Color online) Static magnetic susceptibility χ sub
i1 at Hubbard interaction U = 8 and hybridization strength V = √

2 for a system
with L = 50 substrate sites and two adatoms at positions symmetric to the chain center and different distances d as indicated. χ sub

i1 gives the
linear response of the substrate at site i to a local magnetic field at the first (left) adatom. Energy scale: Nearest-neighbor hopping in the
substrate t = 1. Blue lines with squares: Results as obtained from real-space DMFT using exact diagonalization with ns = 10 as a solver. Red
dashed lines with circles: Numerically exact solution as obtained from DMRG calculations. For comparison DMRG results for a system with
L = 49 sites and a single adatom are shown (dotted green line with triangles). This corresponds to switching off the hybridization V between
the substrate and the second (right) adatom.

Figure 2 shows the magnetic susceptibility χ sub
iβ for a TIAM

with L = 50 as defined in Eq. (3). Because of the mirror
symmetry, it is sufficient to discuss, e.g., the case β = 1, i.e.,
the left adatom. For the calculations we apply a weak local
magnetic field with a strength hβ=1 = 10−5 to 10−2 at the left
adatom and look for the response at substrate site i. Regularly,
calculations for different h1 are performed to ensure that the
field strength is in the linear-response regime.

Let us first concentrate on distances d = 4n + 1 with inte-
ger n. Here the RKKY coupling between the magnetic adatoms
is antiferromagnetic. Other distances d including those with
ferromagnetic coupling will be discussed in Sec. V E.

A. Magnetic response of the substrate

We start the discussion with d = 49 (lowest panel on the
right in Fig. 2). This is the case where the two adatoms

are located at the edges of the substrate chain. The blue
lines refer to our R-DMFT calculations which have been
done with ns = 10 local degrees of freedom in the effec-
tive impurity model. Directly “below” the first adatom at
i1 the response is antiferromagnetic; i.e., χi1,1 < 0. This
simply reflects the antiferromagnetic Kondo coupling J . The
calculations have been done for U = 8 and V 2 = 2 where
the nearest-neighbor hopping in the substrate t = 1 is used
to set the energy scale. This results in a negative, i.e.,
antiferromagnetic, local exchange interaction of intermediate
strength J = −8V 2/U = −2. This is clearly beyond the
weak-coupling limit J → 0 but still charge fluctuations are
largely suppressed: We find an average double occupancy of
〈n1↑n1↓〉 = 0.072 at the adatom site, and the adatom local
magnetic moment 〈S2

1〉 = 3(1 − 2〈n1↑n1↓〉)/4 = 0.64 is much
closer to the localized-spin value 3/4 than to the free fermion
value 3/8.
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As a function of the distance |i − i1| to the first impurity, the
response is oscillatory corresponding to the 2kF = π nesting
wave vector. Its absolute value is maximal at i1, decreases with
increasing i, and almost saturates until there is a slight upturn
for i → i2 = 50, i.e., at the position of the second adatom.
Consistent with the 2kF oscillation, χ sub

i,1 is positive at i = i2

which implies, due to the antiferromagnetic local coupling
J < 0, that there is an antiferromagnetic (RKKY) alignment
of the two adatom moments.

The corresponding DMRG results are also shown in Fig. 2
for comparison (red lines). For the distance d = 49, however,
there is actually no difference to the R-DMFT results visible
on the scale of the figure. As R-DMFT accounts for the single-
impurity Kondo effect exactly, this perfect agreement would
be plausible if a picture of two independent Kondo effects
applied. Strictly speaking, however, this cannot be the case:
There is a finite nonlocal adatom-adatom susceptibility, even
in this long-distance limit (see also Fig. 5 and corresponding
discussion below), which in principle has a nonvanishing
feedback on the self-energy and generates nonlocal elements
of the self-energy in particular. R-DMFT is thus approximate.
On the other hand, we can conclude that this feedback of
the nonlocal susceptibility is apparently negligibly small and
R-DMFT almost exact for the present situation.

Upon decreasing the distance between the adatoms, this pic-
ture should change gradually. However, apart from the extreme
case d = 1, deviations of the R-DMFT from the DMRG results
are extremely small, and the agreement between R-DMFT and
DMRG remains excellent. On the other hand, with decreasing
d, the i dependence of the susceptibility becomes much more
complicated: The response below the second adatom (see the
second maximum of |χ sub

i,1 |) becomes stronger and stronger,
the response at substrate sites between the adatoms increases,
and its absolute value develops a pronounced minimum close
to i2, whereas the response beyond the second adatom, for
i > i2, gets very weak. Furthermore, while the susceptibility
changes sign between nearest neighbors, its two-site average
is negative between the adatoms and also beyond the first one
for i < i1 but is found to be positive for i > i2. There is another
subtle observation, namely the (ferromagnetic) response at the
nearest neighbor to the right of i1 is larger than the one to
the left of i1 for all d down to d = 1, except for d = 5 and
d = 9. The ratio χ sub

i1+1,1/χ
sub
i1−1,1 is decreasing with decreasing

d, becomes smaller than unity for d = 5 and d = 9, and larger
than unity again for d = 1.

All these nontrivial features are perfectly captured by the
R-DMFT and in fact result from an effective adatom-adatom
interaction. This becomes obvious by comparing the results
for the TIAM with those of a corresponding single-impurity
Anderson model where the second (right) adatom α = 2
is missing or, equivalently, where the hybridization to the
second adatom is switched off. We have performed DMRG
calculations for corresponding single-adatom models. To
ensure a singlet ground state at half filling, however, the
substrate chain has to be shortened by one site on the right
edge (L = 49). The resulting substrate susceptibilities χ sub

i,1
are shown in Fig. 2 as green lines.

Comparing the SIAM and the TIAM results to each other
once more demonstrates that the effects of the indirect nonlocal
RKKY coupling become more and more pronounced with

decreasing d. The differences between the single-adatom and
the two-adatom physics visible in the susceptibilities for i > i2

are larger by more than an order of magnitude than the
differences between the R-DMFT and the DMRG results.
Again this shows that there are sizable effects on nonlocal
magnetic correlations which do not fully feed back to the
one-electron self-energy.

B. Spin correlations and nonlocal susceptibilities

The DMRG data for χ sub
i,1 and also for the equal-time spin-

spin correlation function 〈Sf

1 Sc
i 〉 are shown in Fig. 3 for d = 13

on a larger scale. Let us discuss the physics of this situation
in detail. The response of the substrate to a static local field
at β = 1 is governed by the low-energy excitations around
the Fermi edge, i.e., ω = 0. Contrarily, the equal-time spin-
spin correlation is obtained by a frequency integration of the
dynamic (retarded) susceptibility χ sub

i,1 (ω) and thus includes
several energy scales. Nevertheless, the spin-spin correlation
behaves qualitatively very similar to χ sub

i,1 , and we will refer to
this on an equal footing with the susceptibility.
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FIG. 3. (Color online) Spin-spin correlation function 〈Sc
i S

f

1 〉
(upper panel) and magnetic susceptibility χ sub

i,1 (lower panel) for

U = 8 and V = √
2 as obtained by DMRG for a system with L = 50

(L = 49) substrate sites and two adatoms (one adatom) as functions
of the substrate site i. Red (dark grey) lines: Results for two adatoms
and L = 50, TIAM. Green (light grey) lines: Results for L = 49 and
a single adatom at the same position as the β = 1 (left) adatom in the
two-adatom model, SIAM. The dashed lines indicate the positions i1

and i2 of the substrate sites “below” the adatoms.
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The ground state of the whole system is a spin singlet
in all calculations discussed here. This provides us with
a simple sum rule for the spin-spin correlation: Exploiting
rotational symmetry, we have 〈Stot Sf

1 〉 = 3〈S tot
z S

f

1z〉 where

Stot = Sf

1 + Sf

2 + Ssub is the total spin and Ssub = ∑L
i=1 Sc

i

the total substrate spin. Using M tot = 0 in the ground state, we
immediately find〈

Sf

1 Sf

1

〉 + 〈
Sf

2 Sf

1

〉 + 〈
Ssub Sf

1

〉 = 0. (22)

For the single-adatom model we then have〈
Sf

1 Sf

1

〉 + 〈
Ssub Sf

1

〉 = 0, (23)

which explains why the spin-spin correlation is mainly
negative: Namely, if summed over all substrate sites, it just
compensates the adatom local moment. For the two-adatom
model at d = 13, the adatom-adatom spin correlation 〈Sf

1 Sf

2 〉
is negative but its absolute value is small compared to 〈Sf

1 Sf

1 〉.
Looking at Eq. (22), the overall substrate response is thus still
antiferromagnetic but somewhat reduced as compared to the
single-adatom model.

Qualitatively the same applies to the susceptibility as can
be seen from the lower panel in Fig. 3. For any large but finite
system with a nondegenerate singlet ground state, we again
have a simple sum rule: A singlet ground state and a finite
gap implies that the total magnetic moment must vanish for
any h1 up to some finite critical field: 〈Stot〉 = 〈Sf

1 〉 + 〈Sf

2 〉 +
〈Ssub〉 = 0. Taking the derivative with respect to h1 then yields

χ11 + χ21 +
∑

i

χ sub
i1 = 0. (24)

In the same way as above,
∑

i χ
sub
i1 = −χ11 < 0 for a single

adatom, and for two adatoms the total response of the substrate
is still negative but slightly reduced in absolute magnitude due
to the presence of the second adatom since χ21 < 0 at d = 13.

As can be seen in Fig. 3 by comparing with the results
for the single-adatom model, the most pronounced effect due
the presence of the second adatom consists of the strong
enhancement of χi21, i.e., the response below the second
adatom. This can easily be understood by referring to the
RKKY limit for a system of finite size L: For V → 0 keeping
U � t fixed, charge fluctuations vanish and we are left with
a Kondo-type model. In the weak-coupling limit J → 0 the
substrate degrees of freedom can be integrated out, and the
adatom magnetic response, i.e., χ11 and χ21, is perfectly
described by an effective RKKY two-spin model

HRKKY = −JRKKY Sf

1 Sf

2 , (25)

where JRKKY = J 2χ
0,sub
i1i2

is given in terms of the static substrate
susceptibility at J = 0. The Kondo effect, on the other hand,
does not interfere with this picture as it is cut by the finite-size
gap: One can define a coupling strength Jc at which the Kondo
temperature TK becomes comparable with the finite-size gap.
Then, for J < Jc the Kondo effect is absent as there are simply
no states at the Fermi energy available to screen the adatom
moment.66 This implies that the substrate is in a singlet state for
weak J and thus χ sub

1 ≡ ∑
i χ

sub
i1 = (∂/∂h1)〈Ssub

z 〉 = 0; i.e.,
there is no substrate contribution to the magnetic moment
induced by the field at β = 1. From the sum rule Eq. (24) we

thus have χ11 + χ21 = 0; i.e., also the two adatom spins form
a perfect singlet consistent with Eq. (25). Hence, applying a
field h1 at adatom β = 1 induces antiferromagnetically aligned
magnetic adatom moments with the same absolute magnitude.
For J beyond but close to the RKKY limit we therefore expect
the absolute magnitude of the substrate response at i1 and i2

as almost equal. For finite and actually intermediate J , see
Fig. 3, the effect is strongly diminished but still clearly visible.
Note that the above argumentation can analogously be given
by referring to the spin-spin correlation.

As mentioned before, looking at the sum rules (22) and
(24), we can understand that the response of the substrate
is somewhat attenuated in the TIAM as compared to the
SIAM. This reduction, however, is not homogeneous: There is
a comparatively strong reduction beyond the second adatom
for i > i2 while the response is nearly the same or even
somewhat enhanced close to i2 for i < i2, and there is almost
no effect for i < i1. That the effect is least pronounced close
to the first adatom can easily be understood by referring to
the extreme Kondo limit where a picture of two separate
Kondo clouds applies. In this case the magnetic response to
the field applied to the first adatom would be the same as the
response in the corresponding single-adatom model. As is seen
in Fig. 3, however, close to i1 there are finite differences, i.e.,
the Kondo clouds do overlap, but the differences are small.
Since according to the sum rule the total response must be
weaker in the TIAM, a reduced response must and in fact does
show up away from i1, i.e., for i > i2.

The sum rule (23) for the SIAM may also be used to roughly
estimate the size of the individual “Kondo clouds.” Using the
DMRG data for 〈Sf

1 Sc
i 〉, we define an integrated spin-spin

correlation function,67

�(r) = 1 +
∑

|i−i1|<r

〈
Sf

1 Sc
i

〉
〈
Sf

1 Sf

1

〉 , (26)

for the single-adatom model. We have �(0) = 1. With increas-
ing r more and more substrate spins around i1 are included in
the sum, and �(r) essentially decreases with r until � = 0
if all spins are included as is obvious from the sum rule
Eq. (23). The quantity gives the fraction of the adatom spin
that remains unscreened by the substrate spins up to distance
r from i1. Using a 90%-screening criterion, for example, i.e.,
�(ξK) = 0.1, the extent of the cloud amounts to ξK � 10–15
lattice sites. This is consistent with the discussion given above.

A criterion based on Eq. (26) cannot precisely define the
parameter range in which R-DMFT gives reliable results.
Figure 4 demonstrates that using R-DMFT, the deviation from
the numerically exact DMRG data grows gradually when
decreasing the distance between the adatoms d.

C. Distance dependence

To estimate the reliability of the mean-field approach, we
focus on the susceptibility χ sub

i1 at the substrate site below the
first adatom i = i1 where, according to the results shown in
Fig. 2, the deviations are the strongest. χ sub

i11 is shown in Fig. 4
as a function of the distance d. There is a nice quantitative
agreement of the R-DMFT with the exact DMRG result for
large d. For smaller d, R-DMFT still predicts the correct trend,
except for d = 1.
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FIG. 4. (Color online) Susceptibility χ sub
i11 at the lattice site i1

below the first adatom as a function of the adatom-adatom distance
d for U = 8, V = √

2, and L = 50 substrate sites as obtained from
R-DMFT (blue line, squares) and DMRG (red line, circles).

For the same set of parameters Fig. 5 shows the local adatom
susceptibility χ11 and nonlocal adatom-adatom susceptibility
χ21 as functions of the distance d = 4n + 1 with integer n.
In both cases the agreement of the R-DMFT with the DMRG
results is excellent. Significant differences are found for d = 1
only and rapidly diminish with increasing d.

Figure 5 includes R-DMFT results obtained with different
ns . On the scale of the figure, there is no difference between
the results for ns = 8 and ns = 10 bath sites in the effective
single-impurity model while the results obtained for χ21

with ns = 6 slightly deviate for intermediate distances around
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FIG. 5. (Color online) Local adatom susceptibility χ11 and non-
local adatom-adatom susceptibility χ21 as functions of the distance
d between the adatoms for U = 8, V = √

2 and for a system with
L = 50 substrate sites as obtained by R-DMFT and DMRG (red
lines, circles). R-DMFT calculations are done with different numbers
of bath orbitals in the effective single-impurity models: ns = 6,8,10,
as indicated.

d = 25. This comparison shows that the R-DMFT results are
converged with respect to ns . The differences to the DMRG
data are thus intrinsic to the dynamical mean-field approach
itself and not at all caused by discretization errors of the
Lanczos solver.

It is worth mentioning that the distance dependence of
χ21 cannot be explained by conventional RKKY theory. For
J → 0, the magnetic susceptibility is determined by the
effective two-spin Heisenberg model Eq. (25) which yields
χ21 = −χ11 ∼ 1/JRKKY with JRKKY ∝ (−1)d/d = 1/d at odd
distances d. The decreasing absolute magnitude of χ21 with
increasing d and also the fact χ11 + χ21 = 0 just reminds us
that with U = 8 and V 2 = 2 the system is well beyond the
perturbative-in-J regime and that there is a strong substrate
contribution

∑
i χ

sub
i1 necessary to fulfill the sum rule Eq. (24).

For large d the trends can rather be understood in a picture
of two independent Kondo effects. Clearly, |χ21| is expected
to decrease with d. More interesting is the behavior of χ11

which develops a maximum around d = 15–20. The increase
of χ11 with d at short d results from a reminiscence to
the RKKY limit: With increasing d the effective coupling
between the adatom decreases and their magnetic moments
tend to become free resulting in a higher local susceptibility
χ11. Substrate contributions are sizable but cannot outweigh
this effect in χ11, in contrast to χ21 which is 2–3 times
smaller in absolute magnitude. In the large-d limit, where
adatom-adatom interactions can be disregarded completely,
one would naively expect a saturation of the local susceptibility
at the inverse Kondo temperature since χ11 ∝ 1/TK in a single-
impurity model.7 However, χ11 must decrease since with
increasing d at fixed L = 50 the adatoms move to the chain
edges where we have a site-dependent Kondo temperature.
This increases with decreasing distance to the edge as the
noninteracting substrate local density of states at the Fermi
energy is increasing.

This interpretation is corroborated by Fig. 6 which displays
R-DMFT results for χ11 and χ21 for different system sizes L =
30, L = 50, and L = 90. We find the same qualitative behavior
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FIG. 6. (Color online) Local and nonlocal adatom susceptibilities
χ11 and χ21 as functions of distance d for U = 8, V = √

2. R-DMFT
calculations for different system sizes L as indicated. DMRG data
are shown for comparison at nearest-neighbor distance d = 1 only.
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in all three cases. Quantitatively, however, there are sizable
differences at inter-adatom distance d = 1, for example, which
show that even with L = 90 substrate sites the chain center
cannot be regarded as bulk-like and that the center local density
of states is still considerably dependent on L. On the other
hand, the susceptibilities for d close to L, i.e., for systems
with adatoms located at or very close to the chain edges, are
almost converged. Note that χ11 for d = L is almost the same
for L = 50 and L = 90. Again this shows that, at least for
the larger systems, the magnetic response is dictated by the
physics of the single-site Kondo effect; i.e., the presence of
the second adatom has almost no effect on χ11 and on the
Kondo temperature of the first adatom. This does not exclude
a finite magnetic interaction between the adatoms and in fact
a nonzero χ21 for d = L is found which, in addition, also does
not depend on L for the larger systems.

These adatom-adatom magnetic interactions are correctly
captured by the R-DMFT. R-DMFT and DMRG results coin-
cide on the scale of the plot except for d = 1 (DMRG results
are shown for d = 1 only). This almost perfect agreement can
be understood by referring to the strong-coupling limit: For
J → ∞, the two adatom magnetic moments form perfectly
local Kondo singlets that do not interact with each other.
This limit is trivially accessible by the mean-field approach.
For finite coupling, second-order perturbation theory in t/J

predicts spin-spin correlations to decay as 1/d2.68,69 The
inter-adatom magnetic interaction is thus expected to scale
as ∝J−4. This is also accessible to the R-DMFT approach
while the neglected feedback of this effective interaction on
local physical properties at one adatom, e.g., on TK and thus
on χ11, is of higher order and small in the strong-J limit.

D. Dependence on the local exchange coupling

The breakdown of R-DMFT can be enforced, however, by
decreasing J . Figure 7 shows the susceptibilities for d = 1
as a function of V 2/U . There is again excellent agreement
for strong V 2/U even with the simplified two-site R-DMFT.
Deviations of the two-site approach from the exact χ11 and χ21

become sizable for couplings smaller than V 2/U ≈ 0.5. The
full R-DMFT is reliable down to smaller values for V 2/U but
finally also starts to significantly deviate from the DMRG data
for V 2/U � 0.2. Here, as compared to the strong-coupling
limit, the local susceptibility is by more than an order of
magnitude higher; i.e., the Kondo temperature is by more than
an order of magnitude smaller (see the upper inset).

For even smaller couplings, the mean-field approach breaks
down completely and fails to maintain a Fermi-liquid ground
state: The small-J limit is problematic for R-DMFT as the
screening of the magnetic moments is too weak to compensate
the ordering tendencies induced by a comparatively strong
inter-adatom interaction. The system becomes too suscepti-
ble to an artificial spontaneous symmetry breaking that is
induced by the mean-field approximation itself. While the
adatoms’ state is given by a nonlocal SU(2) invariant singlet
(|↑↓〉 − |↓↑〉)/√2 for J → 0, the mean-field theory predicts
an incoherent mixture of degenerate ordered states |↑↓〉 and
|↓↑〉.

This qualitative failure is indicated by divergencies of
χ11 and χ21 which take place at coupling strengths V 2/U
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FIG. 7. (Color online) Local and nonlocal adatom susceptibilities
χ11 and χ21 as functions of V 2/U for U = 8 and d = 1 as obtained
by R-DMFT, real-space two-site DMFT and DMRG for a system
with L = 50 substrate sites. Insets: Same quantities plotted on a
logarithmic scale. Dashed lines indicate the critical V 2/U where χ11

and χ21 diverge.

that are somewhat smaller than those where first quantitative
deviations from the exact data were found (see insets in Fig. 7).
This also implies that the mean-field approach is able to exhibit
its limitations by itself.

Figure 8 shows the susceptibilities as obtained by R-DMFT
for d = 1 and different U and V as functions of V 2/U . We
find χ11 and χ21 to diverge at the same point in parameter
space. From extrapolations of the inverse local susceptibility
to 1/χ11 = 0 at different U and V , shown in the upper
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FIG. 8. (Color online) Local and nonlocal adatom susceptibilities
χ11 and χ21 as functions of V 2/U for d = 1 and L = 50 as obtained by
R-DMFT. Results for different U as indicated. Upper inset: Inverse
susceptibility 1/χ11 and extrapolation (dotted lines) to 1/χ11 = 0.
Lower inset: “Phase diagram,” separating the Fermi liquid state (FL)
from an (artificial) antiferromagnetic state (AF) which shows up for
weak V and strong U .
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inset, one may derive a mean-field “phase diagram.” This is
displayed in the lower inset. A normal Fermi-liquid ground
state found for large V and small U is separated from the
SU(2)-symmetry-broken antiferromagnetic state realized for
small V 2/U . This “phase-transition line” should actually be
interpreted as a crossover from the Kondo to the RKKY
regime or, more precisely, as the boundary up to which
R-DMFT is reliable. While the critical coupling V 2/U is
almost independent of U , there is some dependence on the
distance d. However, this is weak: While a Fermi-liquid ground
state is obtained down to V 2/U ≈ 0.14 for d = 1, we find a
slightly smaller critical value of V 2/U ≈ 0.12 for d = 5 and
V 2/U ≈ 0.09 for d = 49 (at U = 8).

E. Different distances between the adatoms

More important for the reliability of R-DMFT is the local
Kondo temperature. This becomes obvious if the two adatoms
are placed at a distance d = 4n + 3 with integer n; i.e.,
d = 3,7,11, . . .. At the corresponding substrate sites i1 and i2

(symmetric to the chain center) we have a low weight |Uiα kF |2
of the one-particle energy eigenstate of the noninteracting
substrate at the Fermi wave vector kF while |Uiα kF |2 is high
for distances d = 4n + 1. This pronounced odd-even effect
is a consequence of surface Friedel oscillations. The weight
|Uiα kF |2 determines the local substrate density of states and thus
also the local Kondo temperature. Consequently, TK is small
for d = 4n + 3 and the nonlocal RKKY interaction much more
efficient. Using DMRG, we in fact find |χ21| at d = 3 to be
more than an order of magnitude larger than at d = 1. This
effect even increases with increasing d = 4n + 3 since |Uiα kF |2
is decreasing if the adatoms move towards the chain edges.
At the edges (d = 47) |Uiα kF |2 is suppressed by more than a
factor 100 compared to the d = 4n + 1 case (d = 49), and
the Kondo temperature is essentially vanishing. This regime
is not accessible to R-DMFT. While the mean-field approach
predicts the correct sign, the absolute value |χ21| and also χ11

is strongly underestimated for d = 4n + 3. Deviations from
the DMRG results grow with increasing d. This had to be
expected, as a huge nonlocal susceptibility |χ21| induces via
the Schwinger-Dyson equation a sizable contribution to the
nonlocal self-energy which is neglected in R-DMFT.

The ferromagnetic case is different. Here we consider
distances d = 2n with integer n. In the Kondo limit of the
model and for weak J , the ferromagnetic RKKY coupling of
well-formed spins 1/2 leads to a triplet ground state as is easily
verified by means of DMRG calculations for L = 50; i.e., there
is a nonlocal spin S = 1. In all our calculations this spin is not
screened by the substrate electrons. This may be explained
by the fact that L = 50 is still too small to accommodate the
corresponding screening cloud. However, there is a nonlocal
spin S = 1 not only in the weak-J limit. In fact, we find a
triplet ground state for any choice of U > 0 and V = 0.

Our R-DMFT calculations reproduce the spin-triplet
ground state for small V 2/U by predicting, for an infinites-
imally small external magnetic field in the + z direction,
a spontaneously symmetry-broken ferromagnetic state |↑↑〉.
This corresponds to the M = 1 state of the DMRG spin
triplet. With increasing V , however, the expectation value
of the z component of the total spin Stot = Sf

1 + Sf

2 + Ssub

deviates from unity and, beyond a critical hybridization V ,
even vanishes: 〈S tot

z 〉 = 0. Hence, in the ferromagnetic case,
R-DMFT is reliable in the small-J but appears to fail in
the strong-coupling limit. This requires further investigations
which, however, are beyond the scope of the present paper.

VI. CONCLUSION

Conventional (RKKY) theory of indirect magnetic ex-
change predicts an effective exchange interaction JRKKY,ij =
J 2χ

0,sub
ij (ω = 0) where χij (ω = 0) is the nonlocal static

susceptibility of the metallic host. This interaction survives, as
a nearest-neighbor coupling,45 even in the case of two magnetic
impurities embedded in an infinite-dimensional lattice and is
thus accessible by dynamical mean-field theory. In the limit of
infinite spatial dimensions or, at finite dimensions, within the
dynamical mean-field approximation, one can therefore expect
a finite response at one magnetic impurity subject to a local
magnetic field at the other one, located at nearest-neighbor but
also for larger distances.

On the other hand, nonlocal effective interactions do not
contribute to the single-particle self-energy on the DMFT
level: The DMFT self-energy is just defined as the sum
of the local skeleton diagrams only. This is a well-known
shortcoming of mean-field theory which gives rise to artifacts
in the RKKY limit. Namely, for J → 0 the magnetic impurities
are only weakly coupled to the host and thus become extremely
susceptible. A tiny Weiss field within DMFT is then sufficient
to drive the system to an artificial symmetry-broken state; i.e.,
an antiferromagnetic state rather than a nonlocal singlet of
the impurity magnetic moments is formed. A state with the
characteristic distance dependence of the RKKY interaction,
e.g., JRKKY ∝ 1/d for a one-dimensional system at half filling,
cannot be recovered within DMFT as it is always preempted
by spontaneous symmetry breaking. Clearly, solutions with
a finite magnetic moment could easily be suppressed in a
mean-field approach. One should note, however, that the
resulting magnetic susceptibility is unphysical, i.e., negative,
as it refers to a thermodynamically unstable state. Therefore,
in any case, the physics of the RKKY limit is not accessible
by DMFT.

The present study has shown, however, that beyond the
RKKY limit, (real-space) DMFT is well suited to study even
quantitatively the effects of indirect magnetic exchange. Here,
we have concentrated on two magnetic “adatoms” on a one-
dimensional “substrate surface”—a minimal model to study
indirect magnetic interactions in competition with the Kondo
effect for magnetic atoms on metallic surfaces and a model
that is amenable to an exact numerical solution by means of
the density-matrix renormalization group.

DMRG has been used to compute spin-spin correlation
functions and static spin susceptibilities, and particularly
adatom-substrate site correlations and susceptibilities. De-
pending on the distance d between the two adatoms and
depending on the hybridization strength V , rather complicated
profiles are obtained. Comparing the results for the two-
adatom (two-impurity) Anderson model with those obtained
for the corresponding single-adatom (single-impurity) An-
derson model, one can easily classify the different features
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of those profiles as single-impurity effects or as resulting
from the adatom-adatom effective interaction. In this way,
clear reminiscences of the RKKY interaction, i.e., of nonlocal
singlet formation, are found to compete with the formation
of Kondo clouds and screening of the adatom magnetic
moments. In addition, the profiles are strongly affected by
the finite system size (chains with typically L = 50 have been
considered here) and by effects resulting from strong surface
Friedel oscillations in the local density of states, especially if
the adatoms are in the vicinity of one of the chain edges. This
complex interplay of different physical mechanisms is almost
perfectly recovered by the real-space DMFT.

Qualitatively, the real-space DMFT is reliable as long as the
model parameters, in particular the local exchange coupling
J ∝ V 2/U , are in a regime well separated from the artificial
symmetry-broken state. This parameter regime, where the
adatom susceptibilities are not too large or where the adatom
magnetic moments are predominantly interacting with the
substrate moments rather than among each other, however,
goes well beyond the extreme Kondo limit of non-overlapping
Kondo clouds. The critical value for V 2/U ≈ 0.14 in units
of t at d = 1 gives an impression of a lower bound for the
applicability of R-DMFT.

While the present study has focused on a one-dimensional
model to allow for benchmarking against numerically exact
DMRG results, future applications of the R-DMFT should
address higher-dimensional systems. With increasing coor-
dination number of correlated sites, the parameter space
accessible to the mean-field approach is expected to be become
larger or mean-field artifacts less pronounced. For the case of
atoms trapped in optical lattices, there are impressing examples
where R-DMFT has contributed to an understanding of the
physics of inhomogeneous systems with O(100) correlated
and geometrically inequivalent sites in two dimensions, for
example.50

Let us also point out that for Anderson-type multi-impurity
or lattice models, one typically expects nonlocal magnetic
correlations to diminish rapidly as the electron filling on the
correlated sites is changed away from half filling. Systems
off half filling are thus expected to be more amenable to an
R-DMFT approach. At the same time they are also interesting
physically as reducing the filling away from half filling affects
local-moment formation as well. Hence, the competition
between nonlocal RKKY interaction and Kondo screening
must be seen as strongly filling dependent.

For complex magnetic nanostructures with several mag-
netic adatoms in different chain or cluster geometries on
two- or on semi-infinite three-dimensional metallic surfaces, a
mean-field approach is inevitable anyway. Here the conceptual
simplicity of a single-site mean-field theory, as compared to
different possibilities for cluster extensions, is important as
it allows us to study almost arbitrary geometries. As in ab
initio studies, the accessible system size strongly depends
on the remaining, e.g., lateral, spatial symmetries, and the
computational effort scales nearly linearly with the number of
inequivalent correlated sites only.

The two-impurity one-dimensional Anderson model rep-
resents a model that is rather unfavorable to a single-site
R-DMFT approach. Even for this case, as the present study
has shown, R-DMFT can in fact almost quantitatively predict
the effects of indirect magnetic exchange in competition
with the Kondo and with geometrical effects—as long as the
approximation predicts a Fermi-liquid ground state.
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43N. Néel, R. Berndt, J. Kröger, T. O. Wehling, A. I. Lichtenstein,

and M. I. Katsnelson, Phys. Rev. Lett. 107, 106804 (2011).
44T. Jabben, N. Grewe, and S. Schmitt, Phys. Rev. B 85, 045133

(2012).
45R. Peters and T. Pruschke, Phys. Rev. B 76, 245101 (2007).
46M. Potthoff and W. Nolting, Phys. Rev. B 60, 7834 (1999);

Eur. Phys. J. B 8, 555 (1999); R. Nourafkan, F. Marsiglio, and
M. Capone, Phys. Rev. B 82, 115127 (2010).

47M. Potthoff and W. Nolting, Physica B 259–261, 760 (1999);
H. Ishida and A. Liebsch, Phys. Rev. B 79, 045130 (2009);
R. Nourafkan and F. Marsiglio, ibid. 83, 155116 (2011);
S. Okamoto, ibid. 84, 201305 (2011).

48P. Miller and J. K. Freericks, J. Phys.: Condens. Matter 13, 3187
(2001); J. K. Freericks, Phys. Rev. B 70, 195342 (2004); S. Okamoto
and A. J. Millis, ibid. 70, 241104 (2004); L. Chen and J. K.
Freericks, ibid. 75, 125114 (2007); J. K. Freericks, Transport
in Multilayered Nanostructures (Imperial College Press, London,
2006); S. Okamoto, Phys. Rev. Lett. 101, 116807 (2008); H. Zenia,

J. K. Freericks, H. R. Krishnamurthy, and Th. Pruschke, ibid. 103,
116402 (2009); S. T. F. Hale and J. K. Freericks, Phys. Rev. B 83,
035102 (2011).

49V. Dobrosavljevic and G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997);
Philos. Trans. R. Soc. London A 356, 57 (1998); M.-T. Tran, Phys.
Rev. B 76, 245122 (2007); Y. Song, R. Wortis, and W. A. Atkinson,
ibid. 77, 054202 (2008); J. Wernsdorfer, G. Harder, U. Schollwoeck,
and W. Hofstetter, arXiv:1108.6057.

50R. W. Helmes, T. A. Costi, and A. Rosch, Phys. Rev. Lett.
100, 056403 (2008); 101, 066802 (2008); M. Snoek, I. Titvinidze,
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Vol. 1 (Forschungszentrum Jülich GmbH Zentralbibliothek, 2011),
Chap. 8.

61M. Potthoff, Phys. Rev. B 64, 165114 (2001).
62R. Bulla and M. Potthoff, Euro. Phys. J. B 13, 257 (2000).
63E. R. Davidson, J. Comput. Phys. 17, 87 (1975).
64S. R. White, Phys. Rev. Lett. 77, 3633 (1996).
65S. R. White, Phys. Rev. B 72, 180403 (2005).
66W. B. Thimm, J. Kroha, and J. von Delft, Phys. Rev. Lett 82, 2143

(1999).
67A. Holzner, I. P. McCulloch, U. Schollwöck, J. von Delft, and
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