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The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials.
Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring
meta-atom is determined, and the effective permittivity tensor of the metamaterial is calculated for normal
incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity
tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical
properties of planar chiral structures. Its transmission spectra are different for right-handed versus left-handed
circular polarization of the incident wave, so the structure changes its transmittance when the direction of

incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split
ring. The proposed approach can be generalized to a wide variety of metal-dielectric metamaterial geometries.
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I. INTRODUCTION

The concept of metamaterials have drawn a strong interest
ever since fabrication and characterization of such structures
became feasible. The ability to engineer the metamaterial
elements (“meta-atoms”) in a largely arbitrary fashion adds a
whole new dimension of freedom in material science. Artificial
materials show promise for a wide range of unusual physical
phenomena, some of which are rare or absent in nature.
Examples include negative refraction,! hyperbolic dispersion
relation resulting in anomalously high density of states in a
wide frequency range,” or support for transformation optics,*~
offering superior degree of control over light propagation and
guiding.

More specifically, if the shape of the meta-atoms is chiral,
i.e., when the meta-atom cannot be superimposed with its
own mirror image, such metamaterials resemble naturally
occurring optically active media and outperform them by
orders of magnitude.®® More recently, following a seminal
paper by Plum et al.,'® planar chiral metamaterials (PCMs)
were introduced. They consist of planar meta-atoms on a flat
substrate'%-!? that cannot be superimposed with their in-plane
mirror image without being lifted off the plane. In other words,
truly chiral metamaterials possess distinct 3D enantiomers
while PCMs do not, but can be said to possess distinct 2D
enantiomers [see Fig. 1(b)].

A notable feature of the PCMs is their asymmetry in
propagation of electromagnetic waves incident from opposite
directions or having different (right- or left-handed) circular
polarization.'? This directional asymmetry results from the fact
that the wave propagating in the opposite direction effectively
interacts with the mirror image of the original structure.
Therefore it is a manifestation of asymmetry between 2D
enantiomers. This makes PCMs distinct from 3D chiral
metamaterials’%!* where 3D enantiomers do not flip when
the wave propagation direction is reversed.
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Directional asymmetry is also known to exist in other
environments such as the Faraday cell. In this case, however,
it is usually attributed to nonreciprocity due to the presence of
magnetic field, while PCMs do not have such nonreciprocity.
Further analysis reveals that both in Faraday media and in
optically active liquids the waves whose polarization state does
not change during propagation (polarization eigenstates) are
circularly polarized and counter rotating, i.e., they come in
pairs of eigenwaves one of which has right-handed (RH) and
the other left-handed (LH) circular polarization. In contrast,
PCMs have polarization eigenstates that are elliptical and
corotating,'’ meaning that their handedness is the same for
both eigenwaves in the pair.

Thus, while 3D chiral metamaterials are simply an analogy
of bi-isotropic (e.g., optically active liquids) or bianisotropic
(gyrotropic) media, PCMs clearly represent a distinct type of
electromagnetic materials, apparently without an immediate
naturally occurring counterpart. Hence explaining the exotic
optical properties of PCMs certainly poses an exciting problem
in theoretical electrodynamics. On an abstract crystallographic
level, it has been shown recently that a combination of
birefringence and circular dichroism provides a basis for
optical manifestation of planar chirality, and that an ellipti-
cally dichroic medium should exhibit characteristic optical
properties of a PCM.'#

On a more involved, microscopic level, several explanations
of PCM operation have been developed. Most works attribute
the dichroism to polarization-sensitive excitation of dark
plasmonic resonant modes in meta-atoms. In a variety of
PCM designs, this polarization sensitivity is attributed to
magnetic dipole excitations that become “trapped” due to
poor coupling with the incident wave.!>!>1® Other accounts!”
build up on earlier multipole treatment of metamaterials'® to
express the meta-atom’s dichroic response based on collective
dipole oscillations in its individual segments. Still other
works attempt to formulate the theory of PCMs by treating
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FIG. 1. (Color online) (a) Schematic of a bilayer (3D) vs
planar (2D) chiral metamaterials and (b) illustration of 3D and 2D
enantiomers.

the meta-atom as a plasmonic oligomer and calculating its
response in coupled dipole approach.'®2°

However, an ab initio theoretical description of PCMs,
which would explain their dichroic behavior on a microscopic
level and independently of a particular PCM geometry, is still
missing. A first attempt, based on considering the response of
the meta-atom in terms of the dynamics of individual electrons
(Lorentz theory), was made in Ref. 14. That attempt, however,
was only successful in arriving at the right form of the meta-
material’s effective dielectric permittivity tensor, reproducing
qualitatively correct optical properties of a PCM. A more
rigorous, quantitative description with a detailed analysis of
the applicability range for the Lorentz theory is still called for.

In this paper, we make a further step towards an ab initio
description of metamaterials and present a detailed route to
arrive at the chiral properties for the asymmetric split-ring
PCMs.!'? We start by considering the dynamics of free electrons
in an arc-shaped metallic element in presence of an external
electromagnetic wave. The electron motion is shown to be
determined by (i) screening forces caused by the charge
redistribution in the external field and (ii) electromotive forces
caused by currents flowing in the segment as the charges
redistribute. These forces exert springlike and inertia-like
effects on an electron, respectively, and can be associated
with capacitance-like and inductance-like contribution in an
equivalent LC circuit. Together, these two kinds of forces
give rise to a particle plasmon resonance. Its properties
are derived directly from geometric dimensions of the arc
segment and material properties of the metal without the need
for phenomenological parameters. By considering two such
segments in close proximity, the electromagnetic response of
a split-ring meta-atom is evaluated.

In order to connect the meta-atom’s response to the exotic
properties of PCMs described previously, a standard homoge-
nization procedure?'*? is then employed to derive the effective
dielectric permittivity tensor for the PCM. Since the PCM
in question is a surface rather than a bulk material,>»** this
procedure should not be regarded as a true homogenization,
and a multipole-expansion approach should give a more
accurate physical description.!”!8232¢ Still, interpreting a
metafilm as an effective medium can be feasible,>” and the
resulting effective permittivity tensor is shown to be valid
for normal incidence of light in the frequency range of the
fundamental resonance of the split ring. Moreover, it turns out
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to have the crystallographic structure of elliptically dichroic
media, as would be expected for planar chiral materials.'* A
similar approach was recently applied to calculate the THz
field enhancement in a nanoslit,?® the results showing a good
agreement with experiment.?’

The optical properties (transmission and reflection spectra)
of the PCM are then calculated using wave operator based
extension of standard transfer-matrix method.’**' In agree-
ment with previous theoretical and experimental results,'%!?
the spectra are sensitive to whether the incident wave has left-
or right-handed circular polarization. This difference, which
translates to directional asymmetry,'? can be used to quantify
the strength of planar chiral properties. The dependence of
this strength on the geometrical parameters of the split ring is
analyzed. When the split ring is symmetric, i.e., when there
are no distinguishable 2D enantiomers, optical manifestation
of planar chirality is seen to vanish as required by symmetry
and reciprocity constraints.>> Maximum chiral properties are
observed when the enantiomers are most distinct.

The proposed approach can be relatively straightforwardly
extended to a wider variety of shapes for planar meta-atoms.
Moreover, the model lends itself to an extension along the
lines of Refs. 17 and 18 to the cases of oblique incidence and
nonplanar meta-atom shapes. The results obtained can also
be generalized from a single PCM to PCM-based multilayers,
inasmuch as such generalization can be performed.*?

The rest of the paper is structured as follows. In Sec. II, the
Lorentz theory is employed to arrive at the electromagnetic
response of a single split-ring meta-atom. Section III follows
with the procedure to arrive at the effective permittivity
tensor of the PCM. The structural properties of this tensor
are analyzed, and calculation of the PCM’s optical spectra
is outlined. In Sec. IV, the results on calculated spectral
properties of split-ring PCMs are presented and compared
with numerical simulations. In Sec. V, the relations between
chiral properties and meta-atom geometry are systematically
analyzed. Finally, Sec. VI summarizes the paper and outlines
future extensions for the proposed theory.

II. RESPONSE OF A SPLIT-RING META-ATOM

As an example of a planar chiral metamaterial, we consider
atwo-dimensional array of chiral split rings (CSRs). The corre-
sponding meta-atom is shown in Fig. 2. It comprises a metallic
ring broken into two segments in an asymmetric fashion, so that
two 2D enantiomers can be distinguished [see Fig. 1(b)]. CSR
metamaterial was chosen for its relative geometrical simplicity
and for availability of previous experimental results.'?

The lateral width of the ring d is assumed to be much smaller
than its radius R, and its thickness 4 is even smaller. The ring
sits atop a thicker dielectric substrate. The metal of the ring
is taken to be copper,®* and the permittivity of the substrate
is &4. Both materials are nonmagnetic. A monochromatic
incident wave with electric field E = E( exp(—iwt) is assumed
to illuminate the material, @ being the angular frequency of
the wave.

A. Dynamics of the electrons

We begin by considering the motion of an electron in a
finite-sized metallic inclusion. Each electron is affected by
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FIG. 2. (Color online) (a) Top view and (b) side view of a CSR
unit cell; (c) schematics of the induced charge redistribution in a CSR:
Aqi2 = X1 ,AS, where AS = hd. The parameters are as in Ref. 12
(cell size: L = 15 mm, ring radius: R = 6 mm, ring width: d =
0.8 mm, ring thickness: & = 35 pum, substrate thickness: D = 1.6
mm, substrate material: dielectric with ¢, =4). The angles
determining the CSR composition are o; = 140°, o, = 160°,
B1 = 40°, B, = 20°.

the driving force eE originating from the external electric
field, the friction force —my v due to losses in the metal, the
screening force F¢ resulting from other electrons as they are
redistributed in the inclusion by the external field, and the
electromotive force F; due to currents produced by electrons
as they move under the action of the field. Here, m and e < 0
are electron mass and charge, v is its velocity, and y is the decay
frequency for the metal (a friction coefficient for electrons). By
determining the dynamics of the electrons in the metal and by
averaging this dynamics over the meta-atom, its polarizability
can be determined, and one can introduce effective dielectric
parameters of the entire metamaterial.

It should be noted that averaging and homogenization are
two distinct procedures. From the averaging of the microscopic
parameters, we get the average displacement of electrons
and the overall polarizability of the metal ring segments.
Specifically, the averaging yields the resonance frequency and
spectral shape. Once the polarizability of the metal segments
is known, the effective medium parameters can be introduced
by homogenization. To be able to connect the properties of
PCMs with those of bulk planar chiral media, we employ the
standard approaches used for bulk metamaterials. However, it
should be realized that the resulting effective parameters can
be attributed to the PCMs under study only in specific cases
(for the normal incidence of light).

The screening force F¢ is expected to depend heavily on
the geometry of the metallic inclusion. Under the action of
the field, all the electrons are displaced, and uncompensated
charges are accumulated at the edges of the metal in the
direction of the field. If the distance between the edges in that
direction is small and the edges are wide enough, the induced
charges produce the field similar to that inside a capacitor,
i.e., it is mostly homogeneous and compensates the external
field. Therefore it can be assumed that the electrons simply
won’t move between such edges. So, for our geometry we can
neglect out-of-plane and radial electron motion as long as d
and & are small.

The displacement of an individual electron ¢ therefore
depends on time and on the position in the ring: { = ¢(¢,¢). It
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is subject to the equation of azimuthal motion for the electrons
(¢ =0¢/0t):
mé +myt = e, (¢E+Fc +Fyp). (1)

Equation of motion introduces resonant features in the
response of the structure. Electrons are pushed by the external
driving forces, which induce both electric currents in the ring
and charges at the tips of the ring segments. The charges create
a “restoring force” F¢ like the one in a harmonic oscillator
(e.g., by Hooke’s law). The electromotive force F; caused by
the current is the reason of the additional nondynamic inertia of
the electrons. As in the ordinary classical mechanics, a particle
under these forces will be subject to resonant motion, which
should manifest itself as resonant properties of the effective
medium.

Usually, the electron displacement is small and in good
accordance with the external field, so for a subwavelength-
sized inclusion it can be considered as position independent.
In this case, ¢ (t,¢) = s(¢). However, this behavior is expected
to break down in the vicinity of a particle plasmon resonance
where the electron shift can be substantial and more in
accordance with the resonant mode. Therefore ¢ becomes
very sensitive to the ¢ dependence. At the fundamental
resonance, it is reasonable to assume the standing-wave
positional dependence in the two ring segments,

¢t @) = s1(t)(w/2) sin[m (¢ — ¢1)/ 1],

0t @) = s2(t)(w/2) sin[m (¢ — ¢3)/ 2],

where s = (1/0[1)];‘?2 Gide and s, = (1/ar) f;:‘ £dg have
the meaning of an averaged electron displacement in the
corresponding segment. It is seen that the electrons do not
move near the tips of the splitringsas ¢ (¢,¢;) = 0,i = 1,...,4
(see Fig. 2), and maximally shift in the middle of the segments.
While the positional dependence in ¢ can be safely neglected
in the off-resonant situations, it will be shown below that it is
required to correctly predict the resonant frequency of a CSR.

The effective response of the entire meta-atom is obtained
by averaging over all available azimuthal angles where metal
is present, i.e., for ¢ from ¢; to ¢, and from ¢3 to @4 [see
Fig. 2(c)]. With the brackets (A) denoting the averaging of
A over ¢, the equation of motion for the averaged electron
displacement s takes the form

m§ +mys = e((e, - EV) + (e, -Fc) + (e, - Fr).  (3)

@)

We assume that the metal is fully embedded into the substrate
medium, so external field E coincides with the field in the
ambient medium E¢.

B. Screening force and induced charges

Since the accumulation of charges along the ring edges
only serves to prevent the electron motion in the radial
direction, the screening force F¢ inside the ring segment can
be approximately described as the Coulomb force generated
by the charges at the tips of the segment, labeled by the points
@1 and ¢, (@3 and @4). This assumption (which is valid outside
the immediate vicinity of the tips) is further substantiated by
the fact that charges do accumulate mostly near the tips of
metallic objects. In a CSR, we need to take into account the
tips of the other segment in the same split ring [see Fig. 2(c)],
as well as the influence of the neighboring CSRs.
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The screening force on electrons in a ring segment from
its own tips is essentially similar to that in a metallic rod with
width d and thickness /. For the rod placed in dielectric with
& = g4, the force is equal to

i dey
F"(x) = ——— arctan
Ed

( hd /4 ) @
x/x2+h2jA+d2j4)’

where ¥ is the surface charge density at the tip facet of the rod
with area AS = d x h and x is the distance from the center of
the facet to an observation point. To avoid unphysical behavior
of the force FUP very close to the tip, the positional dependence
of the displacement ¢ (¢) in Eq. (2) has to be taken into account
as X =eN{(t, o).

The expression given by Eq. (4) is approximately valid if
x is small enough so that the arc segment with length x is

e, (@)[Lym + Re (¢1)]
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not significantly different in shape from a rod with dimensions
x X d x h. It can be assumed so if the line connecting the
observation point with the tip lies wholly within the metal,
ie.,if0 <x < 2v/Rd forh < d.

Outside of that range, Eq. (4) no longer holds. However,
for the observation point far away from the tips one can regard
the charges accumulated at the tip as one point charge and
calculate the screening force according to the Coulomb law.?
Unlike FUP, the forces “in the center” of an arc segment
(labeled F°") are not dominated by contribution from any
particular tip, so both tips of the segment in question, as
well as the tips of the neighboring segment in the ring and
from the neighboring rings need to be taken into account.
As a result, we get the following expression for the upper
segment:

cen eElAS
F7 =Fc e, = Z{

_ e¢(§0)[an + Rer(¢2)] }

&d nm |Rer(‘p) - an - Rer(‘pl)P |Rer((p) - an - Rer(§02)|3
eZZAS Z { e¢(§0)[an + Rer((p3)] _ ew((p)[an + Rer(§04)] } (5)
¢ 4= |IRe;(®) — Luw — Re;(¢3)]°  |Re;(9) — L — Re (@) |

where L,,,, = ne, + me, is the position of a CSR in the (x, y) plane, characterized by a couple of lattice indices n and m. The
charge densities for the upper and lower segments are X = eN ¢ (t,¢) and Xy = eN$(¢,¢), respectively.

To obtain the averaged screening force for the meta-atom, we assume that it is given by Eq. (4) for 0 < x < 2+/Rd [i.e.,
within an angle ¢ = 2./d/R from each tip, see Fig. 2(c)], and by Eq. (5) elsewhere. Accordingly, the averaging over the upper

segment results in the formula

1 e1+dp
(e,Fc)1 = —(/ F“Pdgo—f-/
o1 P1

o148

=3¢

©2

oo+ [

F‘ipdso), ©6)
=8¢

Similar expressions can be obtained for the lower segment. These integrals cannot be evaluated in closed form, but can be easily
calculated numerically. The resulting screening force for the two segments in the ring can be finally expressed as

Fip = —ki12812 — ki22152,1, N

where k;; are coefficients obtained from the integrals in Eq. (6). They have the meaning of “stiffness” coefficients in a mechanical

oscillator and are given by

hd /4

ki1 =

moy (R TX mwyhd (2475 (o — @ 3)
f sin [ —— ) arctan dx — / sin | ———
a12Req Jo o12R x/x2 + h2 /4 + d*/4 81284 Jy 5480 Q12

ego ((0) [an + Rer (¢2,4)]

Z { e(p((p)[an + Rer(¢1,3)] _
|Rer((p) - an - Rer((pl,3)|3

n,m

[Re (@) —

(ﬂ’
an - Rer((p2,4)|3 }

®

P _ mawyhd / e [n(w - wz.l)] )3 { e (@)Lun + Rey(93,0]  ey(@)[Lum + Re(¢4)] } do
' 8051,28d ¢1.3+8¢ 21 |Rer((p) - an - Rer(‘p3,1)|3 .

n,m

C. Electromotive force

The force F; = eE,,, appears because the electron motion
along the split ring under the action of the external electric field
can be regarded as currents in the loop and induces secondary
magnetic field, which in turn penetrates the closed contour
of the loop and creates an electromotive force. This force is
directed in opposition to the induced current in accordance
with Lenz’s rule.

|Rer((p) - an - Rer(¢4,2)|3

To determine F;, we start from the Maxwell equation in
integral form:

1.
/Eemdl - —-B.S. )
C C

The integration is performed along the loop of the ring C, while
S = m R? is its area and B, is the z component of magnetic
field. Assuming homogeneous electromotive electric field over
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the contour and taking the length of the loop as 2w R and its
area as S = 7 R2, the force affecting an electron in a CSR is

(e F) = ———B.. (10)
Since the magnetic field of a normally incident wave has no

z component, B, can only originate from the current flowing
along the loop. The field can be estimated from the Biot-Savart

law,
Idl xr
B(ro) = / , (11

cr3

where r is the radius vector from the current element /dl1 to
the observation point ry. The current / in the metallic parts of
the 100p is L, = €N§:1,2AS = eNé'l’ghd.

We then assign the magnetic field in the loop to be the
magnetic field at the center of the split ring. The magnetic
field created by the current in each segment is summed:

1
B, = — (L) + hay), (12)
cR
so the electromotive force finally equals
wyAS
Fr=(e, -Fr)=-m 5 (0181 + a28)). (13)
8me

The force F, is proportional to the electron’s acceleration,
which allows us to regard the coefficient in front of §; , as an
effective mass.

D. Equation of motion

By substituting the screening [Eq. (7)] and electromotive
[Eq. (13)] forces into equation of motion for the electrons (3)
in each segment, we derive the following coupled differential
equations:

mus +mps + v+ kusi + kizsa = e({ey)1EY),

; ; . (14)
ma§1 + masy + y$r + kaosy + kasi = e({ey)2EY),
where
ocla)f)hd azw?)hd
myy=m-+m , mp=m
8mc? 8mc? (15)
ala)lz)hd ocza)%hd
myy =m 82 my =m-+m Py
Here, (e,) = (PZl(/’l o> eydy and (e,), = wl% o egde de-

note the averaging of the vector e, over the upper and lower
segment, respectively (see Fig. 2).

For the geometrical parameters of CSRs used, it can be
estimated that m(xla)f,hd/Sncz > m, which leads to m; ~
mo; and m» & my;. In other words, the effective mass of an
electron is dominated by the contribution of the electromotive
force rather than by the dynamic counterpart. However,
electromotive and dynamic masses can become comparable
at the nanoscale.

Note that the effective mass m;; can be regarded as
inductance, while the coefficients k;; have the meaning of
inverse capacitance. In this picture, it is seen that the proposed
model coincides with a well-known effective-circuit (LC)
model with the effective inductance and capacitance calculated
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from the material and geometrical properties of the CSR. This
result is not surprising because the LC model is expected
to be valid for millimeter-sized resonators at the gigahertz
operating frequencies. It also follows that the LC model
remains applicable as long as AS = hd > 8rc*/(a w)) ~
10713 m2.

In a CSR, the coupling between the two segments is
realized by means of the effective masses m, and mj; and
the “stiffness” coefficients kj, and k;;. As we have just seen,
all mass coefficients m;; are almost identical. It is not the
case for the coefficients k;;, which contain the contribution in
the vicinity of the tips FUP [see Eq. (6)]. This contribution
is greater than the forces in the central part of the ring
F" by about 10 times, so it can be considered dominant.
On the contrary, the coefficients k;j; contain only F", so
kij < ki;. Moreover, since k;; >~ m;;w® ~ m;jw” > k;j, so the
condition F" « F' allows the contribution of k; ji to be
entirely neglected. Thus we can simplify the expressions for
the remaining stiffness coefficients k;;:

2

Rég
P / sin[mx/(ct; 2 R)]
0

€401 2R
hd /4 >
dx
x/x2 + h2/4 + d?/4

Note that both tips for each segment are taken into account.

Equation (14) are essentially equations of motion for
two coupled oscillators with a time-harmonic driving force.
Therefore we look for a solution of these equations (14) in
the form s; » = exp(—iwt)l; », where w is the frequency of the
incident wave and /; and /, are constants. Then the equations
are simplified as

maw

kit =

(16)

X arctan <

(—mp0* —ioy + ki)l + (—mpo® + k)b = ele,) EY,
(—ma@* + kaly + (—mapne® — iwy + ko)l = e(e,)2E.
(17)
This system is easily solved with respect to /; and ;. So,

we find the averaged displacements of electrons in both CSR
segments of the ring:

1
I = W[Xll(‘o)(ew)l + Xlz(w)<e¢)2]Ed,
(18)
I, = I7Ne [x21(w)(e,)1 + x2(w)(e,)2]EY,
where
—ma)i(nga)2 +iyw — ko)
x1(w) = ,
Dy
maw?(mpw* — ki2)
_ o,
x2(w) = Dy ,
maw*(myo? — kap)
xo(w) = —2L , (19)
Dy
—maw(mp® +iyo — ki)
x22(w) = ,
Dy

Dy = (m10” +iy® — ki) (mpw® +iyw — k)

— (mpw® — kp)(may @ — kay).
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E. Polarizability of the meta-atom

Finally, to arrive at the effective polarization of the unit
metamaterial cell, we present it as a sum of the polarization of
both CSR segments and of the surrounding dielectric:

47 (P) = (1 — p; — pa)(eq — DE?
+4m Ne(pi{ey)151 + pa(ey)2s2), (20)

where p;, = Rdal,zh/LzD are filling factors of the two
metallic segments. By substituting the average displacement
(18) into Eq. (20), we get

47(P) = (1 — p1 — p2)(ea — DE?
+[p1{ey)1 ® (x11({€p)1 + x12(€p)2)
+ paley)2 ® (xa1(ep)1 + x22(e,)2)IEY, (21)

where (E™) is the thickness-averaged electric field in metal,
E¢ is the field in dielectric, and a ® b denotes an outer (tensor
or dyadic) product between two vectors.

The average electric field in the metamaterial cell approxi-
mately equals the electric field in dielectric, (E) ~ E¢. So, the
polarization of the cell can be expressed as

4 (P) = 47 x (E)
=[(eq — D) + J11(w){ey)1 ® (€)1
+ X12(w)((€p)1 @ (€g)2 + (€y)2 @ (€y)1)
+ Xn(w)(ey)2 ® (e,)21(E), (22)
where
Xij = pixij (., J =12). (23)

Notice that ¥12 = %21, so the susceptibility tensor x is symmet-
ric, as would be required by the reciprocity considerations.*

III. EFFECTIVE PARAMETERS OF A PCM

A. Permittivity and permeability tensors

To move on from a unit cell to the entire lattice of
meta-atoms comprising a PCM, one needs to take into account
that the field in each unit cell is modified by the presence
of the neighboring meta-atoms. (It is known that an array of
symmetric meta-atoms with no intrinsic chirality can exhibit
extrinsic chiral properties due to the way the atoms are
arranged in a lattice.>®) If the arrangement of meta-atoms is not
too dense so that the individual atoms remain distinct, it can be
assumed that the influence of the neighboring atoms is weak
and can be simulated by regarding the meta-atoms as effective
dipoles. The resulting field in each cell is equal to the sum of
the electric field averaged over the whole planar metamaterial
E and the field of the dipoles: (E) = E + 47 C(P), where €
is the interaction matrix.”! The interaction matrix depends on
the symmetry of the lattice. For a planar arrangement of atoms
(see Appendix), its form is

N D
C = 0.36—L (e, ®ex+e,®e, —2e Re,). 24)
Ed i

For the case D « L, the interaction matrix has negligible
components, and the average field in the metamaterial nearly
coincides with that in a single meta-atom: (E) ~ E. In our
case D/L ~ 0.1, therefore, the influence of the surrounding
meta-atoms can be non-negligible.
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FIG. 3. (Color online) (a) Real and (b) imaginary parts of the
components of the effective dielectric permittivity tensor for the split-
ring metamaterial with geometrical parameters given in the caption
of Fig. 2. In calculations, we neglect the force F°", so that k, =
ky; = 0 and ky; and ky, are given by Eq. (16). The copper ring is
characterized by w, = 2000 THz, y = 8 THz; permittivity of the
dielectric is g, = 4.

The resulting effective dielectric permittivity tensor of
the PCM can be derived from equations (E) = E + 47 C(P),
eetfE = E + 47 (P), and (P) = x (E). Its final form is

tei(@) = 1+4m(x ' —4n )™ (25)
and can be rewritten as a matrix:
Exx Exy O

Eeff = Exy Eyy 0 . (26)
0 0 e

Z

The components ¢;; are complex, and it is seen that . has the
structure of a dichroic and anisotropic medium, in line with
crystallographic expectations.'*

The typical frequency dependencies of &, €y,, and &, for
the example CSR structure in Fig. 2 are shown in Fig. 3.
It can be seen that the structure features a Lorentz-like
absorption resonance in the range near 5.1 GHz, in agreement
with experimental results for such CSRs.!? This resonance
corresponds to the minimum in the denominator Dy in Eq. (19),
so it is an intrinsic excitation in an individual meta-atom.

It is important to realize two fundamental limitations of
the presented homogenization approach. First, we neglect the
magnetic dipole and electric quadrupole contributions (they
have the same order of magnitude and should be accounted for
simultaneously'®). This can be safely done for the light nor-
mally incident onto a planar structure. Indeed, the quadrupole
moment Q has the form Q(z) = (Q 1 + 0;.e; ® e;) exp(ikoz),
where O e, =e,0, =0 and the z dependence in Q(z) is
caused by the external field. Hence the quadrupole contribution
has the form V Q(z) = ikoe, Q(z) and is z directed, resulting in
acontribution to ¢,,. The magnetic dipole moment is z directed,
too, since the electrons move in the (x, y) plane, which
results in effective magnetic permeability u = diag(1,1,u,,).
Therefore, these higher-moment contributions will not affect
Exx> Eyy, and &y, which are the only components that will play
a part in determining the normal-incidence transmission and
reflection spectra. So it is sufficient to consider just the electric
dipole moment, assuming p = 1 for the PCM.

Secondly, and perhaps more seriously, the presented
approach is commonly employed for bulk metamaterial
homogenization,”> and its applicability for metamaterial
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surfaces leaves room for uncertainty regarding how,
specifically, the homogenization in the z direction should be
performed. It is questionable whether a planar surface can
be described as a finite-thickness slab of a bulk effective
medium that would mimic the response of the metamaterial
for all cases of the incident light, even when magnetic dipole
and electric quadrupole contributions are taken into account.
It is commonly assumed that first-principle characterization
methods based on multipole expansion'”!824 should be used
instead of homogenization. Still, we can obtain the effective
material parameters valid in a specific case, in order to see
whether a bulk material with planar chiral properties can
be related to real PCMs.'* Hence we can continue with the
effective permittivity derived in Eq. (26), keeping in mind
that it is only valid for normal incidence of light.

B. Polarization eigenstates

Polarization of the eigenwaves of anisotropic medium
with dielectric permittivity (26) can be found from the wave
equation®’

[n*(1 —e, ®e,) — eerr]E =0, (27)

where n is the effective refractive index for the eigenwave. The
electric fields in two eigenstates take the form

Exx — Eyy £ \/(exx —&yy)? + 4s§y

2eyy

E. = Ex(l, ,0). (28)

Since the components of permittivity tensor are complex,
these eigenwaves are elliptically polarized. Their direction
of rotation (“right- or left-handedness™) can be defined by
the parameter ny = (|(9,(y/EX|)2iez -(Ex x E*i).37 An RH-
polarized wave has 1 > 0, an LH polarized one has ny < 0,
and, obviously, nL = 0 corresponds to a linearly polarized
wave whose sense of handedness cannot be determined.

Consequently, we can identify whether the calculated
effective parameters of the CSR metamaterial correspond to
those of a PCM by simply evaluating the product n = nyn_.
Conventionally, in isotropic or lossless birefringent media
n = 0 as the eigenwaves are linearly polarized. In 3D chiral or
Faraday media, n < O as the eigenwaves (either circularly or
elliptically polarized, depending on the presence of anisotropy
in addition to optical activity) are counter rotating. On the
contrary, PCMs (and elliptically dichroic crystals, see Ref. 14)
are characterized by corotating polarization eigenstates, so it
is expected that n > 0 in these media.

Figure 4 shows the coefficient 1 calculated for the CSR
metamaterial in Fig. 2 with dielectric permittivity shown in
Fig. 3. Indeed, it can be seen that n is positive for all frequencies
in the vicinity of the intrinsic resonance around 5.1 GHz. Thus
the signature crystallographic property of a PCM (corotating
elliptical polarization eigenstates) is indeed reproduced in the
effective medium, confirming that it is 2D rather than 3D
chirality that manifests in CSR metamaterials.

C. Transmission and reflection spectra

As the final step in the theoretical model, we briefly
outline the calculation procedure for the optical spectra of
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FIG. 4. Coefficient n vs frequency calculated for parameters
indicated in Fig. 3.

a PCM. Following the setup in Ref. 12, we consider the CSR
metamaterial of effective thickness D + h &~ D and calculate
the reflection and transmission coefficients of a dichroic and
anisotropic monolayer with dielectric permittivity given by
Eq. (25). Since we are interested in all possible polarizations
of the incident wave, it is convenient to make use of the
well known covariant operator generalization of the transfer
matrix method (the covariant Fedorov’s approach®’). For the
details on this method, the reader is referred to previous
publications. 303138

We define a unit vector q = e, pointing in the propagation
direction and write the Maxwell equations for a monochro-
matic normally incident wave in the form

d d
q*—H = —ikocE, q*—E = ikoH, 29)
dz dz

where ko = w/c is the vacuum wave number, and q* denotes
the antisymmetric tensor dual to the vector q [(qQ™)ix = &ijxq;>
&ijk 1s the Levi-Civita pseudotensor].30

The fields are always tangential, and the field vectors are
continuous across the layer interfaces. Equation (29) can be
combined into the form

dW(z)

= ikpMW(z), (30)

where, for nonmagnetic, nongyrotropic materials,

_ H . 0 —q*eq*
() ()

Here, I =1 — q ® q = —q*? is the projection operator onto
the plane normal to q and 1 is the three-dimensional identity
tensor. The fundamental solution of Eq. (30) is a matrix
exponential

W(z) = P(z)W(0), P(z) = exp(ikoMz), (32)

where 4 x 1 dimensional constant vector W(0) is the initial
field. The 4 x 4 matrix P(z) is called the evolution operator.
Taking into account that in the medium surrounding the
metamaterial layer (i.e., in air) the fields are related as q x E =
+7H depending on the propagation direction,?' the incident
and reflected waves at the input (air/PCM) boundary are related
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to the initial field W(0) as

1 1
W(O) = (1> Hine + (_1) Heeq. (33)

From Eq. (32), the field at the output (PCM/air) interface is
P(D)W(0). The evolution operator of the metamaterial P can
be derived by setting &€ = g in Eq. (31).

On the other hand, the field at the output interface is the
transmitted wave

1
W(D) = (1) H;. (34)

Hence the boundary conditions take the form

(3)me=rp (Gt () )] 09

Multiplying Eq. (35) by the rectangular block matrix (1 1)P~!
and thus eliminating H..q, the expression for the transmitted
magnetic field becomes

-1

H, =2 [(1 nHp! (;)} Hin, (36)

which, along with the evolution operator P, will depend
on . Finally we define the transmission coefficient of
the metamaterial slab as the ratio between the intensity of
transmitted and incident waves:

|Hie(w)|?
T = —0.
(w) |Hinc |2

Equations (36) and (37) hold likewise for the electric fields.*

(37

IV. COMPARISON WITH NUMERICAL SIMULATIONS

Varying the frequency and polarization of the incident
wave Hj,., one can obtain the corresponding transmission

(@) L=15mm
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spectrum as outlined in the previous section. We will be
particularly interested in investigating the PCM transmittance
for LH versus RH circularly polarized incident wave, labeled
T (w) and Tg(w), and corresponding to complex vectors
H;,. = \%(e)r +ie,), respectively. Here, T;(w) and Tr(w)
are the overall transmittances, without regard for polariza-
tion of transmitted light. The vast majority of materials
(either naturally occurring or artificial) do not discriminate
between LH and RH circular polarizations in transmittance,
so that AT (w) = Ty (w) — Tr(w) is zero for all frequencies. A
nonzero AT signifies the presence of circular dichroism and
enantiomeric asymmetries.

To test the applicability limits of the proposed model, we
first compare analytically and numerically calculated T (w)
and Tr(w) for our example CSR structure of Fig. 2 with
varying ring radius R and lattice period L. Numerical results
are obtained using a commercially available finite integration
solver (CST Microwave Studio) in the frequency domain,
using periodic boundary conditions in the x-y directions.

We see that a resonant dip in the transmission that results
from the intrinsic resonance for the components of ¢ in the
analytical model (see Fig. 3) is reproduced in numerical calcu-
lations and corresponds to the fundamental dipole excitation of
the CSR.*’ The resonant frequency f;.s changes when the ring
radius is varied [see Fig. 5(a)]. The resonance has a Fano-like
shape, which is also reproduced numerically.

For frequencies below fis, we see a good agreement
between analytical and numerical results, which gradually
worsens as R is increased in comparison with L, so that
meta-atoms become closer to each other and the assumptions
about a sparsely packed lattice that were needed in deriving
Eq. (25) become increasingly violated. This also causes a
mismatch between analytically and numerically derived fis.
On the other hand, for frequencies above f.s the agreement
is worse because the numerical spectra are affected by higher-
order CSR resonances (which are explicitly not accounted for

- .._h_\.R =3 mm

(b) R =6 mm

..., L=15mm

L R

model i . 1
- simulation 1} i B

T
1.04
0.54| ...
0.0-
2 4 6 8 10 12
Frequency f (GHz)

4 6 8
Frequency f (GHz)

N

FIG. 5. (Color online) Comparison between the proposed model and the numerical simulation (CST Microwave Studio) for the transmission
spectra for left-handed (7} ) and right-handed (7y) circularly polarized incident waves. Calculations are done for asymmetric ring metamaterial
with o; = 140°, ap = 160°, B; = 40°, and B, = 20° for different ring radii and lattice constants: (a) for L = 15 mm and varying R, (b) for
R = 6 mm and varying L. Other parameters are as given in Figs. 2 and 3.

075138-8



ASYMMETRIC TRANSMISSION IN PLANAR CHIRAL ...

in our determination of a CSR’s response), as well as the
Bragg resonances of the lattice, which are also neglected in
our account under the assumption that the effective medium is
regarded as homogeneous.

Figure 5(b) shows the dependence of the analytical versus
numerical spectra as L is varied for the constant CSR radius. It
is seen that the agreement below fi. is restored as L increases,
confirming our reasoning. However, the agreement above fi.
becomes much worse because the Bragg resonances scale as
SBrage ~ 1/L, and are thus pushed into lower frequencies.
Physically it means that the upper frequency limit where L <
A (and where the structure can be regarded as a metamaterial)
becomes smaller. Ultimately, fprge moves past fres, Which
is where the response of an individual meta-atom becomes
irrelevant to the whole optical properties of the structure.

Therefore as far as the quantitative agreement of 7(w)
is concerned, the model is found to be valid for the lattice
period L not exceeding 20-25 mm and for the CSR radius R
significantly lower than L. Most discrepancies occur in higher
frequencies (f > fs) and can be attributed to higher-order
and/or lattice resonances which have been left out of consid-
eration intentionally. The tradeoff between split-ring coupling
and grating diffraction is mentioned in the recent Ref. 41.

Good agreement within these validity limits of the model
can also be confirmed in the spectra for the asymmetry
AT (w) = Ty — Ty (see Fig. 6). Moreover, we see that in a
vast majority of cases, 7;, ~ Tk everywhere except the vicinity
of fis, Which coincides with the range where polarization
eigenstates are corotated elliptical (see Fig. 4). So, many
quantitative discrepancies in the transmission spectra have
no effect over AT and the model remains qualitatively valid
for all the parameter values shown in Fig. 6 with mismatch
to the resonance frequency frs and the maximum value of
AT ( fres) gradually increasing as the approximations behind
the presented model become less accurate. The exception
is the case of larger L where nonzero AT is also seen at
odd-numbered higher-order CSR resonances [see Fig. 6(b)].
However, since such additional chiral response is spectrally
well separated from the fundamental resonance that interests
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us, it does not affect planar chiral properties of CSRs under
present investigation.

Hence numerical simulations confirm that the proposed
microscopic description of the CSR structures reproduces
the PCM behavior, as reported in previous experiments.'%!2
Within the assumptions of the model that takes into account
only the fundamental particle plasmon resonance of the CSR
segments, the model provides a good agreement in a wide
range of parameters. Having established this, we move on to
investigate how the spectrum A7 (w) behaves in various CSR
designs.

V. GEOMETRICAL TRANSFORMATIONS
WITH CHIRAL SPLIT RINGS

A nonzero AT, signifying the presence of circular dichro-
ism, carries special significance for 2D structures. One notices
that spatial inversion of the whole system with respect to the
plane normal to the metamaterial changes the handedness of
the circular polarization (LH <> RH), and replaces the structure
with its enantiomeric counterpart (see Fig. 1). Hence, if T (w) is
the spectrum of any planar structure and 7 () is the spectrum
of its enantiomeric counterpart, then

Ty r(@) = Tg. (@)

for any structure at any frequency. Therefore, for any planar
meta-atom with no distinct 2D enantiomers (i.e., with an in-
plane symmetry axis), AT = 0. So, it is important to point out
that AT # 0 indicates the presence of planar chirality. A CSR
of the design considered here (see Fig. 2) becomes symmetric
and therefore achiral if either the ring segments are of equal
length (o7 = «»), or the gaps between the segments are equal
(B1 = Bo), or else in a few degenerate cases when there is
effectively just one segment (i.e., ¢y =0, o =0, B; =0, or
p2 = 0).

Furthermore, the reversal of the direction of incidence
also transforms the structure into its enantiomeric counterpart
but does not change the incident wave polarization.
Hence, if the transmission spectra for the forward- versus

(38)

(a) ‘ __L=15mm_ ‘ ‘ (b) ‘ R=6mm_ ‘
A | |
R=3mm J\:l\
L=15mm AR
,'. ‘ !
4 mm J)\L 20 mm )l!l\

AT [ AT lﬁ\
i 25 mm )
0.10 | {1 0.10
5mm W \
) A i
0.05 :‘l ] o005 30 mm ‘
:l —— model ,
6 mm ‘\( ‘ — — — simulation ' i
0.00 : ; = ; . 1 0.00 ; 35 mm n — -
2 4 6 8 10 12 2 4 6 8
Frequency f (GHz) Frequency f (GHz)

FIG. 6. (Color online) Same as Fig. 5 but for the transmission difference of AT = T, — Tk.
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FIG. 7. (Color online) Difference of transmission for LH and RH
circularly polarized incident waves for different ring geometries with
L =15mm, R =6 mm, o) = 140°, o, = 160°, B, = 60° — B,: (a)
comparison of AT for enantiomeric counterparts (8, <> f,) in the
range 10° < B, < 50° and (b) evolution of maximum AT (ATcqx)
between symmetric and asymmetric CSRs for g, < 30°.

backward-incident wave are labeled T/, respectively, then
Eq. (38) results in

T h@) = T (@) = Tyt (), (39)

again, for any structure at any frequency.’’ Therefore a
nonzero AT is a measure of the planar structure’s directional
asymmetry and its magnitude can be used as an indication
of how strongly the planar chiral properties of a structure
manifest themselves optically.

Consider first the displacement of one of the ring segments
along the circle by varying f; and setting 8, = 360° — 8, —
(o¢; + o). The results are presented in Fig. 7. Not surprisingly,
chiral properties are rather weak for 8; > B, and become
larger as 3, increases towards the case of Fig. 5 where 8; = 40°
and B, = 20°. After a certain optimum value, however, AT
decreases again, vanishing completely in the symmetric case
B1 = B> = 30°. So the proposed theory confirms that both
circular dichroism and directional asymmetry indeed vanish
when mirror symmetry is present.

The spectral shape AT (w) is seen to have a wider shape
for small B,, becoming the narrowest for the optimal case
and then diminishing without significantly changing its shape.
This is what one would expect as the intersegment coupling
(which is stronger for smaller 8, because the tips are in close
proximity) pushes the particle plasmon resonances of a CSR
apart from each other. This feature is specific to CSR design:
while the response of each arc-shaped segment in a CSR
closely resembles that of a rod of equal length,!” the split
ring is a geometry where the tips of the segments are in much
closer proximity than for the rods placed at similar distance.
Hence the field enhancement near the tips causes the response
of the whole CSR to depend strongly both on the individual
segments and on intersegment coupling.

In addition, making B, small while maintaining the CSR
orientation should increase the contribution of extrinsic effects
to chiral properties.>® This is indeed seen in Fig. 7(b), and this
is likely the reason of a small but nonvanishing AT for these
values.

Displacing the ring segment past the symmetric case 8; =
B> = 30°, we notice in Fig. 7(a) that AT changes its sign
and that an exchange of 8; <> 8, results in the inversion of
planar chiral properties [AT (w) <+ —AT (w)]. This entirely
confirms the result expected from Eq. (38), taking into account
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FIG. 8. (Color online) Difference of transmission for LH and
RH circularly polarized incident waves: (a) for oy = 140°, 8, = 20°,
varying B and o, = 200° — §; and (b) for a; = 160°, B, = 20°,
varying B, and o; = 180° — B;.

that structures obtained by an exchange of 8; and B, are 2D
enantiomeric counterparts.

We also examine CSRs with variable length of the longer
ring segment by varying f8; and «, while keeping the other
two angles constant (note that all the time o) + o + 81 +
B2 = 360°). The results are given in Fig. 8(a). As expected,
AT vanishes for the two symmetric cases ; = 8, = 20° and
B1 = 60° (¢; = ap = 140°). The sign of AT changes when
these two symmetric cases are traversed. The increase of the
peak frequency f.s corresponds to an increase in the stiffness
coefficients kj; 12 as one of the segments becomes shorter,
affected by a change in the coupling between the segments’
resonances as they differ in length more strongly.

Similarly varying the length of the shorter ring segment,
i.e., changing the angles f8; and «;, the same behavior is
observed, as can be seen in Fig. 8(b). The spectral shape
changes in the same manner as in the previous case, the
peak in AT becoming broader for larger 8;. However, this
case is specific because o, + B, = 180°, so there is only one
symmetric shape (8; = B, = 20°, a1 = o, = 160°). Because
of this “degeneracy,” AT does not change sign when traversing
the symmetric case. The same property can be responsible for
higher peak values of AT ( fies)-

Finally, to determine how the chiral properties of PCMs
scale with the size of the meta-atoms, we investigate the
dependence of AT on the ring radius R in Fig. 9. The resonant
frequency fi.s depends on the radius primarily due to 1/R
appearing in the stiffness coefficients k;; [see Eq. (16)]. The
estimated dependence fis ~ 1/R is confirmed in Fig. 9(b).
The resonance peak in AT (w) broadens as R increases.
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FIG. 9. (Color online) (a) Difference of transmissions of LCP
and RCP incident waves for different values of ring radius R.
(b) Dependence of the peak frequency fies(R).

VI. CONCLUDING REMARKS

In conclusion, we have proposed a microscopic theoretical
description of planar chiral metamaterials based on the
electronic Lorentz theory. Using a chiral split-ring (CSR)
geometry'? as an example and considering the dynamics
of individual free electrons, we arrive at expressions for
electromagnetic response of a single split-ring meta-atom. Its
polarizability is derived analytically without phenomenolog-
ical parameters. The effective dielectric permittivity tensor
&efr 18 then obtained from the single-atom response along the
lines of standard homogenization techniques,?'?? to the extent
that these techniques can be used at all to describe planar
structures. 27 Even in this simplified consideration, the
crystallographic structure of this tensor is shown to coincide
with that of elliptically dichroic media, as would be expected
from earlier theoretical studies.'*

The transmission spectra of a CSR-based PCM are then
calculated using the standard wave operator based extension
of transfer-matrix methods.’>*! In agreement with previous
theoretical and experimental results,'%!? the spectra show a
difference with respect to whether the incident wave has
left- or right-handed circular polarizations [AT (w) = T (w) —
Tr(w)]. This difference, which translates to directional
asymmetry,'? is shown to strongly depend on the geometrical
parameters of the CSR (see Figs. 7 and 8). Whenever the split
ring is symmetric, i.e., when there are no distinguishable 2D
enantiomers, optical manifestation of planar chirality is seen
to vanish [AT (w) = 0], and AT changes its sign when the
structure is replaced with its enantiomeric counterpart [see
Fig. 7(a)].

Note that we have deliberately chosen the overall CSR
orientation in the lattice so as to focus on purely intrinsic
chirality and to suppress extrinsic effects where possible. A
detailed investigation of how intrinsic and extrinsic chiral
properties interact in CSR-based PCMs warrants a separate
investigation.

While the specific split-ring geometry is chosen for its
relative simplicity in analytical derivation, it should be
understood that the proposed approach can be extended to
any planar meta-atom consisting of thin wirelike metallic
elements where transverse motion of electrons is restricted.
The integrals in Eqs. (6) and (11) are likely to be more
complicated and may have to be taken numerically. Moreover,
it may be particularly challenging to determine the correct
charge density dependencies [see Eq. (2)] and to identify the
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loops that contribute to the effective mass; one may need to use
equivalent LC circuit or even resort to using data from direct
numerical simulations if the geometry is particularly intricate.
Nevertheless, once the equations for the effective mass and
stiffness coefficients for a particular unit cell geometry are
established, parametric transformations of this geometry lend
themselves to very easy semianalytical treatment within the
proposed framework.

Furthermore, oblique wave incidence and nonplanar meta-
atoms composed of similar thin elements are also tractable if
the magnetic dipole and electric quadrupole contributions are
accounted for, giving rise to corrections in & and introducing
effective magnetic permeability tensor u, as well as gyration
pseudotensors responsible for magnetoelectric coupling or
spatial dispersion.>*3!*° However, it still remains an open
question whether such oblique-incidence treatment would be
universal taking into account the inherent limitations of apply-
ing volume homogenization to surface structures.>~>’ Should
such a generalization prove feasible, it is very interesting
to extend the proposed approach from a single-layer PCM
to PCM-based multilayers (in the cases when such PCMs
can lend themselves to 3D homogenization®®) and investigate
its applicability as a planar metamaterial turns into a bulk
one.
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APPENDIX: DERIVATION OF THE INTERACTION
MATRIX

To calculate the interaction matrix for meta-atoms arranged
in a square planar array used in Sec. III A, one can write the
field in an nth unit cell as a sum of the averaged electric field in
the metamaterial E and the fields of the dipoles p at the center
of each cell:

2
(E)y=E+)" Lkl r’S " p,
iZn Eqr:

(AD

1

where r; is the radius vector of ith dipole. Following Ref. 21,
we define the interaction matrix C by means of equation (E) =
E -+ 47 CPy. The polarization of the medium is connected with
the dipole moment of the single cell via Py = Nyp, where
No=1 /(LZD) is the number of inclusions per unit volume
(we suppose that the cell is square). Therefore the interaction
matrix equals

L2D Z3ri®ri _riz

47'[8d r.5

i#n L

¢ =

(A2)

Placing the origin at the center of the cell under consideration
(nth cell), we present the radius vectors of the others as
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r; =ry = L(ke, + le,), where integer numbers k, [ vary from
—o00 to 0o. The nth cell is characterized by the numbers k = 0
and / = 0 and should be excluded from the summing.

The result of the summation is used as Eq. (24) in Sec. III:
tD
_(1 - 2ez ® ez)y
SdL

¢ = (A3)
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where I = e, ® e, + €, ® e, is the projection operator onto
the plane normal to the z axis,

1 O 1
. 5[4(3) s m} ~ 03502, (A4)
k=1

and ¢(x) = Zzil k" is the Riemann zeta function.
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