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Electrons in one dimension display the unusual property of separating their spin and charge into two independent
entities: The first, which derives from uncharged spin-1/2 electrons, can travel at different velocities when
compared with the second, which is built from charged spinless electrons. Predicted theoretically in the early
1960s, spin-charge separation has attracted renewed attention since the first evidences of experimental observation,
with usual mentions as a possible explanation for high-temperature superconductivity. In one-dimensional (1D)
model systems, spin-charge separation causes the frequencies of Friedel oscillations to suffer a 2kF → 4kF

crossover, mainly when dealing with strong correlations, where they are referred to as Wigner crystal oscillations.
In nonmagnetized systems, the current density functionals that are applied to the 1D Hubbard model are not seen
to reproduce this crossover, which leads to a more fundamental question: Are the Wigner crystal oscillations in
1D systems noninteracting V-representable? Or, is there a spin-independent Kohn-Sham potential that is able to
yield spin-charge separation? Finding an appropriate answer to both questions is our main task here. By means of
exact and density matrix renormalization group solutions, as well as an exchange-correlation potential introduced
here, we show the answer to be positive. Specifically, the V-representable 4kF oscillations emerge from attractive
interactions mediated by positively charged spinless holes—the holons—as an additional contribution to the
repulsive on-site Hubbard interaction.
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I. INTRODUCTION AND BACKGROUND

Friedel oscillations1 are oscillations of electron density
that appear around inhomogeneities. With renewed attention
due to new possibilities for experimental realization, Friedel
oscillations have emerged as a useful laboratory in the
study of many-body systems,2,3 particularly those described
by the one-dimensional (1D) Hubbard chains. Contrary to
three-dimensional systems, which use to be described by the
Fermi-liquid theory, the 1D metals assume non-Fermi-liquid
behavior and belong to a special class of Tomonaga-Luttinger
liquids.4,5

In one dimension and in second-quantized notation, the
Hubbard model6 (HM) is defined as

Ĥ = −t

L∑

j,σ

(c†jσ cj+1,σ + H.c.) + U

L∑

j

c
†
j↑cj↑c

†
j↓cj↓, (1)

where L is the number of sites, t is the amplitude for
hopping between neighboring sites, and U is the local (on-site)
interaction acting on site j . Occupation of each site is limited
to two particles, necessarily of opposite spin.

The density profiles of open Hubbard chains display
Friedel-like oscillations, as can be seen in Fig. 1, obtained
by means of Lanczos exact diagonalization and density matrix
renormalization group (DMRG) calculations. We note a clear
change in the frequencies of oscillation upon variation of the
local Hubbard interaction U . The increase of U is accompanied
by an increase in the frequency, whose value is known to
pass from 2kF at U/t = 0 to 4kF in the limit of U/t → ∞,
corresponding to the transition from three to six positive peaks
in Fig. 1(a) [or from eight to sixteen in Fig. 1(b)], where
2kF = π (N + 1)/(L + 1), N is the number of electrons, and
kF is the Fermi wave vector.7–9 Specifically, each positive
peak in the density profiles is split into two new ones. The

resulting 4kF Friedel oscillations, usually referred to as Wigner
crystal oscillations,7,10 are connected with the spin-charge
separation effect, where the one-dimensional confinement
yields strongly interacting electrons which can break their
spin and charge into two separated quasiparticles, the first
built from uncharged spin-1/2 and the second from charged
spinless electrons.11,12 This mechanism, for which there are
recent evidences of experimental observation,13–15 is usually
mentioned as a possible explanation for high-temperature
superconductivity.16–18

In the limit of U/t = 0, the density profiles n(j ) of Friedel
oscillations are exactly described by

n0(j ) = N + 1

(L + 1)
− sin(2kF j )

(L + 1) sin
(

πj

L+1

) , (2)

whereas, in the limit of U/t → ∞, the Wigner crystal profiles
are given by

n∞(j ) = N + 1/2

(L + 1)
− sin

[(
4kF − π

L+1

)
j
]

2(L + 1) sin
(

πj

L+1

) , (3)

which is equivalent to the U/t = 0 limit of spinless electrons.
There have been many attempts to describe the 2kF →

4kF crossover by means of a local-density approximation
(LDA) or its spin-dependent version (LSDA), which includes
considering magnetized situations with N↑ �= N↓,19 and the
break of spin symmetry by means of a vanishing magnetic field
when N↑ = N↓.20,21 Generalized gradient approximations
(GGAs)22 and self-interaction corrections (SICs)23 have also
been considered, with no success for nonmagnetized systems.
The question we intend to discuss here is as follows: Is
it possible, in a nonmagnetized system, to reproduce all
ranges of frequencies via a standard Kohn-Sham (KS) density-
functional theory (DFT) calculation? In other words, we face
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FIG. 1. (Color online) (a) Density profiles from Lanczos exact diagonalization, with L = 15 sites and N = 6 electrons. (b) The same as
(a), but from DMRG calculations with L = 100 sites and N = 16 electrons. The average densities were added to constant values in order to
clarify the visualization.

the V-representability question: Is it possible that the strongly
interacting 4kF regime—and the spin-charge separation—
cannot be yielded by a spin-independent KS potential?

A. The concept of V-representability

The Hohenberg-Kohn theorems24 state that the total energy
of a many-body system is a functional of density, usually
written as

E[n] = T [n] + Vee[n] + V [n], (4)

which denotes the kinetic, interaction, and external potential
terms, respectively. The exact expression for the ground-state
kinetic energy can be written as24

T [n] =
∑

σ=↑,↓

Nσ∑

k

fk,σ 〈ψk,σ |t̂ |ψk,σ 〉, (5)

where t̂ , ψk,σ , and fk,σ are the kinetic energy operator, the
spin orbitals, and their occupation numbers, respectively. The
Pauli exclusion principle requires that 0 � fk,σ � 1. The total
electron density is given by

n(r) =
∑

σ=↑,↓

Nσ∑

k

fk,σ |ψk,σ (r)|2, (6)

under the constraint of
∑

σ=↑,↓
∑Nσ

k fk,σ = N↑ + N↓ = N .
For interacting systems, with fractional occupation numbers
for fk,σ , there are an infinite number of possibilities in Eqs. (5)
and (6). Kohn and Sham considered fk,σ = 1 for the first Nσ or-
bitals and fk,σ = 0 for the rest, that is, they approximated T [n]
by the noninteracting kinetic energy, TS[n], exactly described
by these choices of occupation numbers. In practice, Vee[n] is
also approximated by the classical Hartree expression, EH [n],
and all corrections to both approximations are considered in
the exchange-correlation (XC) term, EXC[n].

The use of TS[n], however, leads to a restriction on
the density: It needs to be noninteracting V-representable,
that is, there must exist a noninteracting ground state with
the density n(r). In other words, there must exist an XC
potential vXC[n](r) = δEXC[n]/δn(r) whose ground state, in a
noninteracting KS calculation, leads to the correct interacting
density profiles. There are examples in the literature of

densities which are not noninteracting V-representable,25 and
a common procedure to circumvent this is to allow fractional
occupation numbers for fk,σ . The V-representability is not a
conceptual problem to the Hohenberg-Kohn theorems, since
it comes from the choice of TS[n] for the KS approach of
DFT. We can mention alternative approaches, such as the
orbital-free DFT,26 which aims to approximate T [n] as an
explicit functional of the density and does not make use of the
KS equations.

II. RESULTS

To prove the V-representability, we can (a) use accurate
solutions of 1D Hubbard chains, such as the DMRG, and
invert the KS equation to find the accurate XC potential27

which yields the accurate densities; or (b) find an XC potential,
or propose an alternative one, which yields the correct
oscillations. In either case, if the potential exists, this will be a
numerical (and sufficient) proof that the 2kF → 4kF crossover
is noninteracting V-representable. We will go through these
two options in the following subsections.

A. Accurate exchange-correlation potentials

Using accurate density profiles as input, we numerically
traced back the KS and XC potentials. The inversion of
the KS equations is performed in a self-consistent cycle, as
follows: Step 1: Introduction of an initial guess for the entire
KS potential V 0

KS(j ), for example, which contains only the
Hartree term of a uniform system. Step 2: Determine
the density profiles n0(j ) obtained from V 0

KS(j ). Step 3: Com-
pare n0(j ) with the accurate density profiles naccurate(j ). Step
4: If n0(j ) < naccurate(j ), V 1

KS(j ) = V 0
KS(j ) − δ; if n0(j ) >

naccurate(j ), V 1
KS(j ) = V 0

KS(j ) + δ, with δ � 1 × 10−5. The
2 → 4 cycle is repeated γ times until nγ (j ) ≈ naccurate(j ), with
an accuracy of ∼0.1%. Results are shown in Fig. 2, where we
plot the accurate XC and KS potentials resulting from the
density profiles of Fig. 1 and from additional data.

The answer regarding the V-representability is positive, that
is, it is possible to find spin-independent XC potentials which
yield accurate density profiles and their crossover in frequency.
The same is true for the entire KS potential, vKS(j ) =
vH [n](j ) + vXC[n](j ) + vext(j ), with vH [n](j ) = Un(j )/2,
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FIG. 2. (Color online) (a),(b),(e),(f) Accurate (based on Lanczos exact diagonalization accuracy) XC and KS potentials obtained by means
of the KS equation inversion: L = 15 sites and N = 6 electrons, with N↑ = N↓. (c),(d): the same as the other parts, but based on DMRG
accuracy for L = 100 sites and N = 16 electrons. The average potentials were added to constant values in order to clarify the visualization.

and here vext(j ) = 0. The comparison between Figs. 1 and
2(a)–2(d) shows that, even though a change in frequency is
present for the densities, the XC potentials always oscillate
with the same frequency, 4kF (identified by the six or sixteen
negative peaks for each number of electrons). The only changes
are in the oscillation amplitudes, which are increased as
the interaction U goes in the same direction. This behavior
is particularly unexpected for weak interactions, where the
density profiles oscillate with 2kF , whereas the XC potentials
do not follow the same path. As a consequence of an increment
in the XC amplitude, the entire KS potential suffers a transition
from 2kF to 4kF , driving the same path to the density, as seen
from Fig. 1. The exceptions are some cases of very weak
interactions, as pointed out in Figs. 2(e) and 2(f), where the
XC potentials may oscillate with an intermediate frequency
2kF < f < 4kF , identified by five negative peaks, and with
no effects on the densities (which oscillate with 2kF for these
cases due to the very reduced XC amplitudes).

As a first conclusion, the key ingredient which yields the
2kF → 4kF crossover in the density profiles is the change
in amplitude of a 4kF oscillating XC potential. With the
prominence of correlation effects, spin-charge separation
emerges from the XC potential, which oscillates with the same
frequency as spinless electrons do.

B. Approximated exchange-correlation potentials

Once it is V-representable, the next option concerns the
possibility of finding an approximated XC potential which
yields the 2kF → 4kF crossover. The basic Hohenberg-Kohn
and Kohn-Sham theorems of DFT also hold for the Hubbard
model once the density n(r) is replaced by the on-site
occupation number,28

n(r) −→ n(j ) =
∑

σ=↑,↓
〈c†jσ cjσ 〉. (7)
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In terms of this variable, local-(spin)-density approximations
for Hubbard chains and rings have been constructed. Suc-
cessful examples are the analytical parametrizations proposed
by Lima et al.,29 and França et al.,30 or an alternative route,
which uses a direct numerical solution of the Bethe ansatz
(BA) integral equations, and is known as BALDA/FN (fully
numerical).31 Both approaches can be employed in the usual
way via a KS calculation.

The LDA functional, with n↑(j ) = n↓(j ), is not seen to
describe the Friedel oscillations correctly, at least in the
limit of Wigner crystallization. We will not consider here the
application of any vanishing magnetic field, which can break
the spin symmetry and yield the 4kF oscillations, however at
the expense of a magnetized final solution with n↑(j ) �= n↓(j )
for N↑ = N↓. Instead, we propose a spin-independent XC
potential based on a complement of the previous BALDA
approaches. The total Hamiltonian of a one-dimensional
interacting system is known to separate into two independent
terms, of spin and charge, as follows:11

Ĥ = Ĥβ + Ĥρ = Ĥ0 + ĤI , (8)

where Ĥβ and Ĥρ denote the spin and charge terms,
respectively, rewritten here as a sum of Ĥ0 (the noninteracting
kinetic Hamiltonian) and ĤI (the particle-particle interaction
term). The spin densities β(j ) are built from uncharged
spin-1/2 electrons (spinons), whereas the charge densities
ρ(j ) are built from charged spinless electrons (chargons).
Spinons and chargons are semions, that is, particles with
statistics half that of regular fermions,32–34 with occupied
states following the schematic representation of Fig. 3(b),
where charge and spin were fractionalized to form the spin-1/2
spinons (as a sum of two 1/4 spins) and the spinless chargons
(as a sum of two −e/2 charges). In this context, considering
spinons and chargons as distinct separate entities, the total
interacting density can be written as n(j ) = β(j ) + ρ(j ), with
spin and charge allowed to travel at different velocities. In
particular, in the strongly interacting limit, it has been shown

Noninteracting
system

spins + charges
together

spinons + chargons
separated

spins + charges together
+ spinless holons

Kohn-Sham
system

(a)

(b) (c)Strongly-
interacting system

FIG. 3. (Color online) Schematic occupied states of three sys-
tems: (a) noninteracting, with spins and charges together; (b) strongly
interacting, with spinons and chargons following the fractional
statistics of semions; and (c) noninteracting Kohn-Sham system, with
spins and charges together under the influence of holons (the chargon
antiparticles).

that in some cases the spin densities can be considered as
almost static in comparison with the charge movement.35

In contrast to spin-1/2 electrons and spin-1/2 holes in the
Fermi-liquid theory, excitations in one-dimensional systems
are described in terms of spinons and positively charged
spinless holes—the holons (the chargon antiparticles). It has
been argued that spinons and holons attract each other at short
distances.36 In this context, as shown in Fig. 3(c), we propose
here that the occupied states of a noninteracting KS system
are built by retaining spin and charge together, at the expense
of the presence of holons, whose densities are given by ρ+(j ).
The KS potential can thus be written as a functional which
depends on nKS(j ) and ρ+(j ):

vKS[n](j ) = vext(j ) + δ〈HI 〉
δnKS(j )

− δ〈HI 〉
δρ+(j )

, (9)

with nKS(j ) ≡ n(j ) and

ρ+(j ) =
∑

σ=↑,↓

N∑

k

1

2
|ψkσ (j )|2, (10)

that is, the holon density ρ+(j ) is constructed by using the
first Nσ unoccupied KS orbitals. This conjecture is especially
conceived to deal with strong interactions, where the presence
of holons will be felt by the electronic density as an attractive
external potential. Based on Eqs. (9) and (10), we introduce
the present approach:

v
present
KS [n](j ) = vext(j ) + vH [n](j ) + vapprox

xc [n](j )

− vH [ρ+](j ) − vapprox
xc [ρ+](j )

≡ vext(j ) + vH [n](j ) + vpresent
xc [n](j ), (11)

with

n(j ) =
∑

σ=↑,↓

Nσ∑

k

fk,σ |ψkσ (j )|2, (12)

and the KS choices for fk,σ . As an approximated functional
(approx) we chose the BALDA/FN. We include the holon
density only in the XC potential, and we use it in the KS
calculation. A welcome feature of the present approach is
the absence of the one-electron self-interaction error: In a
nonmagnetized LDA calculation, ψk↑(j ) = ψk↓(j ). There-
fore, for one-electron systems, n(j ) ≡ ρ+(j ) = |ψkσ (j )|2, and
then the present KS potential is exact, correcting the spurious
self-interaction of one electron with itself. The results for
BALDA/FN and the present correction are shown in Figs. 4 and
5 for the electronic density n(j ) and XC potential. Remember,
BALDA/FN takes into account only the first two terms of
Eq. (9).

From Fig. 4(a), while BALDA/FN yields the correct
behavior for weak interaction, the 2kF → 4kF crossover is
not recovered as U is increased, following the same trends
already observed in the literature.19–21 The same occurs with
the BALDA/FN XC potentials of Fig. 4(b), which oscillate in
2kF for all values of U (identified by the eight negative peaks).
From Fig. 4(c), the densities from the present approach also
oscillate correctly for weak interactions, but, different from
BALDA/FN, we do observe the 2kF → 4kF crossover as U is
increased, even though the amplitudes are subtly higher than
the DMRG prediction of Fig. 1. In addition, from Fig. 4(d), the
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FIG. 4. (Color online) (a) and (b) BALDA/FN density and XC potential profiles. (c) and (d) Present approach profiles. L = 100 sites and
N = 16 electrons, with N↑ = N↓.

XC potentials from the present approach oscillate in 4kF for all
values of U ; the only changes are in the amplitudes, the same
as observed for the accurate XC profiles of Fig. 2. The spinless
term of Eq. (9) was able to incorporate the key ingredient we
mentioned before, i.e., the spin-charge separation by means of
a change in amplitude of a 4kF oscillating XC potential.

It is known that the prominence of correlation effects is not
only driven by the interaction U , but also by low densities.
For this reason, we have also considered Hubbard chains
with different average densities n = N/L. Specifically, in
Figs. 5(a) and 5(b) we plot the LDA XC potentials for two
values of n. Interestingly, for each case, there are values of
U for which the LDA XC potentials oscillate in 4kF , as

indicated by the four (when N = 4) or six (when N = 6)
negative peaks. As U is increased, the LDA XC potential
suffers an incorrect transition to 2kF (identified by two or
three negative peaks) and then yields the incorrect density
profiles for larger U (not shown). This feature can be better
understood by means of the XC potentials of homogeneous
extended systems, which are used in the construction of
the LDA XC functionals and are plotted in Figs. 6(a)–6(c).
We note a common behavior: Near the average densities
of the systems of Fig. 5, the homogeneous XC potentials
undergo minimum values, whose positions tend to move to
the right as the interaction is increased. For a given value of
U , the LDA XC potential emerges to oscillate in 4kF only

FIG. 5. (Color online) BALDA/FN XC potential profiles: (a) L = 17 sites and N = 4 electrons; (b) L = 13 and N = 6. Both cases with
N↑ = N↓.
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FIG. 6. (Color online) (a)–(c) XC potential profiles for extended homogeneous systems obtained by means of the Bethe ansatz integral
equations. (d) Values of n for which the homogeneous XC potential undergoes a minimum, and the LDA XC potential oscillates with 4kF (for
n < 1).

for the average densities surrounding these minimum values.
Without the inversion points, as seen for U � 3t in Fig. 6(c),
an increase of n(j ) will always be followed by a decrease
of vxc[n](j ), and vice versa, explaining the correspondence
between Figs. 4(a) and 4(b). In Fig. 6(d), we plot the values
of n < 1 for which the LDA XC potentials oscillate with 4kF :
For average densities above this curve, the LDA XC potentials
oscillate with an intermediate frequency 2kF < f < 4kF , as
identified by three and four negative peaks in Figs. 5(a) and
5(b), respectively, in accordance with the similar behavior of
Fig. 2(e). Bellow the curve, the LDA XC potentials oscillate
with the wrong frequency 2kF .

To conclude, (i) it should be stressed that even though
the LDA XC potential may oscillate with f and 4kF ,
these frequencies occur for values of U in which the XC
amplitudes are so reduced that the density profiles are not
affected, retaining the 2kF oscillations in all cases we have
implemented; (ii) the curve of Fig. 6(d) can also be employed
to delimit the necessity of using the KS states exposed in
Fig. 3(c), where the spin-charge separation emerges from the
inclusion of spinless holons. As expected, the separation is
prominent both for strong interactions and/or low densities, a
situation indicated in Fig. 6(d) as the “4kF region.”

The present approach yields the correct frequencies of
density profiles for all values of U and n we have investigated,
including the systems of Fig. 5 (not shown). This is further
numerical proof that it is possible to find a spin-independent
KS potential which yields the Friedel and Wigner crystal
oscillations for all ranges of interaction and prominence of
correlation effects. All this can be seen in the following imple-
mentation scenario (on a supercomputer): The computing time

of DMRG scales with ∼101 h, while the present DFT approach
scales with ∼100 min. We have also considered other flavors
of self-interaction corrections, such as the full optimized
effective potential (OEP) implementation of the usual Lundin-
Eriksson37 and Perdew-Zunger38 approaches. However, none
of them were able to yield the 4kF oscillations, which shows us
that the 2kF → 4kF crossover, or the spin-charge separation,
is not only a problem of a one-electron self-interaction error.39

More than correcting the spurious self-interaction of the LDA,
which tends to delocalize electrons, an accurate functional
should include the physics of positively charged holons.

C. Analytical conjecture

Based on Eqs. (2) and (3), it is possible to propose an analyt-
ical conjecture to describe the Friedel and Wigner crystal oscil-
lations that is valid for any value of U . It is usually written as7

n(j ) = N + 1

(L + 1)
− A1

sin(2kF j )
[

sin
(

πj

L+1

)](Kc+1)/2

−A2
sin

[(
4kF − π

L+1

)
j
]

[
sin

(
πj

L+1

)]2Kc
. (13)

The parameters A1, A2, and Kc depend on U and are
related to the amplitude and oscillation decay. Specifically,
A1 and A2 are usually referred to as Friedel and Wigner
amplitudes, respectively. Kc is the correlation exponent, one
of the Luttinger parameters.35 A similar expression has been
proposed for the density distribution in a harmonic trapping
potential.41 We fitted here the density profiles of Figs. 1(b)
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FIG. 7. (Color online) Friedel and Wigner crystal amplitudes.
Crossover points with A1 = A2: For average densities above the
curves, systems display Friedel-like oscillations. Bellow them, the
Wigner crystal behavior is prominent.

and 4 to the expression (13), with the values of A1, A2, and Kc

expressed in Table I as a function of U . In comparison with
DMRG, the LDA fails to predict the correct values of A2 as
well as the correct decay of A1 and Kc. The present approach
performs much better, mainly for the Kc values, which are
obtained in great agreement with DMRG, even though it is
seen to overestimate the weight of A2 for large U , as expected
from the density profiles of Fig. 4(c).

Beyond the local interaction U , all parameters in Table I
depend on the number of particles N , chain size L, and
average density N/L. For this reason, these values cannot be
considered as universal—they are only a picture of a specific
system with N = 16 and L = 100. A more complete analysis
follows in Fig. 7, where we plot the crossover points with
A1 = A2 in the U -N/L plane. Based on DMRG calculations,
an accurate prediction for L = 200 is N/L ≈ 0.034U .7 For a
small chain of L = 15 sites, we introduce here an additional
accurate expression, N/L ≈ 0.058U , based on Lanczos exact
diagonalization. For average densities above these curves,
systems display Friedel-like oscillations with 2kF (A1 > A2).
Below it, the Wigner crystal behavior with 4kF is prominent
(A1 < A2). The constant BALDA/FN curve at zero means
that it predicts A1 > A2 for all values of U and N/L.
The curves from the present approach emerge to be much
more accurate, mainly for low densities and/or moderate
interactions. Its great improvement over BALDA/FN is due
to a more accurate description of the 2kF → 4kF crossover.

TABLE I. Parameters A1, A2, and Kc obtained by means of a fit of
expression (13) to the data of Figs. 1(b) and 4, with L = 100 and N =
16. The nomenclature “x.xx/y.yy/z.zz” indicates the parameters
values for U = 2t , 4t , and 12t , respectively.

A1 × 10−3 A2 × 10−3 Kc

DMRG 5.63/3.60/1.57 1.34/2.53/3.90 0.65/0.58/0.53
LDA 5.70/4.78/3.84 0.19/0.38/0.45 0.89/0.82/0.80

Present 5.25/2.52/0.36 2.00/3.35/4.54 0.61/0.55/0.52

For strong interactions and higher average densities, as seen for
L = 200, the present approach tends to fit below the accurate
prediction, yielding a larger Friedel-like region.

III. CONCLUSIONS

We have dealt with the V-representability issue of Wigner
crystal oscillations in one-dimensional Hubbard chains. Ini-
tially, we posed two questions concerning nonmagnetized
systems: (i) Are the 1D Wigner crystal oscillations noninter-
acting V-representable? (ii) Or, is there a spin-independent KS
potential which is able to yield the spin-charge separation? We
have concluded that the answers to both questions are positive,
that is, we do not face a V-representability problem. Different
from some previous studies, we have not considered the break
of spin symmetry, which is known to yield the 2kF → 4kF

crossover. Instead, by means of accurate many-body solutions
for small and extended chains, we inverted the KS equation,
showing that it is possible to find a spin-independent XC
potential which reproduces the accurate densities.

In addition, we have proposed an XC potential that
incorporates, by means of unoccupied KS orbitals, the physics
of positively charged spinless holes (holons). Specifically,
holons act on mediating attractive interactions, as an additional
contribution to the repulsive on-site U . The present approach
is also able to reproduce the 2kF → 4kF crossover, either for
small or extended chains, with correlation exponents obtained
in great agreement with DMRG data.

It remains to be seen whether the present spin-independent
XC potential (11) can circumvent known failures of the
LDA42 and be successfully applied to other classes of systems,
with impurities and external confinements, as the example of
ultracold fermions in one-dimensional traps.41
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