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This work explores the use of joint density functional theory, an extension of density functional theory for the
ab initio description of electronic systems in thermodynamic equilibrium with a liquid environment, to describe
electrochemical systems. After reviewing the physics of the underlying fundamental electrochemical concepts,
we identify the mapping between commonly measured electrochemical observables and microscopically
computable quantities within an, in principle, exact theoretical framework. We then introduce a simple,
computationally efficient approximate functional which we find to be quite successful in capturing a priori
basic electrochemical phenomena, including the capacitive Stern and diffusive Gouy-Chapman regions in the
electrochemical double layer, quantitative values for interfacial capacitance, and electrochemical potentials of
zero charge for a series of metals. We explore surface charging with applied potential and are able to place our
ab initio results directly on the scale associated with the standard hydrogen electrode (SHE). Finally, we provide
explicit details for implementation within standard density functional theory software packages at negligible
computational cost over standard calculations carried out within vacuum environments.
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I. INTRODUCTION

Ab initio calculations have shed light on many questions in
physics, chemistry, and materials science, including chemical
reactions in solution1,2 and at surfaces.3–5 However, first-
principles calculations have offered less insight in the complex
and multifaceted field of electrochemistry, despite the potential
scientific and technological impact of advances in this field.
Because the fundamental microscopic mechanisms involved
in oxidation and reduction at electrode surfaces are often
unknown and are difficult to determine experimentally,6 rich
scientific opportunities are available for theoretical study.
From a technological perspective, practicable first-principles
calculations could become a vital tool to direct the experi-
mental search for better catalysts with significant potential
societal impact: as just one example, economically viable
replacement of gasoline powered engines with fuel cells in
personal transport systems requires systems operating at a cost
of $35/kW, whereas the current cost is $294/kW,7 due mostly
to the expense of platinum-based catalyst materials.

The primary challenge which distinguishes theoretical
study of electrochemical systems is that including the liquid
electrolyte, which critically influences the functioning of
the electrochemical cell, requires detailed thermodynamic
sampling of all possible internal molecular configurations
of the fluid. Such critical influences include (a) screening
of charged systems, (b) establishment of an absolute po-
tential reference for oxidation and reduction potentials, and
(c) voltage dependence of fundamental microscopic processes,
including the nature of reaction pathways and transition states.
While there have been attempts at the full ab initio molecular
dynamics approach to this challenge,1,8,9 such calculations are
necessarily of the heroic type, require tremendous computa-
tional resources, and do not lend themselves to systematic
studies of multiple reactions within a series of many candidate
systems. Such studies require development of an alternate
approach to first-principles study of electrochemistry.

A. Previous approaches

One response to the aforementioned challenges is to avoid
the issue and lessen the computational cost either by forgoing
electronic structure calculation entirely or by neglecting the
thermodynamic sampling of the environment. Some studies
have employed classical molecular dynamics with interatomic
potentials;10,11 however, such semiempirical techniques often
perform poorly when describing chemical reactions involving
electron transfer, which are central to oxidation and reduction
reactions. The latter approach—single configuration ab initio
calculations—neglects key phenomena associated with the
presence of an electrolyte liquid in equilibrium. The most
direct single configuration ab initio approach pursued to date
is to study the relevant reactions on a surface in vacuum
and to study trends and correlations with the behavior in
electrochemical systems.12,13 Some of these studies are done
in a constant charge or constant potential ensemble14 to allow
variation of the applied electrode potential. This approach,
however, does not include critical physical effects of the
electrolyte such as the dielectric response of the liquid
environment and the presence of high concentrations of ions
in the supporting electrolyte. In response, an intermediate
approach is to include a layer or few layers of explicit water
molecules into the calculation.15–18

Such an approach is problematic for a number of reasons.
First, actual electrochemical systems can have rather long
ionic screening lengths (30 Å for an ionic concentration of
0.01 M), which would require large amounts of explicit water.
Second, simulation of the actual effects of dipolar and ionic
screening in the fluid requires extensive sampling of phase
space, corresponding to very long run times. Indeed, in some
references, only one layer of frozen water without thermal
or time sampling is included.19 Moreover, as most reactions
of interest occur at potentials away from the potential of
zero charge, such calculations must include a net charge,
which can be problematic in typical solid-state periodic
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supercell calculations. One may compensate for this charge
with a uniform charged background extending throughout
both the liquid and solid regions of the unit cell,16 but
this distribution does not reflect the electrochemical reality.
Other methods include an explicit reference electrode with a
corresponding negative surface charge to keep the unit cell
neutral,14 but this requires a somewhat arbitrary choice of
where to place the compensating electrode and may not lead
to realistic potential profiles. More recently, modeling the
electrolyte by a layer of explicit hydrogen atoms was shown to
provide a source of electrons for charged surface calculations
while keeping the unit cell neutral.20 Again, however, this
approach requires either judicious choice of the locations of the
corresponding protons which make up the corresponding ref-
erence electrode or computationally intensive thermodynamic
sampling.

Another broad approach constructs an approximate a
posteriori continuum model21 for both the dielectric response
of the water molecules and the Debye screening effects of the
ions and performs ab initio calculations where the electrostatic
potential is determined by solving Poisson-Boltzmann-like
equations.22–24 Explicit inclusion of a few layers of explicit wa-
ter molecules and ionic species within the ab initio calculations
can further enhance the reliability of this approach without
dramatic additional computational cost. While including ex-
plicitly the most recognized physical effects of the electrolyte,
such Poisson-Boltzmann-like approaches do not arise from an
exact underlying theory. Thus they may disregard physically
relevant effects, such as the nonlocality and nonlinearity of
the dielectric response of liquid water and the surface tension
associated with formation of the liquid-solid interface. We
note, for instance, that a typical electrochemical field strength
would be a 0.1 V drop over a double layer width of 3 Å
(300 MV/m), a field at which the bulk dielectric constant
of water is reduced by about one-third, strongly indicating
that nonlinear dielectric saturation effects are present in actual
electrochemical systems, particularly near the liquid-solid
interface, and ultimately should be captured naturally for an
ab initio theory to be truly predictive and reliable.

B. Joint density functional theory approach

This work begins by placing the aforementioned modified
Poisson-Boltzmann approaches on a firm theoretical foot-
ing within an, in principle, exact density functional theory
formalism, and then describes the path to including all
of the aforementioned effects in a fully rigorous ab initio
density functional. The work then goes on to elucidate the
fundamental physics underlying electrochemistry and provide
techniques for computation of fundamental electrochemical
quantities from a formal perspective. The work then shifts
focus and introduces an extremely simplified functional for
initial exploration of the potential of our overall approach for
practical calculations. The equations which result at this high
level of simplification resemble those introduced by others23,24

from an a posteriori perspective, thus putting those works
on a firmer theoretical footing and showing them in context
as approximate versions of a rigorous underlying approach.
We then work within this simplified framework to explore
fundamental physical effects in electrochemistry, including

the microscopic behavior of the electrostatic potential near an
electrode surface, the structure of the electrochemical double
layer, differential capacitances, and potentials of zero charge
across a series of metals. The encouraging results which we
obtain even with this highly simplified functional indicate that
the overall framework is sound for the exploration of physical
electrochemical phenomena and strongly suggest that the more
accurate functionals under present development25,26 will yield
accurate, fully ab initio results.

Section II begins by laying out our theoretical frame-
work. Section III describes connections between experimen-
tal electrochemical observables and microscopic ab initio
computables. Section IV introduces a simple approximate
functional which offers a computationally efficient means
of bridging connections to experimental electrochemistry.
Section V provides specific details about electronic structure
calculations of transition-metal surfaces. Finally, Sec. VI
presents electrochemical results for those metallic surfaces
obtained with our simplified functional and Sec. VII concludes
the paper. The Appendices include technical information
regarding implementation of our functional within a pseu-
dopotential framework.

II. THEORETICAL FRAMEWORK

As described in the Introduction, much of the challenge
in performing realistic ab initio electrochemistry calculations
comes not only from the need to include explicitly the atoms
composing the environment but also from the need to perform
thermodynamic averaging over the locations of those atoms.
Recently, however, it was proved rigorously that one can
compute exact free energies by including the environment in a
joint density functional theory framework.27,28 Specifically,
this previous work shows that the free energy A of an
explicit quantum-mechanical system with its nuclei at fixed
locations while in thermodynamic equilibrium with a liquid
environment (including full quantum-mechanical treatment of
the environment electrons and nuclei) can be obtained by the
following variational principle:28

A = min
n(r),{Nα (r)}

{
G[n(r),{Nα(r)},V (r)] −

∫
d3rV (r)n(r)

}
,

(1)

where G[n(r),{Nα(r)},V (r)] is a universal functional of the
electron density of the explicit system n(r), the densities of
the nuclei of the various atomic species in the environment
{Nα(r)}, and the electrostatic potential from the nuclei of the
explicit system V (r). The functional G[n(r),{Nα(r)},V (r)]
is universal in the sense that it depends only on the nature
of the environment and that its dependence on the explicit
system is only through the electrostatic potential of the nuclei
included in V (r) and the electron density of the explicit system
n(r). With this functional dependence established, one can then
separate the functional into large, known portions and a smaller
coupling term ultimately to be approximated,28

G[n(r),{Nα(r)},V (r)] ≡ AKS[n(r)] + �lq[{Nα(r)}]
+�A[n(r),{Nα(r)},V (r)], (2)
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where AKS[n(r)] and �lq[{Nα(r)}] are, respectively, the
standard universal Kohn-Sham electron-density functional of
the explicit solute system in isolation (including its nuclei and
their interaction with its electrons) and the “classical” density
functional for the liquid solvent environment in isolation. The
remainder, �A[n(r),{Nα(r)},V (r)], is then the coupling term
between the solute and solvent.

For AKS[n(r)], one can employ any of the popular ap-
proximations to electronic density functional theory such as
the local-density approximation (LDA), or more sophisticated
functionals such as the generalized-gradient approximation
(GGA).29 On the other hand, functionals �lq[{Nα(r)}] for
liquid solvents such as water are generally less well developed,
though the field has progressed significantly over the past
few years. For example, one recent, numerically efficient
functional for liquid water reproduces many of the important
factors determining the interaction between the liquid and a
solute, including the linear and nonlinear nonlocal dielectric
response, the experimental site-site correlation functions, the
surface tension, the bulk modulus of the liquid and the variation
of this modulus with pressure, the density of the liquid and
the vapor phase, and liquid-vapor coexistence.25 A framework
employing such a functional would be more reliable than
the modified Poisson-Boltzmann approaches available to date,
which do not incorporate any of these effects except for the
linear local dielectric response appropriate to macroscopic
fields. Inclusion of the densities of any ions in the electrolyte
environment among the {Nα(r)} is a natural way to include
their effects into �lq[{Nα(r)}] and provide ionic screening
into the overall framework.

Finally, developing approximate forms for the coupling
�A[n(r),{Nα(r)},V (r)] in Eq. (2) remains an open area of
research. In an early attempt, Petrosyan and co-workers28

employed a simplified �lq [{Nα(r)}] using a single density field
N (r) to describe the fluid. In that preliminary work, because
such an N (r) gives no explicit sense of the orientation of the
liquid molecules, the tendency of these molecules to orient
and screen long-range electric fields was included a posteriori
into a simplified linear (but nonlocal) response function. In
a more complete framework with explicit distributions for
the oxygen and hydrogen sites among the {Nα(r)} the full
nonlocal and nonlinear dielectric response can be handled
completely a priori.25,26 Beyond long-range screening effects,
the coupling �A[n(r),{Nα(r)},V (r)] must also include effects
from direct contact between the solvent molecules and the
solute electrons. Because the overlap between the molecular
and electron densities is small, the lowest-order coupling (very
similar to the “molecular” pseudopotentials introduced by
Kim et al.30) would be a reasonable starting point. Using
such a pseudopotential approach (with only the densities
of the oxygen atoms of the water molecules), Petrosyan
and co-workers28 obtained good agreement (2 kcal/mol)
with experimental solvation energies, without any fitting of
parameters to solvation data. Combining a coupling func-
tional �A similar to that of Petrosyan and co-workers with
more explicit functionals �lq[{Nα(r)}] for the liquid25,26 and
standard electron density functionals AKS[n(r)] for the elec-
trons is thus a quite promising pathway to highly accurate
ab initio description of systems in equilibrium with an
electrolyte environment.

III. CONNECTIONS TO ELECTROCHEMISTRY

Turning now to the topic of electrochemistry, we present
a general theoretical framework to relate the results of ab
initio calculations to experimentally measurable quantities,
beginning with a brief review of the electrochemical concepts.

A. Electrochemical potential

In the electrochemical literature, the electrochemical po-
tential μ̄ of the electrons in a given electrode is defined
as the energy required to move electrons from a reference
reservoir to the working electrode. This potential is often
conceptualized as a sum of two terms, μ̄ = μint − F�, where
μint is the purely chemical potential (due to concentration
gradient and temperature, chemical bonding, etc.), � is
the external, macroscopic electrostatic potential, and F is
Faraday’s constant. (Note that F = NAe has the numerical
value of unity in atomic units, where chemical potentials are
measured per particle rather than per mole.) In the physics
literature, this definition for μ̄ (when measured per particle)
corresponds precisely to the “chemical potential for electrons,”
which appears, for instance, in the Fermi occupancy function
f = [e(ε−μ̄)/kBT + 1]−1.

B. Electrode potential

In a simple, two-electrode electrochemical cell, the driving
force for chemical reactions occurring at the electrode surface
is a voltage applied between the reference electrode and
working electrode. In the electrochemical literature, this
voltage is known as the electrode potential E , defined as the
electromotive force applied to a cell consisting of a working
electrode and a reference electrode. In atomic units (where the
charge of an electron is unity), the electrode potential is thus
equivalent to the energy (per fundamental charge e) supplied
to transfer charge (generally in the form of electrons) from the
reference to the working electrode, assuming no dissipative
losses. Under conditions where diffusion of molecules and
reactions occurring in the solution are minimal, this energy is
completely transferred to the electrons in the system, causing
a corresponding change in the electrochemical potential of the
electrons in the working electrode.

An idealized two-terminal electrochemical cell controls
the chemical potential of a working electrode μ̄(W ) through
application of an electrode potential E (voltage) between
it and a reference electrode of known chemical potential
μ̄(R) [see Fig. 1(a)]. With the application of the electrode
potential E , the energy cost to the electrochemical cell, under
reversible (lossless) conditions, to move a single electron from
the reference electrode to the working electrode is dU =
−μ̄(R) + μ̄(W ) + E . Here, the electrode potential appears with
a positive sign, because to move a negative charge from the
negative to positive terminal requires a net investment of
energy, and thus cost to the electrochemical cell, against the
source of the potential E . Under equilibrium conditions, we
must have dU = 0, so that E = μ̄(R) − μ̄(W ).

As Sec. IV shows, the electrostatic model which we employ
for ionic screening in this work establishes a fixed reference
such that the microscopic electron potential φ (the Coulomb
potential energy of an electron at a given point) is zero deep in
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FIG. 1. (Color online) (a) Schematic of an electrochemical cell.
The working electrode is explicitly modeled while the reference
electrode is fixed at zero. (b) Relationship between the microscopic
electron potential 〈φ(z)〉 (averaged over the directions parallel to
the surface), electrochemical potential, and applied potential for a
Pt (111) surface. The large variations in potential to the left of zPt

correspond to the electrons and ionic cores comprising the metal
while the decay into the fluid region is visible to the right of zPt.

the liquid environment far from the electrode [see Fig. 1(b)]—
implying that the macroscopic electrostatic potential �

(which differs in overall sign from φ) there is also zero. A
convenient working electrode thus corresponds to electrons
solvated deep in the fluid, which will have electrochemical
potential μ̄(R) = μ

(s)
int − F� = μ

(s)
int , where μ

(s)
int corresponds to

the reference potential of an electron in the liquid. Referring
the scale of the electrochemical potential to such solvated
electrons (so that μ

(s)
int ≡ 0), we then have μ̄(R) = 0, so that

E = −μ̄(W ). In sum, the opposite of the electronic chemical
potential in our ab initio calculations corresponds precisely
to the electrode potential relative to solvated electrons.
In practice, the choice of approximate density functionals
�lq[{Nα(r)}] and �A[n(r),{Nα(r)},V (r)] sets the value of
the electron reference potential; each model fluid corresponds
to a different reference electrode of solvated electrons.
Section VII demonstrates the establishment of the electro-
chemical potential of such a model reference electrode relative
to the standard hydrogen electrode (SHE).

C. Potential of zero charge (PZC) and differential capacitance

For any given working electrode, a specific number of
electrons, and thus electronic chemical potential μ̄, is required

to keep the system electrically neutral. The corresponding
electrode potential (E = −μ̄) is known as the potential of zero
charge (PZC). Adsorbed ions from the electrolyte or other
contaminants on the electrode surface create uncertainty in the
experimental determination of the potential of zero charge.
One advantage to ab initio calculation is the ability to separate
the contribution due to adsorbed species from the contribution
of the electrochemical double layer, the latter being defined as
the potential of zero free charge (PZFC). Experimentally, only
the potential of zero total charge (PZTC), which includes the
effects of surface coverage, may be measured directly, and the
potential of zero free charge can only be inferred.31 Ab initio
approaches such as ours allow for the possibility of controlled
addition of adsorbed species and direct study of these issues.

At other values of the electrode potential E , the system
develops a charge per unit surface area σ ≡ Q/A. From the
relationship between these two quantities σ (E), one can then
determine the differential capacitance per unit area C ≡ dσ

dE .
The total differential capacitance of a metal is determined by
both the density of states of the metal surface CDOS, also known
as the quantum capacitance,32 and the capacitance associated
with the fluid Cfl. These capacitances act in series, so that full
differential capacitance is given by

C−1 = C−1
fl + C−1

DOS. (3)

In typical systems, CDOS ∼ 100–1000 μF/cm2 is larger than
the fluid capacitance (typically Cfl ∼ 15–100 μF/cm2), so
when the two are placed in series, the fluid capacitance
dominates.

The fluid capacitance may be further decomposed into two
capacitors acting in series,

C−1
fl = C−1

� + C−1
κ , (4)

as in the Gouy-Chapman-Stern model for the electrochemical
double layer.33 The surface charge on the electrode and the first
layer of oppositely charged ions behave like a parallel plate
capacitor with distance � between the plates. � indicates
the distance from the electrode surface to the first layer
of ions—called the outer Helmholtz layer for nonadsorbing
electrolytes. The capacitance per unit area for this simple
model is C� = ε0

�
, analogous to the Helmholtz capacitance.

For a gap size � ∼ 0.5 Å, this model leads to a “gap”
capacitance of about 20 μF/cm2. Additional capacitance arises
from the diffuse ions in the liquid, where the model for
this capacitance Cκ = εbε0κcosh( eφ(�)

2kBT
) is also well known

from the electrochemistry literature.34 In the limit where
most of the voltage drop is found in the outer Helmholtz
layer [φ(�) ∼ kBT ], this expression reduces to a constant
value which depends only on the concentration of ions in
the electrolyte and the bulk dielectric constant of the fluid
εb: Cκ = εbε0

κ−1 . For water with a 1.0 M ionic concentration,
the “ion” capacitance is Cκ = 240 μF/cm2, an order of
magnitude larger than the gap capacitance. At this high ionic
concentration, the gap (Helmholtz) capacitance dominates not
only the fluid capacitance, but also the total capacitance.
For lower concentrations of ions, the magnitude of the ion
capacitance becomes more comparable to the gap capacitance
and voltage-dependent nonlinear effects in the fluid could
become important.
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D. Cyclic voltammetry

A powerful technique for electrochemical analysis is the
cyclic voltammogram, in which current is measured as a
function of voltage swept cyclically at a constant rate. Such
experiments yield detailed information about electron transfer
in complicated electrode reactions, with sharp peaks corre-
sponding to oxidation or reduction potentials for chemical
reactions taking place at the electrode surface. Because current
is a time-varying quantity and density functional theory does
not include information about time dependence and reaction
rates, careful reasoning must be employed to compare ab initio
calculations to experimental current-potential curves. Previous
work has correlated surface coverage of adsorbed hydrogen
with current in order to predict cyclic voltammograms for
hydrogen evolution on platinum electrodes.17 This simple
model for a cyclic voltammogram is intrinsically limited at
a full monolayer of hydrogen adsorption, rather than by the
more realistic presence of mass transport and diffusion effects,
but nonetheless provides useful comparisons to experimental
data.

Using a similar approach, our framework gives the pre-
dicted current density J directly through the chain rule as

J = dσ

dt
= dE

dt

dσ

dE ≡ KC(E),

where K = dE
dt

is the voltage sweep rate, and C(E) is the
differential capacitance per unit area at electrode potential
E , as defined above. For the bare metal surfaces with no
adsorbates studied in Sec. VII of this work, only the double
layer region structure is visible, but the technique may be
generalized to study chemical reactions at the electrode
surface. The current density curve is simply proportional to
the differential capacitance per unit area C(E) as long as
the state of the system varies adiabatically and the voltage
sweep rate is significantly slower than the reaction rate. In
the adiabatic limit, features in the charge-potential curves
calculated for reaction intermediates and transition states can
be compared directly with peaks in cyclic voltammograms to
predict oxidation and reduction potentials from first principles.

IV. IMPLICIT SOLVENT MODELS

For computational expediency and to explore the perfor-
mance of the overall framework for quantities of electrochemi-
cal interest, we now introduce a highly approximate functional.
Despite its simplicity, we find that the model below leads to
very promising results for a number of physical quantities of
direct interest in electrochemical systems. The first step in this
approximation is to minimize with respect to the liquid nuclear
density fields in the fully rigorous functional27 so that Eq. (1)
becomes

Ã = min
n(r)

(AKS[n(r),{ZI ,RI }] + �Ã[n(r),{ZI ,RI }]), (5)

with the effects of the liquid environment all appearing in the
new term,

�Ã[n(r),{ZI ,RI }] ≡ min
Nα(r)

(�lq[Nα(r)]

+�A[n(r),Nα(r),{ZI ,RI }]), (6)

where ZI and RI are the charges and positions of the surface
nuclei (and those of any explicitly included adsorbed species).
This minimization process leaves a functional in terms of only
the properties of the explicit system and incorporates all of
the solvent effects implicitly. Up to this point, this theory is in
principle exact, although the exact form of �Ã[n(r),{ZI ,RI }]
is unknown. For practical calculations this functional must be
approximated in a way which captures the underlying physics
with sufficient accuracy.

A. Approximate functional

In this initial work, we assume that the important interac-
tions between the solvent environment and the explicit solute
electronic system are all electrostatic in nature. Our rationale
for this choice is the fact that most electrochemical processes
are driven by (a) the surface charge on the electrode and the
screening due to the dielectric response of the liquid solvent
and (b) the rearrangement of ions in the supporting electrolyte.
To incorporate these effects, we calculate the electron potential
φ(r) (the Coulomb potential energy of an electron at a given
point, which equals −e times the electrostatic potential) due
to the electronic and atomic core charges of the electrode and
couple this potential to a spatially local and linear description
of the liquid electrolyte environment, yielding

Ã[n(r),φ(r)]

= ATXC[n(r)] +
∫

d3r

{
φ(r) [n(r) − N (r,{ZI ,RI })]

− ε(r)

8π
|∇φ(r)|2 − εbκ

2(r)

8π
[φ(r)]2

}
, (7)

where ATXC[n(r)] is the Kohn-Sham single-particle kinetic
plus exchange correlation energy, n(r) is the full electron
density of the explicit system (including both core and valence
electrons), and N (r,{RI ,ZI }) is the nuclear particle density
of the explicit solute system with nuclei of atomic number
ZI at positions RI , εb is the bulk dielectric constant of the
solvent, and ε(r) and κ(r) are local values, respectively, of
the dielectric constant and the inverse Debye screening length
due to the presence of ions in the fluid. We emphasize that,
despite the compact notation in Eq. (7), in practice we employ
standard Kohn-Sham orbitals to capture the kinetic energy and,
as the Appendices detail, we employ atomic pseudopotentials
rather than direct nuclear potentials, so that N (r,{RI ,ZI }) does
not consist in practice of a set of Dirac δ functions.

To determine local values of the quantities ε(r) and κ(r)
above, we relate them directly to the local average density of
the solvent Nlq(r) as

ε(r) ≡ 1 + Nlq(r)

Nb

(εb − 1), κ2(r) ≡ κ2
b

Nlq(r)

Nb

, (8)

where Nb and εb are, respectively, the bulk liquid number
density (molecules per unit volume) and the bulk dielectric
constant, and κ2

b = e2

εb kBT

∑
i NiZ

2
i is the square of the inverse

Debye screening length in the bulk fluid, where Zi and Ni =
ciNA are the valences and number densities of the various
ionic species. Finally, our model for the local liquid density
depends on the full solute electron density n(r) at each point
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through the relation

Nlq(n) ≡ Nb

2
erfc

(
ln (n/n0)√

2γ

)
, (9)

a form which varies smoothly (with transition width γ )
from the bulk liquid density Nb in the bulk solvent (where
the electron density from the explicit system is less than a
transition value n0) to zero inside the cavity region associated
with the solute, defined as those points where n(r) > n0.
This form for Nlq(n) reproduces solvation energies of small
molecules in water without ionic screening to within 2
kcal/mol,27 when the parameters in Eq. (9) have values
γ = 0.6 and n0 = 4.73 × 10−3Å −3.

The stationary point of the functional in Eq. (7) determines
the physical state of the system and is actually a saddle point
which is a minimum with respect to changes in n(r) (or,
equivalently, the Kohn-Sham orbitals) and a maximum with
respect to changes in φ(r). Setting to zero the variation of
Eq. (7) with respect to the single-particle orbitals generates the
usual Kohn-Sham, Schrödinger-like, single-particle equations
with φ(r) replacing the Hartree and nuclear potentials and
results in the modified Poisson-Boltzmann equation,

∇ · [ε(r)∇φ(r)] − εbκ
2(r)φ(r)

= −4π [n(r) − N (r,{RI ,ZI })]. (10)

Self-consistent solution of this modified Poisson-Boltzmann
equation for φ(r) along with solution of the corresponding
traditional Kohn-Sham equations defines the final equilibrium
state of the system.

Figure 2 illustrates the various concepts in this model
using actual results from a calculation of the Pt(111) surface,
described in Secs. V and VI. Figure 2(a) shows the electron
n(r) and liquid Nlq(r) densities in a slice through the system
which passes through the metal (left, z < zPt) and the fluid
(right, z > zPt). We define the end of the metal surface
zmetal by the covalent radius of the last row of metal atoms
(zPt = 5.95 Å). The ionic cores and the itinerant valence
electrons in the metal are visible, as well as the gap between the
surface and the bulk of the fluid. As shown in Fig. 2(b), the local
functions for the dielectric constant ε(r) and the inverse Debye
screening length κ(r) respect the correct physical limiting
values: εb and κb in the bulk solvent and ε = 1 and κ = 0
within the surface. The rapid increase in dielectric constant for
0 Å< z − zPt < 1 Å corresponds to the appearance of fluid on
the right side and results in the localization of significant charge
from the fluid at this location. The inverse screening length κ

depends on the concentration of ions in the electrolyte through
the bulk liquid value κb. Figure 2(b) shows screening length
as a function of distance from the metal surface for both 0.1
and 1.0 molar bulk ionic concentrations. The large screening
lengths at positions less than zPt ensure proper vacuumlike
behavior within the metal surface, where all electrons are
explicit and thus no implicit screening should appear.

B. Asymptotic behavior of electrostatic potential

Unlike the standard Poisson equation, which has no unique
solution for periodic systems because the zero of potential
is an arbitrary constant, the modified Poisson-Boltzmann
equation (10) has a unique solution in periodic systems. To
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FIG. 2. (Color online) Microscopic and model quantities for
Pt(111) surface in equilibrium with electrolyte: (a) Pt atoms (white),
electron density n(r) (green), and fluid density Nlq (r) (blue) in a slice
passing from surface (left) into the fluid (right) with zPt = 5.95 Å
indicating the end of the metal; (b) dielectric constant 〈ε(z)〉 and
screening length 〈κ−1(z)〉 (averaged over the planes parallel to the
surface) for ionic concentrations of 1.0 and 0.1 M along a line passing
from surface into the fluid. Position z − zPt measures distance from
the end of the metal slab. (See Secs. V and VI.)

establish this fact, we integrate the differential equation (10)
over the unit cell. The first term, which is the integral of an
exact derivative, vanishes. The remaining terms then give the
condition, ∫

κ2(r)φ(r)dV = 4π

εb

(Qn − QN ), (11)

where Qn and QN are the total number of electronic and
nuclear charges in the cell, respectively. Any two φ(r) which
differ by a constant C both can be valid solutions only if
C

∫
κ2(r)dV = 0, so that we must have C = 0 as long as

κ(r) is nonzero at any location in the unit cell. Thus any
amount of screening at any location in space in the calculation
eliminates the usual indeterminacy of φ(r) by an additive
constant, thereby establishing an absolute reference for the
zero of the potential.

To establish the nature of this reference potential, we first
note that deep in the fluid, far from the electronic system,
the electron density approaches n(r) = 0 and the dielectric
constant and screening lengths attain their constant bulk
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values ε(r) → εb and κ(r) → κb. Under these conditions, the
Green’s-function impulse response of Eq. (10) to a unit point
charge is

φ(r) = exp(−κb r)

εb r
, (12)

a Coulomb potential screened by the dielectric response of the
solvent and exponentially screened by the presence of ions.
Next, we rearrange (10) so that the left-hand side has the same
impulse response as the bulk of the fluid but with a modified
source term,

εb∇2φ(r) − εbκ
2
bφ(r) = −4π [ρsol(r) + ρext(r)], (13)

where we have defined

ρsol(r) ≡ n(r) − N (r),

ρext(r) ≡ − 1

4π

{
[εb − ε(r)] ∇2φ(r) − [∇ε(r)] · [∇φ(r)]

+ εb

[
κ2(r) − κ2

b

]
φ(r)

}
. (14)

The key step now is to note that all source terms clearly vanish
in the bulk of the fluid where ρsol(r) → 0, ε(r) → εb = const,
and κ(r) → κb. From the exponential decay of the Green’s
function (12) and the vanishing of ρsol + ρext in the bulk region
of the fluid, we immediately conclude that φ(r) → 0 deep in
the fluid region, thereby establishing that the absolute reference
of zero potential corresponds to the energy of an electron
solvated deep in the fluid region.

C. Future improvements

While offering a computationally efficient and simple way
to study electrochemistry, the approximate functional (7) is
highly simplified and possesses several limitations which the
more rigorous approach of Sec. II overcomes by the coupling
of an explicit solvent model for �lq[Nα(r)] (Refs. 25 and 26)
to the electronic system through an approach similar to the
molecular pseudopotentials proposed by Kim et al.30 Such
limitations include the fact that because we employ a linearized
Poisson-Boltzmann equation, we do not include the nonlinear
dielectric response of the fluid (which other approaches in the
literature to date also ignore)23,24 or nonlinear saturation effects
in the ionic concentrations, both of which become important
for potentials greater than a few hundred mV. Despite these
limitations, we remain encouraged by the promising results we
obtain below for this simple functional and optimistic about the
improvements that working within a more rigorous framework
would provide.

V. ELECTRONIC STRUCTURE METHODOLOGY

All calculations undertaken in this work and presented in
Sec. VI were all performed within the DFT ++ framework35

as implemented in the open-source code JDFTx.36 They em-
ployed the local-density44 or generalized-gradient29 approx-
imations using a plane-wave basis within periodic boundary
conditions. The specific materials under study in this paper
were platinum, silver, copper, and gold. The (111), (110),
and (100) surfaces of each of these metals were computed
within a supercell representation with a distance of ten times
the lattice constant of each metal (in all cases around 30 Å)

TABLE I. Cubic lattice constant (Å) in conventional face-
centered-cubic unit cell.

Metal LDA GGA Expt. (Ref. 40)

Pt 3.93 3.94 3.92
Cu 3.55 3.67 3.61
Ag 4.07 4.13 4.09
Au 4.05 4.14 4.08

between surface slabs of thickness of five atomic layers.
For these initial calculations, we were very conservative in
employing such large regions between slabs to absolutely
eliminate electrostatic supercell image effects between slabs.
We strongly suspect that smaller supercells can be used in
the future. All calculations presented employ optimized37

norm-conserving Kleinman-Bylander pseudopotentials38 with
single nonlocal projectors in the s, p, and d channels, a
plane-wave cutoff energy of 30 H, and employ a 8 × 8 × 1
k-point Monkhorst-Pack39 grid to sample the Brillouin zone.

The JDFTx-calculated lattice constants of the bulk metals
within both exchange-correlation approximations when using
8 × 8 × 8 k-point grids are shown in Table I. Clearly, the LDA
and GGA lattice constants both agree well with the experiment.
Except where comparisons are specifically made with LDA
results, all calculations in this work employ GGA for exchange
and correlation.

VI. RESULTS

To evaluate the promise of our approach, we begin by study-
ing the fundamental behaviors of transition-metal surfaces in
equilibrium with an electrolyte environment as a function of
applied potential. We find that even our initial highly simplified
form of joint density functional theory reproduces with surpris-
ing accuracy a wide range of fundamental physical phenomena
related to electrochemistry. Such transition-metal systems,
especially platinum, are of electrochemical interest as potential
catalysts for both the oxygen reduction reaction (ORR) and the
hydrogen evolution reaction (HER). Molecular dynamics stud-
ies of the platinum system in solution, both at the classical10

and ab initio8,41 levels, to date have not fully accounted
for ionic screening in the electrolyte, which is essential to
capturing the complex structure of the electrochemical double
layer and the establishment of a consistent reference potential.

For the initial exploratory studies presented in this paper,
we focus on pristine surfaces without adsorbates in order
to establish clearly the relationship between theoretical and
experimental quantities and to lay groundwork for future
systematic comparison of potential catalyst materials. Unless
otherwise specified, we carry out our calculations with
screening lengths of 3 Å, corresponding to monovalent ionic
concentrations of 1.0 M. We employ these high concentrations
because most electrochemical cells include a supporting elec-
trolyte with high ionic concentration chosen to provide strong
screening while avoiding (to the extent possible) interaction
with and adsorption on the electrode. Note that, because our
present model includes only ionic concentrations and no other
species-specific details about the ions in the electrolyte, our
results correspond to neutral pH. Future work will readily
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explore pH and adsorption effects by including protons and
other explicit ions in the electronic-structure portions of the
calculation. One great advantage of the present theoretical
approach is the ability to separate the role of the nonadsorbing
ions in the supporting electrolyte from the role of the adsorbing
ions that interact directly with the surface.

A. Treatment of charged surfaces in periodic
boundary conditions

The application of voltage essential to the ab initio study
of electrochemistry requires precise treatment of charged
surfaces not accessible to common electronic structure ap-
proaches due to singularities associated with the Coulomb
interaction. In the case of a vacuum environment, the electro-
static potential φ(r) of even a neutral electrode approaches a
physically indeterminate constant which varies with the choice
of supercell. As is well known, this difficulty compounds
radically when a net charge is placed on the surface, resulting
in a formally infinite average electrostatic potential in a
periodically repeated system. By default, most electronic
structure packages designed for use with periodic systems treat
this singularity by setting the G = 0 Fourier component of φ(r)
to zero, equivalent to incorporating a uniform, neutralizing
charge background throughout the region of the computation.
This solution to the Coulomb infinity is not realistic in
electrochemical applications where the actual compensating
charge appears in the fluid and should not be present in the
interior of the electrode.

Another option which has been employed in the elec-
trochemical context22 is to include an oppositely charged
counterelectrode located away from the working electrode in
the vacuum region of the calculation. However, including an
explicit density functional electrode is often computationally
prohibitive as it requires doubling the number of electrons
and atoms and requires a large supercell to prevent image
interaction. Implicit inclusion of a counterelectrode through
either Coulomb truncation or an external charge distribution22

requires an arbitrary choice of the distribution of external
charges representing the counterelectrode, and such arbitrary
choices may result in unphysical electrostatic potentials, even
in the presence of a few explicit layers of neutral liquid
molecules. One realistic choice is to employ Debye screening
as in Eq. (10). This approach ensures that the long-range decay
of φ(r) into the fluid corresponds to the behavior of the actual
physical system, that the fluid response contains precisely the
correct amount of compensating charge, and that the potential
approaches an absolute reference, even in a periodic system.

Another more explicit, and hence computationally expen-
sive, option employed in the electrochemical literature is to add
a few layers of explicit water molecules to the surface and then
include explicit counterions (protons) located in the first water
layer.18 This approach models some of the most important
effects of the actual physical distribution of counterions, which
really should contain both localized and diffuse components,
by considering only the first layer of localized ions.

Figure 3(a) contrasts the potential profiles resulting from
the aforementioned approaches in actual calculations of a
Pt(111) electrode surface. Figure 3(a) displays the microscopic
local electron potential-energy function 〈φ(z)〉 for a surface at
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FIG. 3. (Color online) Microscopic electron potential energies
〈φ(z)〉 and macroscopic electrostatic potentials 〈�(z)〉 averaged in
planes for the Pt (111) surface as a function of distance z − zPt from
the end of the metal surface: (a) 〈φ(z)〉 for surface with applied voltage
E = −1.09 V vs PZC in vacuum (green dashed) and in monovalent
electrolytes of c = 1.0 M (red) and c = 0.1 M (blue) where the dotted
lines represent calculations with an explicit counterelectrode and the
solid lines are JDFT calculations; (b) close-up view of 〈�(z)〉 for
JDFT calculations with c = 1.0 M (red) and c = 0.1 M (blue) and
applied voltage E = −1.09 V vs PZC (almost indistinguishable in the
previous plot); (c) variation of 〈�(z)〉 in JDFT monovalent electrolyte
of c = 1.0 M with E = {−1.09, −0.55,0.0,0.55,1.09} V vs PZC.

applied voltage E = −1.09 V vs PZC which corresponds to a
charge of σ = −18 μC/cm2. The screened electron potentials
generated by solution of Eq. (10) at two different ionic
strengths (c = 1.0 M and c = 0.1 M) are compared to potential
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profiles for a similarly charged surface in vacuum, with the net
charge in the system neutralized either by imposing a uniform
background charge or by placing an oppositely charged
counterelectrode at one Debye screening length from the metal
surface. The two charge-compensated vacuum calculations
clearly do not correspond to the electrochemical behavior, with
far wider potential variations than expected. Figure 3(b) shows
a detailed view of the macroscopic electrostatic potential
〈�(z)〉 for the same charged surface (obtained by subtracting
the microscopic electron potential of the neutral surface and
switching the sign to reflect electrochemical convention)
for the joint density functional theory (JDFT) calculated
charged surface at two different ionic strengths. The charge-
compensated vacuum calculations would be off the scale of
this figure, while the macroscopic electrostatic potential for the
JDFT calculations obtains the value of the applied potential
within the electrode and then approaches a well-established
reference value of zero with the correct asymptotic behavior
in the fluid region.

B. Electrochemical double layer structure

The Gouy-Chapman-Stern model, described in Sec. III C,
offers a well-known prediction of the structure of the electro-
chemical double layer, to which the potentials from our model
correspond precisely. The electrostatic potential profiles in the
standard electrochemical picture include an initial, capacitor-
like linear drop in 〈�(z)〉 due to the outer Helmholtz layer
(the Stern region), followed by a characteristic exponential
decay to zero deep in the fluid (the diffuse Gouy-Chapman
region). Our model naturally captures this behavior as a result
of (a) the localization of the dielectric response and screening
to the liquid region as described by Nlq(r) through Eq. (8)
and (b) the separation between the fluid and regions of high
explicit electron density n(r) through the definition of Nlq (r) ≡
Nlq [n(r)] via Eq. (9). Both the Stern and Gouy-Chapman
regions are clearly evident in Figs. 3(b) and 3(c). We find
the dielectric constant transition region appearing in Fig. 2(b),
approximately the width of a water molecule, to be essential
to the accurate reproduction of the double layer structure.
The potentials for charged surfaces in Figs. 3(b) and 3(c)
first show a linear decay in the region 0 Å< z − zPt < �,
corresponding to the gap between the end of the surface
electron distribution (zPt) and the beginning of the fluid region,
precisely the behavior we should expect in the Stern region.
For a Pt(111) surface at applied voltage −1.09 V vs PZC,
� = 0.6 Å, but the width of this gap is voltage dependent
[as shown in Fig. 4(b)] and also varies with metal and
crystal face. After the gap region, for � < z − zPt < � + γ

[where γ = 0.6 as in Eq. (9)], the dielectric constant in
Fig. 2(b) changes rapidly from about 10 to the bulk value
εb ∼ 80, defining a transition region which ensures that no
significant diffuse decay in the potential occurs until beyond
the outer Helmholtz layer, thereby allowing proper formation
of the diffuse Gouy-Chapman region for z − zPt > � + γ . We
emphasize that we have not added these phenomena into our
calculations a posteriori, but that they occur naturally as a
consequence of our microscopic, albeit approximate, ab initio
approach.
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FIG. 4. (Color online) (a) Surface charge σ as a function of
applied voltage E for a series of transition-metal surfaces in an
electrolyte of monovalent ionic strength c = 1.0 M. (b) Inverse
dielectric constant ε−1 as a function of distance from a Pt(111) surface
for multiple values of applied voltage. (c) Inverse gap capacitance C−1

�

as a function of the distance from the metal surface at which the fluid
begins �. The solid line indicates the best fit to the data with slope
constrained to ε−1

0 .

C. Charging of surfaces with electrode potential

To explore the effects of electrode potential on the surface
charge and electronic structure, Fig. 4(a) shows the surface
charge σ as a function of potential E for a series of
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transition-metal surfaces for an electrolyte of monovalent
ionic strength c = 1.0 M, without adsorption of ions to the
surface. We find the average double layer capacitance of the
Pt(111) surface—the slope of the corresponding σ -E curve in
Fig. 4(a)—to be C = 19 μF/cm2, in excellent agreement with
the experimental value of 20 μF/cm2.42 Indeed, we find that a
significant fraction of our total capacitance is due to dielectric
and screening effects in the fluid; this agreement again supports
our model for the electrolyte. The remainder is associated with
the “quantum capacitance” or density of states CDOS of the
surface slab in our supercell calculations.

Closer inspection of the charge versus potential data
reveals that the slope is not quite constant as a function
of voltage. Indeed, taking the numerical derivatives of the
curves in Fig. 4(a) yields values for the differential capacitance
that exhibit an approximately linear dependence on voltage.
This voltage dependence contrasts with studies performed
using a different technique to produce voltage-independent
constant values for the capacitance,41 which not only were
limited to producing a constant value for the capacitance,
but also required computationally demanding thermodynamic
sampling to model the fluid.

To understand the origin of the above voltage dependence
of the capacitance, we employ the series model for differential
capacitance in Eqs. (3) and (4), in which the total capacitance
per unit area C is modeled as a series combination of the
capacitance associated with the density of states of the metal,
a Stern capacitance (C�) across a gap of width �, and the
(constant) Gouy-Chapman capacitance associated with the
inverse screening length κ . We can then extract the gap
capacitance as

�

ε0
∼ C−1

� ≡ C−1 − C−1
DOS − κ−1

εbε0
. (15)

To verify that the voltage dependence of this contribution
indeed correlates to changes in the gap associated with the
Stern layer, we make an independent definition of the width
of the gap as � ≡ zc − zMetal, where zc represents the location
where the presence of our model fluid becomes significant
and zMetal represents the location of the surface of the metal.
Specifically, we define zc as the point where the planar average
of the inverse dielectric constant has fallen by half from its
value in the electrode [as in Fig. 4(b)] since the polarization
of the fluid becomes significant when 〈ε−1(zc)〉 < 0.5. We
determine zMetal from the covalent radii of the metal surface
atoms, but note that the specific choice of zMetal is unimportant
in the analysis to follow.

Figure 4(c) correlates the inverse gap capacitance C−1
�

from the right-hand side of Eq. (15) with the values of �

defined as in the previous paragraph. There is a striking linear
trend with a slope within about 10% of ε−1

0 , validating that
the primary contribution to the voltage dependence of the
differential capacitance within this model is from changes in
the gap between the fluid surface and where the dielectric
screening begins. The ultimate origin of this effect within
the present approximation [in which the dielectric constant
is determined by the electron density through Eq. (8)] can be
traced to the increase in surface electrons with decreasing
applied potential, which moves the location of the fluid
transition further away from the metal surface. In fact, the

experimentally determined capacitance of Pt(111) due to only
the double layer42 (after subtracting the effects of counterion
adsorption) has a voltage dependence quite similar to our
prediction. Since the distance of closest approach of the fluid to
the metal surface is determined by van der Waals interactions
and the addition of more electrons could indeed strengthen the
repulsion, the qualitative voltage dependence of the “double
layer” capacitance even at this simple level of approximation
may indeed be capturing some aspects of the underlying
physics.

The double layer capacitance notwithstanding, in physical
systems the total capacitance is dominated by the effects
of adsorption of counterions, and so the qualitative voltage
dependence of the capacitance at this simple level of approx-
imation has limited practical relevance. Nonetheless, it is an
important feature of the electrochemical interface for those
modified Poisson-Boltzmann approaches in which the cavities
are determined by contours of the electron density. Future
work in this area could capture the “ion-adsorption” portion
of the capacitance either by including explicit counterions
within the electronic structure portion of the calculation
or by choosing a classical fluid functional that includes a
microscopic description of the counterions.

D. Potentials of zero charge and reference to standard
hydrogen electrode

To connect our potential scale (relative to an electron
solvated in our model fluid) to a standard potential scale
employed in the literature and to confirm the reliability of our
model, Figs. 5(a) and 5(b) show our ab initio predictions for
potentials of zero charge versus experimental values relative
to the standard hydrogen electrode (SHE).43 Within both
the local density (LDA)44 and generalized gradient (GGA)29

approximations to the electronic exchange-correlation energy,
we have calculated the potentials of zero charge for various
crystalline surfaces of Ag, Au, and Cu, three commonly studied
metals. We performed a least-squares linear fit to the intercept
of our data, leaving the slope fixed at unity. (Note that the
experimental data for Cu in NaF electrolyte were not included
in the fit, due to concerns discussed below.) The excellent
agreement between our results (with a constant offset) and
the experimental data indicates that joint density functional
theory accurately predicts trends in potentials of zero charge,
and encourages us that it can establish oxidation and reduction
potentials in the future. The improved agreement of GGA (rms
error: 0.058 V) over LDA (rms error: 0.108 V) underscores
the importance of gradient corrections to this type of surface
calculation.

The strong linear correlation with unit slope between
the theoretical and experimental data in Figs. 5(a) and 5(b)
indicates that the simplified Poisson-Boltzmann approach
reproduces potentials of zero charge well relative to some
absolute reference. The single parameter in the fit for each
of the two panels (namely, the vertical intercepts of each fit
line) establishes the absolute relationship between our zero of
potential (implicit in each set of theoretical results) and the zero
of potential on the standard hydrogen-electrode scale (implicit
in the experimental data). Specifically, we find that our zero
of potential sits at −4.91 V relative to the SHE for LDA and
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FIG. 5. (Color online) Comparisons of ab initio predictions and
experimental data (Ref. 43) for potentials of zero free charge (PZC’s)
and vacuum work functions: (a) ab initio LDA predictions versus
experimental PZC relative to SHE; (b) ab initio GGA predictions
versus experimental PZC relative to SHE; (c) ab initio GGA vacuum
work functions (solid line with squares) and PZC’s (solid line
with circles), experimental work functions (dotted line), and PZC’s
(dashed line) versus vacuum for the same series of surfaces. Best
linear fits with unit slope [dark diagonal solid lines in (a) and (b)].

−4.52 V relative to the SHE for GGA. Intriguingly, these
values are close to the experimentally determined location of
vacuum relative to the standard hydrogen electrode reference
(−4.44 V);43 in fact, the GGA reference value is within a tenth

of a volt. This apparent alignment is not altogether surprising
due to the following argument: (1) our method measures the
difference in potential between an electron in the electrode and
an electron solvated deep in our model electrolyte, so that our
potentials of zero charge are measured relative to a solvated
electron reference; (2) the potential of a solvated electron
relative to vacuum within the presently considered linearized
Poisson-Boltzmann model is zero because this approximation
includes only electrostatic effects; and (3) because the calcu-
lated potentials of zero charge in the figures are thus relative to
vacuum, the difference between our calculated results and the
experimental results should represent the constant difference
between the vacuum and SHE references.

Consideration of the breakdown of the potential of zero
charge into physically meaningful quantities explains the
difference between the LDA and GGA results and elucidates
the apparent success of the rather simple modified Poisson-
Boltzmann approach in predicting PZC’s. Transferring an
electron from a metal surface to a reference electrode requires,
first, removal of the electron from the surface and, then,
transport of the electron through the relevant interfacial layers
of the liquid. The energy associated with the former process
is the work function, and the energy associated with the latter
relates to the intrinsic dipole of the liquid-metal interface. As is
well known, there is an approximately constant shift between
the predictions of the LDA and GGA exchange and correlation
functionals for work functions of metals. In fact, Fall et al.
report that GGA metal work functions are approximately 0.4 V
lower than the LDA work functions,45 corresponding well
to the differences we find between the vertical intercepts of
Figs. 5(a) and 5(b).

Next, to aid consideration of the intrinsic dipole of the
interface, Fig. 5(c) explicitly compares our predictions for
work function with our predictions for potential of zero
charge, including also the corresponding experimental data
for both quantities. (To place all values on a consistent scale of
potential, which we choose to be vacuum, we have added
the experimentally determined 4.44 V difference between
SHE and vacuum to the experimental PZC’s.) The data in
Fig. 5(c) suggest that the vacuum work functions are harder
to predict than potentials of zero charge, possibly due to
difficulty determining the value of the reference potential in the
vacuum region, an issue not present in our fluid calculations
due to the screening in Eq. (10). The figure also indicates
an approximately constant shift from vacuum work function
to potential of zero charge, suggestive of a roughly constant
interfacial dipole for each of the metal surfaces. However,
the shift is not exactly constant: both the experimental and
theoretical data exhibit significant fluctuations (on the order of
0.1 V) in the shift between work function and PZC from one
metal surface to another. Because the PZC’s are determined
to within a significantly smaller level of fluctuation (0.06 V),
these data indicate that the Poisson-Boltzmann model captures
not merely a constant interfacial dipole, but also a significant
fraction of the fluctuation in this dipole from surface to surface.

We note that Tripkovic et al. have also calculated the poten-
tials of zero charge for transition-metal surfaces.18 However,
that approach requires calculation of several layers of explicit
water within the electronic structure portion of the calculation,
and those authors find the resulting potentials of zero charge
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to be dependent on the exact structure chosen for the water
layers. While differing orientations of water molecules at the
interface may result in significant local fluctuations in the
instantaneous PZC, the experimentally measured potential
of zero charge is a temporal and spatial thermodynamic
average over all liquid electrolyte configurations, rather than
the value from any single configuration. Direct comparison
to experimental potentials of zero charge therefore should
involve calculation of a thermodynamic average.

As a matter of principle, derivatives of the free energy
(which the JDFT framework provides directly) yield thermo-
dynamic averages. Therefore an exact free-energy functional
would predict the exact, thermodynamically averaged poten-
tial of zero charge, and classical liquid functionals, which
capture more microscopic details of the equilibrium liquid
configuration25,26 than the present model, would be an ideal
choice for future in-depth studies. Indeed, such functionals
are capable of capturing the relevant electrostatic effects even
when a single configuration of water molecules dominates
the thermodynamic average. (In such cases, minimization of
the free-energy functional results in localized site densities
{Nα(r)} representing the dominant liquid configuration.) Of
course, in cases of actual charge-transfer reactions between the
surface and the liquid, the (relatively few) molecules involved
in the actual transfer must be included within the explicit elec-
tronic density functional theory, whereas the other electrolyte
molecules may still be handled accurately within the more
computationally efficient liquid density functional theory.

There is also reason to be sanguine regarding the ability
of the modified Poisson-Boltzmann approximation pursued
in this work to capture interfacial dipole effects. The macro-
scopic dielectric constant contained within the present model
describes primarily the orientational polarizability of water, so
that the liquid bound charges resulting from the minimization
of the free energy should reflect the most dominant configura-
tions of water molecules in the thermodynamic average, even if
only a single configuration dominates. On the electrode side,
the image charges corresponding to the bound charge also
naturally appear, as a consequence of both the electrostatic
coupling in our model and the metallic nature of the surface
described within electronic density functional theory. From
an optimistic perspective, it is quite possible that a significant
portion of the electrostatics of the surface dipole would be
captured even at the simplified level of a Poisson-Boltzmann
description. Ultimately, quantification of how much of the
effect is captured may only be verified by comparison to
experiment. For the systems so far considered, the excellent
a priori agreement between experimental measurements and
our theoretical predictions indicates that the relevant effects
are indeed captured quite well. It appears that even a simple
continuum model (which only accounts for the effects of bound
charge at the interface and the corresponding image charges
within the metal) can predict accurately key electrochemical
observables such as potential of zero charge. Certainly, for
more detailed future studies, we would recommend exploring
the performance of more explicit functionals. However, the
apparent accuracy and computational simplicity of the current
Poisson-Boltzmann approach render it well suited for high-
throughput studies of electrochemical behavior as a function
of electrode potential.

As a further example of the utility of the Poisson-Boltzmann
approach, the potential of zero charge calculation for copper
illustrates how this theory can be used as a highly controlled
in situ probe of electrochemical systems, with the ability to
isolate physical effects which are not possible to separate in
the experiment. Specifically, in Figs. 5(a) and 5(b), for copper
there are experimental values for two different electrolytes,
NaF and KClO4, which are both claimed to be noninteracting
with the metal surface.43 Clearly, our theoretical values, which
correspond to potentials of zero free charge without adsorption
of or chemical reaction with ions from the electrolyte, agree
more favorably with experimental data for the Cu surface in
KClO4 compared to the NaF electrolyte. Our results suggest
that future experimental exploration is warranted to investigate
potential interactions between the NaF electrolyte and the
copper surfaces, or to determine other possible causes of
the discrepancy in potentials of zero charge. Perhaps some
polycrystalline impurities caused the experimental potentials
of zero charge of the supposed single-crystalline faces to
become much more similar than our calculations and the
KClO4 data indicate they should be. Ab initio calculations offer
an avenue to study each of these potential causes independently
and to elucidate the mechanisms underlying the apparent
experimental disagreement.

Finally, although potentials of zero charge are quite readily
observed in experiments for less reactive metals such as
silver and gold, measurement of the potential of zero charge
for platinum can be difficult because platinum is easily
contaminated by adsorbates. For this reason, more convoluted
methods are employed to determine an experimental value for
the potential of zero charge for platinum. For instance, one
may turn to ultrahigh vacuum methods, where, by definition,
no molecules are adsorbed on the surface, and one may then
attempt to estimate the effect of the solution on the potential
of zero free charge.46 Alternately, one may employ cyclic
voltammograms to estimate the charge due to adsorbates and
then extrapolate the potential of zero free charge.31 Our ab
initio method, however, gives the values for noncontaminated
potentials of zero free charge directly, provided we establish
the relation of our zero reference potential relative to that of
the standard hydrogen electrode, which we have done above.

For uncontaminated platinum, our method yields the poten-
tials of zero free charge shown in Table II. Compared to other
references in the literature, the best agreement with our results
is from an experiment which extrapolates the potential of
zero charge from ultrahigh vacuum, eliminating the effects of
unknown adsorbates on the clean surface.46 As with the results
for Cu, the significantly better agreement of our calculations
with this latter experimental approach suggests that perhaps
future experiments which measure potential of zero charge
should reconsider the effect of possible contaminants when
extrapolating values for the potential of zero free charge.

TABLE II. Platinum potentials of zero free charge (V vs SHE).

(110) (100) (111)

LDA 0.31 0.70 0.71
GGA 0.40 0.79 0.82
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VII. CONCLUSION

In this work, we extend joint density functional theory
(JDFT)—which combines liquid and electronic free-energy
functionals into a single variational principle for a solvated
quantum system—to include ionic liquids. We describe the
theoretical innovations and technical details required to imple-
ment this framework for study of the voltage dependence of
surface systems within standard electronic structure software.
We establish a connection to the fundamental electrochemistry
of metallic surfaces, accurately predicting not only potentials
of zero charge for a number of crystalline surfaces of
various metals, but also an independent value for the standard
hydrogen electrode relative to vacuum. Furthermore, we
show how future innovations in free-energy functionals could
lead to even more accurate predictions, demonstrating the
promise of the joint density functional approach to predict
experimental observables and capture subtle electrochemical
behavior without the computational complexity required by
molecular dynamics simulations. These advantages render
joint density functional theory an ideal choice for high-
throughput screening calculations and other applications in
materials design.

We have built extensively upon the framework of joint den-
sity functional theory in the implicit solvent approximation,27

extending it to include charged ions in a liquid electrolyte.
Beginning with an implicit model for the fluid density Nlq(r)
in terms of the electronic density of the surface, Nlq(r) =
Nlq[n(r)], we include an ionic screening length tied to the
fluid density Nlq(r) in the same way as done in previously
successful models for the dielectric constant. We also solve a
previously unrecognized difficulty by including model core
electron densities within the surface to prevent artificial
penetration of liquid density into the ionic cores, which lack
electrons in typical pseudopotential treatments of the solid (as
described in Appendix A). Inclusion of this ionic screening
allows us to provide a consistent zero reference of potential
and to resolve many difficulties associated with net charges
in periodic supercell calculations, thereby enabling study of
electrochemical behavior as a function of applied voltage.

With the framework to include electrode potential within
joint density functional theory calculations thus in place,
we then establish clear connections between microscopic
computables and experimental observables. We identify the
electronic chemical potential of density functional theory cal-
culations with the applied voltage in electrochemical cells, and
thereby extract a numerical value of 4.52 V (within the GGA
exchange-correlation functional) for the value of the standard
hydrogen electrode relative to vacuum, which compares quite
favorably to the best-accepted experimental value of 4.44 V.43

We also show that joint density functional theory reproduces,
a priori, the subtle voltage-dependent behaviors expected for a
microscopic electrostatic potential within the Gouy-Chapman-
Stern model and we extract potentials of zero free charge
for a series of metals commonly studied in electrochemical
contexts, often finding agreement with experimental values to
within hundredths of volts.

This qualitatively correct prediction of electrochemical
behavior and encouraging agreement with experiment demon-
strate the capabilities of even a simple approximation within

the joint density functional theory framework, and we expect
future improvements to the free-energy functional to be able
to describe more complex electrochemical phenomena. Future
work should also generalize the approximate functional to
include nonlinear saturation effects in ionic screening within
the current modified Poisson-Boltzmann approach, with an
approach along the lines of other works.24 In electrochemical
experiments, the differential capacitance of charged metal
surfaces often exhibits a minimum at the potential of zero
charge34 (not seen in the linear continuum theory), and more
advanced theories including such nonlinear effects should
be able to capture this more subtle behavior. Additionally,
recent developments in classical density functionals for liquid
water25,26 now can be implemented to study electrochemical
systems. Such classical density functionals can be extended to
include realistic descriptions of ions and are capable of cap-
turing other essential behaviors of electrolyte fluids, including
features in the ion-ion and ion-water correlation functions due
to differences in the structure of the anion and the cation.47

Finally, in systems where electrochemical charge-transfer
reactions are important or where chemical bonds of the fluid
molecules are expected to break, the relatively few reactant
molecules should be treated within the explicit electronic
structure portion of the calculation, with the remaining vast
majority of nonreacting molecules handled within the more
computationally efficient liquid density functional theory.

With advances such as those described above, joint density
functional theory holds promise to become a useful and
versatile complement to the toolbox of currently available tech-
niques for first-principles study of electrochemistry. Unlike
ab initio molecular dynamics (or any other theory involving
explicit water molecules), this computationally efficient theory
is not prohibitive for larger system sizes. In fact, as the
system size grows, the fraction of calculation time spent
solving the modified Poisson-Boltzmann equation actually
decreases, meaning that for larger systems, the calculation
is only nominally more expensive than calculations of the
corresponding systems carried out in a vacuum environment.
Also, because thermodynamic integration is not required, the
joint density functional theory approach yields equilibrium
properties directly and has a clear advantage over molecular
dynamics simulations for calculation of free energies. Imme-
diate applications include the study of molecules on metallic
electrode surfaces as a function of applied potential and
prediction of the basic properties of novel catalyst and catalyst
support materials. These calculations could inform future
materials design by offering an opportunity to screen novel
complex oxides and intermetallic materials in the presence
of the true electrochemical environment, thereby elucidating
the fundamental physical processes underlying fuel cells and
liquid-phase Graetzel solar cells.

ACKNOWLEDGMENTS

The authors would like to acknowledge R. Sundararaman
for modifying the software to streamline calculations at
fixed voltage and J. Feliu for providing the most up-to-date
information regarding electrochemistry of single-crystalline
metallic surfaces. This material is based on work supported by

075140-13



KENDRA LETCHWORTH-WEAVER AND T. A. ARIAS PHYSICAL REVIEW B 86, 075140 (2012)

The Energy Materials Center at Cornell, an Energy Frontier
Research Center funded by the US Department of Energy,
Office of Science, Office of Basic Energy Science, under
Award No. DE-SC0001086; The Cornell Integrative Graduate
Education and Research Traineeship (IGERT) Program in
the Nanoscale Control of Surfaces and Interfaces, supported
by the National Science Foundation under NSF Award No.
DGE-0654193; the Cornell Center for Materials Research;
and Cornell University. K. Letchworth-Weaver also acknowl-
edges support from an National Science Foundation Graduate
Research Fellowship.

APPENDIX A: IMPLEMENTATION WITHIN STANDARD
ELECTRONIC STRUCTURE SOFTWARE

Here we consider the issues which arise when implementing
the above framework within a pre-existing electronic-structure
code. We will focus on software operating within the pseu-
dopotential framework as this technique is commonly used for
surface calculations.

Such pseudopotential calculations, for computational effi-
ciency, include the nuclei and core electrons together as a unit
and describe their combined effects on the valence electron
system through effective “pseudopotentials.” Two subtleties
now arise. First, because the pseudopotentials describe the
long-range electrostatic interaction between the ionic cores and
the electrons, the screening of the long-range Coulomb part of
the pseudopotentials by the electrolyte environment through
(10) must be handled properly. Second, because the calculated
(valence) electron density n(r) in the atomic core regions
tends to be relatively low in pseudopotential calculations, our
definition of the liquid density Nlq(n) as a local function
of the local electron density n(r) through (9) can lead to
the unphysical presence of liquid within the atomic cores if
precautions are not taken.

As a matter of notation specific to this appendix, we
separate conceptually the valence electron density nv(r),
calculated directly with the Kohn-Sham orbitals, from the
missing contribution nc(r,{RI }) due to the core electrons,
which clearly varies explicitly with the locations of the centers
of the ions. By including both electron and ionic (now, actually,
valence-electron and ionic core) source terms, the new energy
functional (7) naturally provides electrolyte screening of all of
the relevant fields. The functional (7) then becomes

A[n(r),φ(r)] = ATXC[nv(r)] + EC[nv(r),nc(r,{RI }),φ(r)]

+Ups[nv(r),{ZI ,RI }], (A1)

where ATXC[nv(r)] is the Kohn-Sham single-particle kinetic
plus exchange-correlation energy, and

EC[nv(r),nc(r,{RI }),φ(r)]

=
∫

d3r

{
φ(r) [nv(r) − N (r,{ZI ,RI })]

− ε[nv(r) + nc(r,{RI })]
8π

|∇φ(r)|2

− εb κ2[nv(r) + nc(r,{RI })]
8π

[φ(r)]2

}
(A2)

represents the previously described electrostatic contribu-
tions to the total-energy functional [with N (r,{ZI ,RI }) ≡

∑
I ZI δ

(3)(r − RI ) representing point charges with the ionic
valences ZI ], and the term

Ups[nv(r),ZI ,RI ]

=
∫ (∑

I

�V (I )
ps (r − RI )

)
nv(r) d3r, (A3)

with

�V (I )
ps (r − RI ) ≡ V (I )

ps (r − RI ) + ZIG(r − RI ), (A4)

represents the non-Coulombic components of the pseu-
dopotential V (I )

ps (r), with G(r) ≡ 1/|r| being the Coulombic
Green’s function associated with a unit point charge in free
space. Note that here and henceforth in this work ZI refers
to the charges of the ionic pseudopotential cores and not the
nuclear atomic numbers. Finally, Appendix B details how, for
practical numerical reasons, we work not with mathematical
point charges but rather with narrow charge distributions which
we can resolve numerically.

The derivative of the functional A[n(r)] (A1) with respect to
nv(r) at a point r (which gives the local effective Kohn-Sham
potential used for the electronic wave-function minimization)
must also be adjusted to include the new dielectric response
and ionic screening terms,

∂

∂nv(r)
A[n(r)] = ∂

∂nv(r)
ATXC[nv(r)] +

∑
I

�V (I )
ps (r − RI )

+φ(r) − 1

8π

(
∂ε

∂n
|∇φ(r)|2 + εb

∂κ2

∂n
φ2(r)

)
.

(A5)

Finally, Hellman-Feynman calculation of the forces on the
atoms requires care because of the dependence of both the
ionic core density N (r,{ZI ,RI }) and the model core electron
density nc(r,{RI }) on the ionic positions RI . The final result is

∇RI
A = ∇RI

EC + ∇RI
Ups, (A6)

where

∇RI
Ups =

∫ [∇RI
�V (I )

ps (r − RI )
]
nv(r) d3r,

∇RI
EC = − 1

8π

∫
d3r

(
∂ε

∂n
|∇φ|2 + εb

∂κ2

∂n
[φ(r)]2

)
×∇RI

nc(r,{RI })
−

∫
d3rφ(r)ZI∇RI

δ(3)(r − RI ). (A7)

While some of these derivatives have simpler analytical
forms than those described above, these forms render much
simpler the numerical representation of the relevant quantities,
particularly the Dirac-δ functions and pseudopotentials, as
described in Appendix B.

APPENDIX B: NUMERICAL DETAILS

The system-dependent modified Poisson-Boltzmann equa-
tion which appears in our calculations does not have a direct
analytic solution in either Fourier or real space and thus
requires a numerical solution such that we cannot employ
analytic Dirac-δ functions to represent the ion-core charges.
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Instead, in our numerical calculations, we employ “smoothed”
ion-core charge densities,

N (σ )(r, {ZI ,RI }) =
∑

I

ZI δ
(σ )(r − RI ), (B1)

where δ(σ ) is a normalized, isotropic three-dimensional Gaus-
sian of width σ containing a single unit charge. To the extent
that the smoothed distributions do not overlap with each other
or the fluid regions, the replacement of the point charges with
these distributions will not affect the “Ewald” energy among
the charged atomic cores or the dielectric screening effects.
In practice, we find good numerical solutions by employing
a relatively narrow width determined by the spatial resolution
of the calculation, so that σ corresponds to a distance of 1.40
points on the Fourier grid. (Specifically, this work employs
a plane-wave energy cutoff of 30 H, so that σ = 0.168 Å.)
This choice of parameters ensures that there is little overlap
among the Gaussians and between the Gaussians and the fluid,
so that this replacement has a negligible effect on the screened
interaction among the atomic cores.

These smoothed distributions, however, do overlap with
the valence electrons, an effect which we must compen-
sate. We compensate this local effect exactly by replacing
the point-charge response G(r) in the modification of the
pseudopotential (A4) with the response corresponding to the
smoothed densities,

G(σ )(r) ≡ erf (|r|/
√

2σ 2)

|r| . (B2)

We also represent the core-electron densities in Eq. (8) that
prevent fluid penetration into the atomic cores, and whose
form is thus not critical, with Gaussian distributions

nc(r,{RI }) = C
∑

I

δ(rc)(r − RI ). (B3)

Alternatively, for this density, one could use the core-electron
density from the partial core correction from an appropriately
designed pseudopotential. Because the role of nc in our
framework is simply to prevent penetration of fluid into the
ionic cores, the precise values of the norm C and width rc are
not critical. We find that the choice C = 0.3 Å−3, rc = 0.2 Å

works well for this purpose for all the species in our
calculations.

Finally, with the above definitions in place, we have
taken care to make all replacements δ3(r) → δ(σ )(r), G(r) →
G(σ )(r), and nc(r,{RI }) = C

∑
I δ(rc)(r − RI ) in the appropri-

ate places in the expressions for the total free energy, in the
functional derivatives appearing in the effective Kohn-Sham
potential (A5), and in the expressions for the Hellman-
Feynman forces on the atoms (A6). These substitutions com-
plete the numerical specification of the functionals employed
in our calculations.

We find that standard electronic structure methods work
well with our functionals. The one equation whose solution
requires new algorithms is the modified Poisson-Boltzmann
equation, which, unlike the standard Poisson equation, does
not have a direct analytic solution in Fourier space. To solve
this equation, we have, however, found a simple to imple-
ment, yet highly efficient preconditioned conjugate gradient
algorithm.

The portions of the functional which depend on the potential
field φ(r) appear in EC in Eq. (A2), which is a quadratic
functional whose maximum corresponds to the solution of
the modified Poisson-Boltzmann equation (10), and whose
quadratic kernel is

Q = (∇ · ε∇ − εbκ
2)/(4π ). (B4)

We chose to solve this equation in Fourier space, where
the diagonal elements of this kernel have a very simple
approximate form, which leads to the diagonal preconditioner,

K(G) = (ε̄G2 + εbκ̄2)−1, (B5)

where ε̄ = 1
�

∫
ε(r)d3r and κ̄2 = 1

�

∫
κ2(r)d3r are the aver-

age values of these parameters over the unit cell. This diagonal
preconditioner completely ignores the spatial variation of the
dielectric constant. A more effective preconditioner—which
may be obtained by building in this inhomogeneity—is
calculated by first multiplying by

√
[K(G)] (the square root of

the diagonal preconditioner) in Fourier space, transforming to
real space and dividing by ε(r), then returning to Fourier space
and again multiplying by

√
[K(G)]. This inhomogeneous

preconditioner requires more time to evaluate for a single
iteration than the diagonal preconditioner, but reduces the total
number of iterations required significantly.
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