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Electron spin resonance in antiferro-quadrupolar-ordered CeB6
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CeB6 is a cubic heavy-fermion compound with a �8 ground quartet for which an ESR signal was observed.
All other Ce or Yb compounds displaying an ESR signal have strong magnetic anisotropy and ferromagnetic
correlations among the spins. The role of the ferromagnetic correlations is to narrow the resonance width rendering
the signal observable. In CeB6 the orbital content of the �8 quartet gives rise to an antiferro-quadrupolar-ordered
phase below 4 K. Single ions with a �8 ground multiplet are expected to display four transitions, however, only
one has been observed. The following questions are addressed in this paper: (1) why is only one transition seen,
(2) why is this transition observed if the Kondo temperature is comparable to the linewidth and the resonance
frequency, and (3) are there ferromagnetic correlations between the Ce ions? The answer to these questions is
associated with the antiferro-quadrupolar order. While for other Ce and Yb compounds with ESR signal it is
difficult to distinguish if the resonance is due to localized spins or conducting heavy electron spins, an itinerant
picture within the antiferro-quadrupolar phase is necessary for CeB6.
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I. INTRODUCTION

There is an intimate relation between the relaxation rate
for a Kondo impurity and the Kondo susceptibility, χ0/T1 ≈
constant for all T .1 At ω = T = H = 0, this relation is
exact (for S = 1/2 the constant is 2/π ) and known as the
Shiba relation.2 This result suggests that an electron spin
resonance (ESR) signal could not be observed in heavy-
fermion compounds due to the broad linewidth proportional
to the Kondo temperature. This common belief was recently
proven wrong, when an ESR signal was found in single crystals
of the quantum critical system YbRh2Si2,3 and since then
in several other Yb compounds, e.g., YbIr2Si2,4 YbRh,5 and
YbCo2Zn20,6 and one Ce compound CeRuPO.7 The resonance
was attributed to the Yb3+ and Ce3+ ions despite of their rather
large Kondo temperature. All of the above compounds are
very anisotropic and have ferromagnetic correlations among
the rare-earth spins.5 The resonance in YbRh2Si2 has been
confirmed by other groups8,9 and on a different batch of
samples9 as well as followed up to 360 GHz.10

The observed resonances have a Dysonian line shape,11 as
expected from the skin depth and spin diffusion in a metallic
environment. ESR of magnetic ions in a metal12 as well as the
resonance of conduction electrons11 have a similar Dysonian
line shape. The analysis of the data performed within the
known framework of ESR of magnetic impurities in metals,12

i.e., single ions with localized spins resonating independently,
is consistent with the g-factor anisotropy expected for Yb3+
ions in a tetragonal crystalline electric field as well as with
the linewidth. It has been estimated that in YbRh2Si2 more
than 60% of the Yb3+ ions contribute to the ESR signal.13 On
the other hand, in the case of conducting heavy fermions, the
g shift is dominated by the one of the f electrons and is going
to have the crystalline field anisotropies of the rare-earth sites.
It is hard to justify an intensity corresponding to more than
60% of the Yb ions, since a resonance of conduction electrons
takes place only close to the Fermi level. Based solely on
ESR it is then difficult, if not impossible, to decide, if the
resonances arise from localized moments or the carriers in a
heavy-electron band.14

Recently, Abrahams and Wölfle15 studied the linewidth of
the ESR signal for a heavy-fermion compound within the
framework of the Anderson lattice. They obtained that the
heavy mass in conjunction with ferromagnetic fluctuations
can lead to observable narrow resonances. The heavy mass is
equivalent with arguing with a small Kondo temperature for the
lattice, but is not enough to produce an observable ESR signal.
The ferromagnetic correlations further reduce the linewidth of
the signal. Wölfle and Abrahams16 have applied their theory
to the Fermi liquid regime for YbRh2Si2 and found excellent
agreement with the experimental data. They also extended the
description to the non-Fermi liquid regime of this material and
found a close relation of the T dependence of the specific heat
and spin susceptibility with the observed T dependence of the
g shift and the linewidth.

Schlottmann14 arrived at similar results to those in Ref. 15
by studying the dynamical susceptibility for localized spins
within the framework of the Kondo lattice. Based on the
proportionality of the linewidth with the inverse suscepti-
bility, this investigation clearly shows the relevance of the
ferromagnetic correlations, since a Curie-Weiss law with an
antiferromagnetic Weiss temperature (Kondo effect) would
produce a broad, and hence not observable, ESR line, while
ferromagnetic correlations without long-range order enhance
the susceptibility and hence can produce an observable
resonance.

Several other approaches to explain the ESR in heavy-
fermion systems have been proposed. Zvyagin et al.17 consid-
ered a system with strong local anisotropic electron-electron
interactions and showed that together with a hybridization
between localized and itinerant electrons it may cause a g-shift
of the ESR signal and a change in the linewidth. Huber,18 on
the other hand, studied the effects of anisotropy and the Yb-Yb
interactions on the low-field ESR in YbRh2Si2 and YbIr2Si2
with main emphasis on the anisotropy of the g shift. Finally,
for the anisotropic Kondo model with anisotropic Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction, Kochelaev et al.19

investigated the relaxation of a collective spin mode assuming
that the Kondo coupling has the same anisotropy as the g

factor.
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The experimental interpretation5 and some of the above
theoretical studies14,16,17,19,51 have the underlying assumption
of a strong anisotropy leading to ferromagnetic correlations
among the resonating spins. Recently, an ESR signal was
observed at 60 GHz in the cubic compound CeB6 in the
temperature range from 1.8 to 3.8 K for the magnetic
field parallel to the [110] direction.20,21 The resonance22

has a Dysonian-like line shape and a g factor of 1.59. The
compound has a Kondo temperature of the order of 1 K and
displays antiferro-quadrupolar order23 where the resonance
was observed. The crystalline field splitting of the Ce3+ ions in
CeB6 leads to a �8 ground quartet,24 which has simultaneously
spin and quadrupolar content. The long-range order is driven
by the quadrupolar degrees of freedom. There are several
questions arising in the context of the observation of the ESR
signal: (1) a �8 quartet allows four transitions, why is only
one observed? (2) The isotropy of the compound does not
favor ferromagnetic correlations (the Curie-Weiss temperature
arising from the Kondo effect has to be suppressed first),
why is a resonance observed at all? (3) Can the resonance
be understood within the single ion picture or is the signal
necessarily due to itinerant electrons?

There was a report25 on ESR in CeB6 previous to those
by Demishev et al.20–22 where a resonance was seen in a
temperature range up to 150 K. These results could not be
reproduced by other groups.22,26 There is a strong possibility
that the ESR results are sample dependent.

In this paper, we present arguments that can explain why
only one resonance is observed in CeB6. The remainder of
the article is organized as follows. In Sec. II, we lay the
ground work by analyzing the transitions for a single Ce3+
ion with �8 ground quartet for the magnetic field rotating in
the (1, − 1,0) plane. This leads to four resonances for every
angle of the magnetic field with the crystal axis. In Sec. III,
we consider a single Ce3+ ion embedded in a lattice with
antiferro-quadrupolar (AFQ) order. The long-range order with
two sublattices reduces the four resonances to two signals,
one for each sublattice. These results are extended to the full
lattice in Sec. IV, where the 4f electrons are itinerant.15,16

This reduces the two resonances to one resonance with g factor
equal to the half sum of the g factors of the two sublattices. This
allows us to conclude that the single-site picture cannot explain
ESR in CeB6. In Sec. V, we show that ferromagnetic spin
correlations are generated via the quadrupolar correlations.
These correlations explain the phase boundary between the
AFQ and Kondo phases, the T and H dependence of the
magnetization as well as the narrowing of the ESR linewidth.
Hence it is unlikely that an ESR signal could be observed
in a cubic Ce heavy-fermion compound with a �7 ground
doublet. Conclusions follow in Sec. VI. In Appendix A, the
linewidth of the transitions discussed in Sec. II is addressed.
The dynamical transversal susceptibility is expressed in terms
of relaxation functions27 for each of the transitions, yielding
the Knight shift and the Korringa relaxation rate, as well as the
proportionality relation of the relaxation time with the local
static susceptibility. In Appendix B, we show that a single
heavy-fermion band for the AFQ ordered lattice yields similar
results as the two band Anderson lattice, namely, a single
resonance with a g factor equal to the average of the g factors
of the two sublattices.

II. SINGLE-SITE RESONANCES FOR A Ce ION WITH �8

GROUND STATE

ESR of impurity rare-earth ions with �8 ground quartets
have been studied in several occasions, e.g., Dy3+ ions in the
insulator28 CaF2 and the metal29 Au, and Er3+ in the heavy-
fermion low carrier compound30 YbBiPt. Both Dy3+ and Er3+
ions have large total angular momenta of J = 15/2, and hence
in cubic symmetry, two crystalline field parameters B4 and B6

are needed to characterize the splittings. The energy levels and
the wave functions are then not universal, but depend on the
parameter x related to B4/B6.31

This is different for Ce3+ ions, which have J = 5/2 and
only require one crystalline field parameter, B4. In a matrix
with eightfold coordination, a �8 ground quartet is expected
with wave functions that can be expressed in terms of the Jz

eigenstates:31
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Here, ↑ and ↓ refer to the spin σ and + and − to the
quadrupolar degrees of freedom.

The magnetization vector is given by �M = μB( �L + 2�S) and
the nonvanishing matrix elements of �M are32

〈+σ |Mz| + σ 〉 = 11
7 σμB,

〈−σ |Mz| − σ 〉 = 3
7σμB,

〈−↓|M+|+↑〉 = 〈+↓|M+|−↑〉 = 4
7

√
3μB, (2)

〈+↑|M+|+↓〉 = 10
7 μB,

〈−↑|M+|−↓〉 = 18
7 μB,

where σ takes values ±1 and M± = Mx ± iMy . For a
magnetic field H parallel to the crystal [0, 0,1] direction
(z axis), there are then four possible transitions:

|+↑〉 → |−↓〉, �E = 2μBH, w = 12
49 ,

|−↑〉 → |+↓〉, �E = 2μBH, w = 12
49 ,

(3)
|+↑〉 → |+↓〉, �E = 22

7 μBH, w = 25
49 ,

|−↑〉 → |−↓〉, �E = 6
7μBH, w = 81

49 ,

where �E is the corresponding transition energy and w the
spectral weight (in arbitrary units) evaluated as the square
of the matrix element of Mx . There are two more transition
(|+↑〉 → |−↑〉 and |−↓〉 → |+↓〉), which for this direction
of the magnetic field have zero spectral weight.

In ESR experiments, it is customary to rotate the magnetic
field in the (1,−1,0) plane. The magnetic field can then be
parametrized as �H = H (sin θ, sin θ,

√
2 cos θ )/

√
2, so that for

θ = 0 the field is along the [0,0,1] axis, if θ = π/2 �H ‖
[1,1,0], and for θ = arctan(

√
2) = 54.7o the magnetic field

points into the [1,1,1] direction. The Zeeman Hamiltonian
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FIG. 1. (a) Transition fields normalized to the microwave energy
hν and (b) transition probabilities for a noninteracting Ce3+ in a
�8 quartet with Zeeman splitting for a magnetic field rotating in
the (1,−1,0) plane (angle θ ). The four eigenstates are labeled with
decreasing energy. States 1 with 4 and 2 with 3 form two spin Kramers
doublets. There are no level crossings as a function of θ .

takes the form

HZ = − �M · �H = −M̃zH

= −H

(
Mx + My√

2
sin θ + Mz cos θ

)
, (4)

where Mx , My and Mz are 4 × 4 matrices defined by Eq. (2).
Here, M̃z is the magnetization operator along the direction
of the field. The Zeeman Hamiltonian is easily diagonalized
numerically and the six transitions discussed in Eq. (3) now
depend on the angle θ . The resonance fields μBHr in units
of hν (where ν is the microwave frequency) are displayed in
Fig. 1(a). We choose M̃x pointing into the [1,−1,0] direction,
which is always perpendicular to the direction of M̃z. In terms
of Mx and My for θ = 0, we have that M̃x = (Mx − My)/

√
2.

The relative intensities of the transitions can now be calculated
using the eigenstates of M̃z and are shown in Fig. 1(b). In
Fig. 1, the eigenstates of M̃z are labeled in decreasing order
of their energy. The four states correspond to two Kramers
spin doublets, namely, states (1,4) and (2,3), the doublet (1,4)
having the larger effective g factor. There are no level crossings
as a function of θ . Note that the transitions |4〉 → |3〉 and

|2〉 → |1〉 have the same resonance field and hence their
transition probabilities have been added. Similarly for the
transitions |4〉 → |2〉 and |3〉 → |1〉, which also have the same
resonance fields.

In Eq. (1), we defined the four �8 wave functions in terms
of two indices, the spin σ (↑ and ↓) and +/− labeling
the Kramers doublets. The latter represents the quadrupolar
degrees of freedom of the quartet,32 which are conveniently
parametrized using a pseudospin description.33,34 The spin and
pseudospin operators are 1/2 times Pauli matrices, denoted �σ
and �τ , respectively, such that32

σ+|±↓〉 = |±↑〉, σ−|±↑〉 = |± ↓〉,
σz|±σ 〉 = 1

2σ |±σ 〉, τz|±σ 〉 = ± 1
2 |±σ 〉, (5)

τ+|−σ 〉 = |+σ 〉, τ−|+σ 〉 = |−σ 〉.
Using the above relations, the magnetic moment operator for
the �8 states can be written as32

Mα = 2μB

(
1 + 8

7Tα

)
σα, α = x,y,z, (6)

where

Tz = τz, Tx = −1

2
τz +

√
3

2
τx, Ty = −1

2
τz −

√
3

2
τx. (7)

Note that �M does not depend on τy and the Zeeman
Hamiltonian is still given by HZ = − �M · �H .32

So far, we have discussed only the positions of the possible
resonances. Their linewidth arises from the interaction with the
electron gas. The formalism leading to the Lorentzian form
of the transversal dynamical susceptibility27 is sketched in
Appendix A. This formalism leads to the proportionality of
the relaxation time to the static susceptibility, i.e., the Korringa
law for higher temperatures and the 1/Trel ≈ TK at low T . In
the following section, we show that the long-range antiferro-
quadrupolar order reduces the four single ion resonances to
two.

III. SINGLE-SITE RESONANCES WITH
ANTIFERRO-QUADRUPOLAR ORDER

When the temperature is lowered, CeB6 undergoes a phase
transition from the paramagnetic disordered phase into an
antiferro-quadrupolar-ordered phase with �Q-vector along the
(1,1,1) directions.23 The transition boundary is field dependent
and Tc increases with magnetic field from 3.25 K at zero field
to about 5.5 K at 4 T to 8.5 K at 15 T and almost 10 K at
30 T.35

The quadrupolar degrees of freedom are described by the
Pauli matrices τ defined by Eq. (5).32 Long-range order implies
that the τ matrices are replaced by their eigenvalues. It is not
known which combination of quadrupolar degrees of freedom
provides the quadrupolar order at each site, i.e., the order does
not necessarily form along τz. The magnetization operators (6)
only depend on τx and τz, but not on τy . To define a general
direction of the orbital order, it is then natural to rotate the τ

matrices in the x-z plane, i.e.,

τ̃x = cos(ϕ)τx − sin(ϕ)τz,
(8)

τ̃z = sin(ϕ)τx + cos(ϕ)τz.
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Without loss of generality, we can now choose the quadrupolar
order along τ̃z. We will consider two orientations of the
magnetic field with the crystallographic axis. The simplest
case corresponds to the magnetic field parallel to the crystal
z axis. In the experimental situation,20–22 the magnetic field
points in the (1,1,0) direction.

A. �H = H(0,0,1)

The z component of the magnetization is given by Eq. (6).
Inverting Eq. (8) and inserting into Eq. (6), we obtain

Mz = 2μB{1 + (8/7)[cos(ϕ)τ̃z − sin(ϕ)τ̃x]}σz . (9)

To introduce the antiferro-quadrupolar order, we replace τ̃z

by its eigenvalues, ±1/2. This way we assume the order is
fully developed and along the direction of τ̃z. The quadrupolar
fluctuations, represented by τ̃x , are taken into account by
substituting τ̃x by its expectation value, 〈τ̃x〉 = 0. The g factors
are then

g± = 2 ± (8/7) cos(ϕ) . (10)

For ϕ = 0, we recover g+ = 22/7 and g− = 6/7 in agreement
with Eq. (3). There are then two simple resonances, one
corresponding to each sublattice of the antiferro-quadrupolar
order. Note that the originally four transitions (see Fig. 1) are
reduced to two due to the antiferro-quadrupolar order.

Similarly, we can express Mx [see Eq. (6)] in terms of τ̃

operators:

Mx = 2μB

(
1 + (8/7)

{[
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]
τ̃z

+
[

1

2
sin(ϕ) +

√
3

2
cos(ϕ)

]
τ̃x

})
σx . (11)

With the same replacements as above, we have

Mx = μB

{
2 ± (8/7)

[
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]}
σx (12)

and the transition probabilities for the two sublattice sites are
given by

|〈↑ |Mx | ↓〉|2

= μ2
B

{
1 ± (4/7)

[
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]}2

. (13)

The resonance field and the spectral weights then depend on
the angle ϕ determined by the linear combination of orbits in
the antiferro-quadrupolar order. For ϕ = 0, we recover w2

+ =
25/49 and w2

− = 81/49 in agreement with Eq. (3).

B. �H = H(1,1,0)/
√

2

This field direction is the one employed for the ESR
measurements in CeB6.20–22 It is convenient to rotate the
magnetization so that M∗

z is parallel to the magnetic field,
i.e., we choose

M∗
z = (Mx + Mz)/

√
2, M∗

x = (Mx − Mz)/
√

2,
(14)

M∗
y = My.

With the rotations of the τ matrices, Eq. (8), we obtain

M∗
z = μB

√
2

(
1 + (8/7)

{ [
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]
τ̃z

+
[

1

2
sin(ϕ) +

√
3

2
cos(ϕ)

]
τ̃x

})
σx

+μB

√
2{1 + (8/7)[cos(ϕ)τ̃z − sin(ϕ)τ̃x]}σz (15)

and imposing antiferro-quadrupolar order as in Sec. III A, we
have

M∗
z = μB

√
2

({
1 ± (4/7)

[
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

] }
σx

+ [1 ± (4/7) cos(ϕ)] σz

)
. (16)

M∗
z is a 2 × 2 matrix in spin space that has to be diagonalized

to obtain the effective g values

g± =
√

2{[1 ± (4/7) cos(ϕ)]2

+[1 ∓ (2/7) cos(ϕ) ± (2
√

3/7) sin(ϕ)]2}1/2. (17)

Here, the ± refers to the sites of the two sublattices. The
eigenstates are linear combinations of up-spin and down-spin
states. Again, with antiferro-quadrupolar order there are only
two resonances, rather than four (see Sec. II).

M∗
x can be obtained in a similar fashion:

M∗
x = μB

√
2

(
1 + (8/7)

{ [
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]
τ̃z

+
[

1

2
sin(ϕ) +

√
3

2
cos(ϕ)

]
τ̃x

})
σx

−μB

√
2{1 + (8/7)[cos(ϕ)τ̃z − sin(ϕ)τ̃x]}σz

=⇒ μB

√
2

{
1 ± (4/7)

[
−1

2
cos(ϕ) +

√
3

2
sin(ϕ)

]
σx

−[1 ± (4/7) cos(ϕ)]σz

}
, (18)

and the spectral weight of the transition is given by the off-
diagonal matrix elements of M∗

x within the eigenstates of M∗
z .

The g factors and the spectral weights for the two transitions
are shown in Fig. 2 as a function of the quadrupolar mixing
angle ϕ. If ϕ is continued into the interval π to 2π , the “+”
solution goes over into the “−” solution and vice versa. So far,
we considered full orbital order, which suppresses quadrupolar
fluctuations. In principle, it is possible to introduce partial
antiferro-quadrupolar order and quadrupolar fluctuations. The
partial order shifts the g factors slightly and the fluctuations
prevent g+ and g− from crossing, since the fluctuations act as
a hybridization between the two resonances. The fluctuations
also reinstate the two resonances suppressed by the full orbital
order, but with a weak spectral weight proportional to the
square of the fluctuations.

The main problem with the present formulation is that two
resonances arise, one corresponding to sites of each sublattice.
However, the system is not inhomogeneous and only one
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FIG. 2. (a) Effective g factors and (b) transition probabilities for
a noninteracting Ce3+ in a �8 quartet with Zeeman splitting for a
magnetic field along the [1,1,0] direction for antiferro-quadrupolar
order. ϕ is the hybridization angle for the quadrupolar degrees of
freedom (see text).

resonance is observed. To correct for this fact, it is necessary
to introduce coherence in the lattice, which is then not just a
collection of independent sites.

IV. COHERENCE IN THE KONDO LATTICE

So far, we considered single-ion resonances and reduced
the four transitions for the Ce3+ �8 quartet to two resonances
by imposing antiferro-quadrupolar order. These resonances
correspond to a single resonance for the ions on each of the
two sublattices. CeB6 is a heavy-electron metal, so that the
resonating electrons are not localized and are allowed to travel
through the crystal. These itinerant electrons form a coherent
state at low temperatures. This coherence reduces the two
resonances discussed in Sec. III to a single resonance.

We consider two hybridized bands, a conduction and a
localized electron band, and two interpenetrating sublattices,
labeled with 1 and 2, respectively. The excluded double
occupancy of the localized sites can be taken into account via
slave bosons in the mean-field approximation, i.e., by replacing
the hybridization V by a much smaller effective one Ṽ .36,37

The hopping between sites of the conduction states conserves

the spin component and the Hamiltonian can be written as
the sum of one for up-spins and one for down spins. As a
short-hand notation, we will suppress the spin index and write

H0 =
∑
�kα

ε�kαc
†
�kα

c�kα +
∑

j

(ε1d
†
1j d1j + ε2d

†
2j d2j ),

(19)
HV = Ṽ

∑
�kαj

(c†�kα
d1j e

−i�k �Rj + c
†
�kα

d2j e
−i�k( �Rj +�a) + H.c.),

where �Rj labels the sites of the sublattice 1 and �Rj + �a the
sites of the sublattice 2. There are then two Ce3+ ions per
unit cell and α = a,b labels the two conduction bands in the
reduced Brillouin zone. Fourier-transforming the site index
j , the Hamiltonian has the form H = ∑

�k H�k , where H�k can
be cast into the form of a 4 × 4 matrix. The diagonal part
of the matrix contains the four one-particle energies and the
off-diagonal entries are either Ṽ or 0. The diagonalization of
the matrix yields four bands separated by gaps. This picture
is related to the Anderson lattice considered by Abrahams and
Wölfle15 with two main differences consisting in the slave-
boson mean-field and the two sublattices with different on-site
energies. The former simplifies the calculation, while the latter
is specific to the CeB6 problem.

For CeB6, two electrons per Ce atom have to be placed into
these bands, i.e., four into the reduced zone scheme. Including
the spin index, there are two electrons per spin component.
In zero magnetic field, ε1 = ε2 = ε, i.e., the two quadrupolar
states have the same energy (note that ε1 �= ε2 implies a charge
density wave), and we can assume that the Fermi level lies in
the lower of the conduction bands. This way we can neglect
the upper conduction band and reduce the dimension of the
matrix to 3 × 3. Dropping the subindex α, the secular equation
becomes

(λ − ε�k)(λ − ε1)(λ − ε2) + Ṽ 2(2λ − ε1 − ε2) = 0 . (20)

For zero magnetic field, the roots of this cubic polynomial are

λ∗
0 = ε , λ∗

± = ε�k + ε

2
± 1

2

√
(ε�k − ε)2 + 8Ṽ 2 , (21)

i.e., there is one flat band, λ∗
0, and two dispersive bands, λ∗

±. The
dispersive bands are essentially the standard hybridized bands
of the Anderson lattice, which now has the dispersionless level
in the center of the gap. A similar model has been proposed
for Ce3Au3Sb4,38 which is a narrow-gap semiconductor with
a very large density of localized states in the gap.

To discuss the general case, i.e., in a nonzero magnetic field,
we introduce

ε = (ε1 + ε2)/2 , δ = (ε1 − ε2)/2 , (22)

or ε1 = ε + δ and ε1 = ε − δ and insert them into the secular
equation,

λ3 − λ2(ε�k + 2ε) + λ(2ε�kε + ε2 − δ2 − 2Ṽ 2)

−ε�kε
2 + ε�kδ

2 + 2Ṽ 2ε = 0 . (23)

For δ = 0, the equation reduces to the one discussed before.
δ represents the Zeeman splitting and is proportional to the
magnetic field. It is useful to explicitly include the shift due
to the Zeeman effect for the conduction electrons, by writing
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FIG. 3. Schematic hybridized bands: the dotted lines are the
unhybridized dispersions for the conduction and localized states for
the full Brillouin zone, the full curves are the hybridized bands
showing a hybridization gap also for the full Brillouin zone, the
dashed curves represent the folding of the hybridized bands into the
reduced Brillouin zone, and the horizontal dash-dotted line displays
the possible position of the Fermi level.

ε�k → ε�k + εe. To obtain the effective g factor, we are allowed
to neglect all terms of order H 2.

Introducing λ = λ∗ + δλ, we have

(λ∗)3 − (λ∗)2(ε�k + 2ε) + λ∗(2ε�kε + ε2 − 2Ṽ 2)ε

− ε�kε
2 + 2Ṽ 2 + δλ[3(λ∗)2 − 2λ∗(ε�k + 2ε)

+ 2ε�kε + ε2 − Ṽ 2] − (λ∗ − ε)2εe = 0. (24)

For δλ = εe = 0, we recover the roots in Eq. (21); there is then
the following relation between δλ and εe:

δλ = εe

(λ∗ − ε)2

3(λ∗)2 − 2λ∗(ε�k + 2ε) + 2ε�kε + ε2 − Ṽ 2
, (25)

which can be used to determine the effective g shift.
The simplest situation is when the Fermi level lies in the λ∗

0
level. In this case, δλ = 0 and hence there is a single resonance
with

geff = (g1 + g2)/2 , (26)

where g1 and g2 are the g factors of the two sublattices as
discussed in Sec. III. A more realistic assumption is that the
Fermi level lies in one of the dispersive bands, but close to the
hybridization gap. A simplified band picture is schematically
shown in Fig. 3 for the full and reduced Brillouin zones for
ε1 = ε2. A possible position for the Fermi level is shown as
the horizontal dash-dotted line.

To evaluate the right-hand side of Eq. (25) in the general
case, it is sufficient to neglect δ and to work in the full Brillouin
zone. The hybridized band dispersions are

λ = ε + ε�k
2

± 1

2

√
(ε − ε�k)2 + 4Ṽ 2 . (27)

We consider the lower band and expand for small variations
of ε and ε�k due to the Zeeman shift and obtain

geff = 1

2

(
g1 + g2

2
+ ge

)
− 1

2

ε − ε�k√
(ε − ε�k)2 + 4Ṽ 2

×
(

g1 + g2

2
− ge

)
= g1 + g2

2
+ corr , (28)

where corr is a correction term given by

corr = −1

2

(
g1 + g2

2
− ge

)⎡
⎣1 − ε − ε�k√

(ε − ε�k)2 + 4Ṽ 2

⎤
⎦ .

(29)

For heavy fermions, the Fermi level intersects the lower
band were ε − ε�k � 2V , so that there is almost a complete
cancellation of the two terms in the second bracket. Neglecting
the corr term (there are uncertainties in the Knight shift of the
resonance as well), we obtain one resonance with a g factor
given by expression (26), i.e., the average g factor of the two
sublattices for all cases. Note also that since the two sublattices
have different g values, a uniform magnetic field induces a
spin-density wave commensurate with the lattice of amplitude
proportional to H . In Appendix B, we show that similar results
are obtained for a single-band model of the t-J type.

V. MAGNETIC CORRELATIONS

Usually, in a heavy-fermion compound the rare-earth spins
are antiferromagnetically correlated, even if the system does
not undergo a phase transition to long-range order. The
correlations have short-range character and the susceptibility
follows a Curie-Weiss law with antiferromagnetic Weiss-
temperature θ , χ0 = C/(T + θ ), where θ is of the order of
TK . The relaxation rate is inversely proportional to χ0 [see
Eq. (A11)] and roughly follows a Korringa law, with a residual
T = 0 linewidth proportional to θ . Hence the resonance can
only be observed if θ is very small, i.e., of the order of
100 mK or less for X-band microwaves.39 This would require
an extremely narrow heavy fermion band or fermions with an
effective mass of 105me, where me is the free electron mass.
The T dependence in this case would be linear in T , i.e., a
Korringa law.

If, on the other hand, the rare-earth spins are ferro-
magnetically correlated, the static susceptibility is given by
χ0 = C/(T − TC) for T > TC , where TC > 0 is the Curie
temperature. As T → TC , the susceptibility diverges and
hence, according to expression (A11), the ESR linewidth
becomes very narrow. This result has to be regarded with some
caution, because we have neglected the relaxation through
collective excitations, i.e., magnons. The ESR-signal found
in single crystals of YbRh2Si2,3 and other compounds4–7

was attributed to the ferromagnetic correlations among the
rare-earth spins and the strong magnetic anisotropy.5 CeB6 is
an exception to this picture, since it is a cubic compound (very
small magnetic anisotropy) and the ESR signal was observed
in the antiferro-quadrupolar ordered phase. Below we present
arguments on how ferromagnetic spin correlations can arise in
CeB6.
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Consider the wave function for two electrons on neighbor-
ing sites. Each state consists of a coordinate wave function, an
orbital (quadrupolar) wave function and a spin wave function.
For the noninteracting system, the two-particle wave function
then factors into a product of two-particle wave functions:

� ∼ ψcoor(�r1,�r2)ψorb(m1,m2)ψspin(σ1,σ2). (30)

The total wave function � should be antisymmetric under the
interchange of the indices 1 and 2. This implies that either one
of the three factors in Eq. (30) is antisymmetric (and the other
two symmetric) or all three factors have to be antisymmetric.

The wave function ψcoor is the product of single site
wave functions, ϕ(�r1)ϕ(�r2), where both electrons are in the
same state. This wave function is then necessarily symmetric.
Hence out of ψorb(m1,m2) and ψspin(σ1,σ2) one has to be
antisymmetric and the other one symmetric. We now assume
that the effective two-particle interaction Hamiltonian is of the
form Hint = a�τ1 · �τ2, where a is the quadrupolar exchange. To
be able to generate antiferro-quadrupolar order, necessarily a

has to be positive. Hence ψorb(m1,m2) represents a singlet and
has odd parity. Consequently, the spin wave function has to
be a triplet (even parity). The spins are then ferromagnetically
correlated.

The singlet state of the orbital degrees of freedom cannot be
satisfied simultaneously between all the neighboring sites and
generates a resonant valence bond lattice for the quadrupolar
wave function. A magnetic field helps to align the spins and
hence to enforce the antiferro correlations between the orbits.
This could be the explanation of why the Tc of the phase
boundary between the para-quadrupolar-disordered (Kondo)
phase and the antiferro-quadrupolar phase increases with
magnetic field. The magnetic field stabilizes the orbital order.

Some of the ferromagnetic correlations are expected to
survive in the ordered phase and enhance the magnetic sus-
ceptibility, reducing the Weiss temperature and perhaps even
changing its sign. At higher T , the Weiss θ is antiferromagnetic
or Kondo-like, while when the phase boundary is approached
θ becomes ferromagnetic22 (see also Fig. 1 of Ref. 25). As
seen in Eq. (A11), the relaxation rate is inversely proportional
to the static transversal susceptibility, so that an enhanced χT

0
reduces the linewidth and the resonance becomes observable.
A similar conclusion, although with different arguments, has
been presented in Ref. 22.

Quadrupolar degrees of freedom play a fundamental role
in Ce3+ and Nd3+ ions with �8 ground state.40 They manifest
themselves in first place through interactions among the sites.
There is, however, no consensus about the origin of the
interactions. Kubo and Kuramoto41 successfully described the
excitation spectrum of NdB6 using nearest-neighbor intersite
exchange and quadrupolar interactions. A different approach
emphasizing crystalline fields was proposed by Uimin and
Brenig.42 For CeB6, on the other hand, quadrupolar interac-
tions between sites,32 the RKKY interaction arising from the
Coqblin-Schrieffer model,43,44 and a detailed group theoretical
study45 have been presented.

VI. CONCLUSIONS

Generally, in heavy-fermion systems, an ESR signal
cannot be observed because of antiferromagnetic correlations

that broaden the line. At low temperatures, the linewidth is
of the order of the Weiss temperature or TK , and only with
microwave frequencies of a few 100 GHz a signal could be
detected. There are exceptions to this rule in magnetically very
anisotropic compound with ferromagnetic correlations, e.g.,
YbRh2Si2,3 YbIr2Si2,4 CeRuPO,7 YbRh,5 and YbCo2Zn20.6

The ferromagnetic correlations dramatically reduce the
linewidth5,14–16 so that a resonance can be seen with standard
X- and Q-band frequencies.

CeB6 constitutes an exception to the exceptions, since
a resonance was observed in a cubic Kondo lattice in the
antiferro-quadrupolar-ordered phase. ESR in this compound
requires a separate explanation. The crystalline field ground
state of each Ce ion is a �8 quartet, which displays spin
and quadrupolar degrees of freedom. From the antisymmetry
of two-electron wave functions for neighboring sites, we
conclude that in order to have antiferro-quadrupolar corre-
lations necessarily the spins have to be ferromagnetically
coupled. A magnetic field favors this state and the Tc of
the phase boundary between the disordered Kondo phase
and the phase with antiferro-quadrupolar order increases
with H , in agreement with the experiment. Furthermore,
the ferromagnetic correlations enhance the susceptibility
(in agreement with experiment22,25) and hence reduce the
linewidth of the resonance, which then becomes accessible to
observation.

In the experimental papers,3–5,9 the results for YbRh2Si2
have all been interpreted as if the resonance is due to localized
f electrons. In other words, as for ESR on an impurity, if
the microwave induces a spin flip at one site, the response
of the system is measured at the same site. The response
function in that case is the local dynamical susceptibility.
The global dynamical susceptibility, on the other hand, is
the Fourier-transform over the site pairs, S(q,ω), and ESR
response corresponds to the q → 0 limit.15 This appears to
be the natural approach for extended conducting states.16

However, since more than 60% of the Yb ions participate
in the resonance,13 it is hard to distinguish between the two
approaches.14

Four resonances are expected from a single Ce3+ site
with a �8 ground quartet. Their resonance fields and spectral
weights have been discussed in detail in Sec. II. The antiferro-
quadrupolar order quenches three of these resonances at
each site, leaving two resonances, one for each sublattice.
Experimentally, however, only one resonance is observed.
The ESR results for the system CeB6 can therefore not be
interpreted within the single site approach. The coherence in
the global susceptibility reduces the two resonances to one
with a g factor approximately given by the average of the g

factors of the two sublattices. This average g factor depends
on the angle ϕ of the quadrupolar order, and its value is of
the order of 2 or slightly larger. The experimentally observed
g value20–22 is about 1.6, i.e., considerably smaller than the
theoretical value. The Knight shift due to the exchange in the
Coqblin-Schrieffer model yields a correction (of about 10%
of g) in the right direction. However, even if we consider the
contribution of the four conduction channels coupling to the
�8 multiplets, the Knight shift is probably not large enough
to account for the difference. There is also the possibility
that the quadrupolar order, the intersite interactions and the
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coherence of the lattice change the Knight g shift into the
correct direction.

Experimentally, the resonance has a dysonian line shape and
the linewidth22 is a Korringa law at low T (1.8 � T � 3.0 K).
When T is extrapolated to zero, there is only a small residual
linewidth left. This indicates that the antiferro-quadrupolar
order and the ferromagnetic correlations between spins are
effective in preventing the Kondo effect to develop in the
ordered phase. At larger T (3.0 � T � 3.8 K) the linewidth
is larger than the Korringa law. There are two possible
explanations for this enhancement: (i) the modulation of
the ligand field by lattice vibrations causes, by means of
the spin-orbit coupling, a spin-lattice relaxation (Orbach
relaxation process46), which depends exponentially on the
thermal activation of the excited �7 crystalline field state
[the splitting between the �8 and �7 multiplets is 530 K
(see Ref. 47)], and (ii) the relaxation increases because the
phase boundary is approached and quadrupolar fluctuations
consequently become larger and favor spin-lattice relaxation.

In summary, the reason why an ESR line is observed in
CeB6 is very different from that of the other compounds.
CeB6 is cubic and hence magnetically only weakly anisotropic.
It requires a �8 ground state with antiferro-quadrupolar
correlations to enhance the spin susceptibility and reduce this
way the linewidth. The single resonance observed in CeB6

is evidence (in conjunction with the analysis in Ref. 16) that
the ESR signal is a collective phenomenon involving all the
sites of the lattice. Note also that in a cubic compound with �7

ground doublet antiferromagnetic correlations are induced and
hence an ESR signal is too broad to be observed with standard
techniques. The �8 ground state and the antiferro-quadrupolar
order are essential ingredients for the observability of an ESR
signal in a cubic environment.
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APPENDIX A: RELAXATION FUNCTIONS

In this Appendix, we present a sketch of a calculation
of the dynamical transversal susceptibility, the Knight shift
and the relaxation rates of the four resonances discussed in
Sec. II. We follow the procedure developed in Ref. 27 for a
spin S. The dynamics described by this method is equivalent to
Bloch’s equations.48 The present is an extension of Refs. 1,14,
and 27 to many resonances due to the crystalline field splitting.

The Ce3+ site interacts with the conduction states via the
Coqblin-Schrieffer exchange Hamiltonian, H = H0 + HCS,

H0 =
∑
km

εkmc
†
kmckm +

∑
m

Em,

(A1)

HCS = J

N

∑
kk′mm′

[
1 − 1

4
δmm′

]
c
†
km|m′〉〈m|ck′m′ ,

where H0 represents the kinetic energy of the conduction
electrons (in principle, there are three elliptic bands centered

about the X points in CeB6) and the Zeeman splitting of the
four Ce-�8 states, which are labeled here with m = 1, . . . ,4.
The energies Em are proportional to the field H and depend
on the angle between the field and the crystallographic axis
as discussed in Sec. II. The Ce site under consideration is the
origin of the coordinate system and ckm refers to the conduction
state with momentum k = |k| and partial wave m. HCS has
been defined so that its trace is zero. J is the exchange coupling
and N the number of sites in the lattice.

The ESR response is determined by the transversal dynam-
ical susceptibility corresponding to a transition. Without loss
of generality, we can consider the transition between the states
m1 and m2. Assuming that Em2 > Em1 , the operator inducing
the transition is A

†
m1m2 = |m1〉〈m2| (for a two level system A†

corresponds to the raising operator S+) and we can define the
spin-current operator as

j †
m1m2

= [|m1〉〈m2|,HCS] = J

N

∑
kk′m

(c†kmck′m2 |m1〉〈m|

−c
†
km1

ck′m|m〉〈m2|). (A2)

Taking the expectation value of the conduction states, we
obtain

j †〈av〉
m1m2

= J

N

∑
k

(f (εkm2 ) − f (εkm1 ))|m1〉〈m2|

= −Jρ(Em2 − Em1 )|m1〉〈m2|, (A3)

where ρ is the conduction density of states. This term renor-
malizes the Zeeman splitting of the �8 states and corresponds
to the Knight shift of the magnetic resonance. It is convenient
to work with the Hartree-Fock factored variant of HCS , i.e.,
we include the Knight shift into the energies Em.

We define the correlation function for the transition as

χT
m1m2

(z) = −μ2
B〈〈A†

m1m2
; Am1m2〉〉z . (A4)

For S = 1/2, this response function corresponds to the
transversal susceptibility. Following Götze and Wölfle,27 we
write

χT
m1m2

(z) = NT
m1m2

(z) − μ2
B〈[A†

m1m2 ,Am1m2 ]〉
z − (Em2 − Em1 ) + NT

m1m2
(z)/χT

0

, (A5)

which defines the function NT
m1m2

(z) and χT
0 = χT

m1m2
(z = 0)

is the static transversal response function. The important part
of NT

m1m2
(z) is its imaginary part at the resonance, i.e., for

z = Em2 − Em1 , which divided by χT
0 yields the relaxation

rate. The function NT
m1m2

(z) is analytic in the complex upper
and lower frequency half planes and falls off as 1/z for large z

(see Ref. 27). To simplify, we will use the short-hand notation
χT

m1m2
(z) = χ12(z), NT

m1m2
(z) = N12(z), Em2 − Em1 = h21, etc.

It is instructive to calculate the relaxation function N12(z)
to second order in J . The imaginary part of the relaxation
function N12(z) is given by the spin-current correlation
function27

N ′′
12(ω) = −(

μ2
B/ω

)〈〈
j

(c)
12 ; j (c)†

12

〉〉′′
ω
, (A6)

075135-8



ELECTRON SPIN RESONANCE IN ANTIFERRO- . . . PHYSICAL REVIEW B 86, 075135 (2012)

where j
(c)
12 = j12 − j

〈av〉
12 is the Hartree-Fock corrected spin

current operator. We obtain

N ′′
12(ω) = π (JρμB )2

[
e−E1/T + e−E2/T

Z
+ 2φ12(ω)

]
+ π (JρμB )2[φ13(ω) + φ14(ω) + φ32(ω) + φ42(ω)],

(A7)

where Z = ∑4
i=1 e−Ei/T is the partition function of the

quadruplet and

φij (ω) = ω − hji

2ω

e−Ei/T − e−Ej /T

Z

×
[

coth

(
ω − hji

2T

)
+ coth

(
hji

2T

)]
. (A8)

The first bracket of Eq. (A7) is the contribution involving
only the levels 1 and 2 and is similar to the one obtained in
Ref. 27 for a spin 1/2 system. The second bracket represents
the contributions involving the intermediate states 3 and 4.
These terms do not appear for a spin 1/2 system. The static
susceptibility χT

0 for the states m1 and m2 is given by

χT
0 = μ2

B

e−E2/T − e−E1/T

h21Z
. (A9)

For small frequencies and in the high-temperature limit, i.e.,
for T larger than the Zeeman splittings, the functions φij (ω)
approach the constant 1/4. From Eq. (A5) it is seen that the
dynamical response function has a Lorentzian shape with a
relaxation rate27

1/Trel = N ′′
12(ω = 0)/χT

0 = 2π (Jρ)24T . (A10)

This expression is essentially the well-known Korringa relax-
ation rate, i.e., the linewidth is proportional to the temperature.
The difference with the standard relaxation rate for a spin 1/2
and the s-d Kondo Hamiltonian is a factor of eight; a factor of
four can be attributed to the definition of the exchange coupling
(Jsd = 2J ) and a factor of two arises from the contributions to
N ′′

12 from the intermediate states 3 and 4.
The Korringa relaxation rate can also be obtained via

Fermi’s golden rule by calculating the spin transfer to the
conduction electrons via exchange scattering. In this case,
the factor T arises from the fraction of the Fermi sea that
is available for scattering. The relaxation function method
yields the same result, but the factor T comes from the
susceptibility. The relaxation function method can be derived
from Bloch’s equations48 or justified from the Mori-Zwanzig
projector formalism.49,50 The method has also been used by
Huber in his treatment of electron paramagnetic resonance in
exchange-coupled systems with unlike spins.51

The above calculation is the extension of the formalism of
Ref. 27 for S = 1/2 to a more complex situation involving
four states. It is interesting to point out that the T dependence
of the relaxation rate arises from the static susceptibility. We
obtain this way that1

Trel ∝ χT
0 , (A11)

as stated in Introduction.
The frequency dependence of N ′′

12 at temperatures less than
the Zeeman spitting can give rise to retardation effects.27

At low frequencies, the relaxation is suppressed since the
transition has to overcome the Zeeman splitting and the energy
of the thermal bath is not sufficient for this. However, the
experiments for CeB6 were carried out T > 1.8 K and at
60 GHz, which translated to temperatures corresponds to
1.5 K, so that the temperature is always larger than the Zeeman
splitting. Retardation effects then do not play a relevant role.

Perturbatively in J the Kondo effect introduces logarithmic
divergencies as a function of T and B, which eventually
give rise to the screening of the spin. The Kondo effect
affects both, the relaxation function NT (z) and the static
susceptibility χT

0 . The relaxation function is enhanced by
the Kondo effect [NT (0) reaches the Shiba2 unitarity limit
NT (0) = i(gμB)22/π for S = 1/2] and the static susceptibil-
ity decreases reaching a constant value, inversely proportional
to TK . Hence, the relaxation rate is considerably enhanced,
rendering the resonance too broad to be observed (only if TK

is less than 100 mK an ESR resonance would be observable
in X band39). In CeB6, however, TK ∼ 1 K, so that for
T > 1.8 K and due to the antiferro-quadrupolar order, the
Kondo screening is not fully developed. For the temperature
regime of interest, the susceptibility is a Curie-Weiss law
with antiferromagnetic Weiss temperature θ ≈ −2TK and the
linewidth is still too large to be observed with X-band or
Q-band spectrometers.

When the Ce-ion under consideration is embedded into
a magnetic lattice (antiferromagnetic or ferromagnetic), the
mean field of the surroundings modifies the static susceptibility
to a Curie-Weiss law with a θCW. In the paramagnetic phase,
the proportionality of Trel ≈ χ0 ≈ 1/(T − θ ) is then favorable
for the observation of an ESR signal in the ferromagnetic case,
but not in the antiferromagnetic situation.

The total intensity of the line is the integral over the
resonance times the square of the matrix element of Mx

(spectral weight), as discussed in Sec. II. In the absence
of retardation effects, this yields π |〈1|Mx |2〉|2χT

0 , i.e., the
intensity of the line is proportional to the corresponding
susceptibility. If the system has several transitions that are
well separated, the spectrum is given by the sum of the
corresponding dynamic response functions times their spectral
weight. If two transitions have the same resonance field (as,
e.g., 4 → 2 and 3 → 1 or 4 → 3 and 2 → 1 in Fig. 1), then
the response functions are the same and have a spectral weight
corresponding to the sum of the spectral weights. Finally, in the
general case, when two or more resonance fields are similar,
it is necessary to introduce a matrix response function and a
corresponding relaxation matrix52 with the transitions to be
considered as entries. When the resonances are sufficiently
separated, the matrix formalism reduces again to individual
resonances.

In summary, in the present appendix, we have generalized
the resonance formalism of Ref. 27 for a general spin S to a
system with multiple possible resonances.

APPENDIX B: SINGLE-BAND MODEL

In Sec. IV, we studied a two-band model involving a
flat band of localized states hybridized with a dispersive
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conduction band and concluded that as a consequence of the
lattice coherence the two sublattice resonances reduce to one
with the g factor approximately given by the average of the g

factors of the two sublattices. In this appendix, we show that
a similar result is obtained within a single-band model (of the
t-J family).

We consider one tight-binding band with two interpene-
trating sublattices 1 and 2. The unit cell has two sites of
one-electron energies ε1 and ε2, respectively. Correlations can
be taken into account in mean field, reducing the hopping
matrix element to a smaller effective one. As in Sec. IV, we
suppress the spin index. In the reduced Brillouin zone, the
one-electron Hamiltonian is then

H =
∑

�k

[
ε1c

†
�k1

c�k1 + ε2c
†
�k2

c�k2 + ε�k
(
c
†
�k1

c�k2 + c
†
�k2

c�k1

)]
, (B1)

where ε�k = −2t
∑

i cos(�k · �Ri) with �Ri being the vectors
joining the nearest neighbor sites.

The Hamiltonian is easily diagonalized for each value of �k
and the eigenvalues are

λ = ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 4ε2

�k . (B2)

For antiferro-quadrupolar order and in zero field ε1 = ε2, so
that with an applied magnetic field (ε1 − ε2)2 ∼ H 2 (which
can be neglected for the purpose of a g-factor calculation),
and the effective g factor is

geff = g1 + g2

2
, (B3)

in agreement with the result in Sec. IV, Eq. (26).
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