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We extend the semiclassical study of fermionic particle-hole symmetric semi-Dirac (more appropriately, semi-

Dirac semi-Weyl) dispersion of quasiparticles, εK = ±√
(k2

x/2m)2 + (vky)2) = ±ε0

√
K4

x + K2
y in dimensionless

units, discovered computationally in oxide heterostructures by Pardo and collaborators. This unique system is a
highly anisotropic sister phase of both (symmetric) graphene and what has become known as a Weyl semimetal,
having 〈v2

y〉1/2 ≈ v independent of energy, and 〈v2
x〉1/2 ∝ m−1/2√ε being very strongly dependent on energy

(ε) and depending only on the effective mass m. Each of these systems is distinguished by bands crossing
(sometimes referred to as touching) at a point Fermi surface, with one consequence being that for this semi-Dirac
system the ratio |χorb/χsp| of orbital to spin susceptibilities diverges at low doping. We extend the study of
the low-energy behavior of the semi-Dirac system, finding the plasmon frequency to be highly anisotropic
while the Hall coefficient scales with carrier density in the usual manner. The Faraday rotation behavior is also
reported. For Klein tunneling at normal incidence on an arbitrarily oriented barrier, the kinetic energy mixes
both linear (massless) and quadratic (massive) contributions depending on orientation. Analogous to graphene,
perfect transmission occurs under resonant conditions, except for the specific orientation that eliminates massless
dispersion. Comparisons of the semi-Dirac system are made throughout with both other types of point Fermi
surface systems.
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I. INTRODUCTION

The isolation of single layers of graphite (graphene) with
its unique linear (massless Dirac, properly called Weyl)
low energy band structure has become, within only a few
years, a heavily studied phenomenon.1,2 The appearance of
unanticipated new features in band structures, which generally
has far-reaching implications, have in the past included half
metallic ferromagnets and compensated half metals (“half
metallic antiferromagnets”), and more recently topological
insulators.3,4 Each of these systems provide the promise of
not only new physical phenomena but also new applications
of their unconventional properties.

Another key feature of graphene is the point Fermi surface
aspect. The touching (or crossing) of bands is accompanied
by a gap throughout the rest of the Brillouin zone that pins
the Fermi level (EF ) in the intrinsic material to lie precisely
at the point of crossing—the point Fermi surface (two of
them in graphene). This point Fermi surface aspect has been
well studied5 in conventional zero gap semiconductors where
a touching of the valence band maximum and conduction
band minimum is symmetry determined and occurs at a
high symmetry point. The dielectric susceptibility of such a
system is anomalous6—neither metallic nor semiconducting
in character—and unusual consequences of the touching
bands and residual Coulomb interaction promise unusual
phases, such as excitonic condensates including excitonic
superconductors and excitonic insulators.

The linear dispersion at the zone boundary in graphene has
been known for many decades; it took the ability to prepare
the delicate material and perform a variety of experiments
to ignite interest. There are quasilinear (and potentially
truly linear) band structure features in certain materials, viz.
skutterudites,7 that have been known for some time and with
recent developments8 may attract new attention. To actually
discover a feature in a band structure that provides the

quasiparticle dispersion of a new and unexpected type is rare,
and the discovery of a semi-Dirac dispersion pinned to the
Fermi energy is a very recent example.

Pardo and one of the authors9,10 reported such a finding in
ultrathin (001) VO2 layers embedded in TiO2. This new point
Fermi surface system, dubbed “semi-Dirac,” is a hybrid of con-
ventional and unconventional: dispersion is linear (“massless,”
Dirac-Weyl) in one of the directions of the two-dimensional
(2D) layer, and is conventional quadratic (“massive”) in the
perpendicular direction. At directions between the axes the
dispersion is intermediate and highly direction dependent.
Interest in this unique, maximally anisotropic, dispersion
arises for several reasons. The (topologically determined
pinning at the) point Fermi surface is itself of interest.
The highly anisotropic dispersion (from massive to massless
depending on angle) is unique to this system. The fact that
it arises in an oxide nanostructure of the general type that
is grown and studied regularly these days also strengthens
the promise of applications. Another layered superstructure, a
double cell layer of Ti3SiC2 embedded in SiC, has displayed
a point Fermi surface, but the dispersion is of the convention
type.11 As alluded to above, an unusual point Fermi surface at
zero momentum, with linear bands degenerate with quadratic
bands, has been discovered in the skutterudite class of
semimetals.8

Such a spectrum had been noted earlier in different contexts.
Volovik obtained such a spectrum at the point node in the A

phase of superfluid 3He (Ref. 12) and studied its topological
robustness.13 More relevant to solids was the discovery by
Montambaux’s group of this spectrum in a graphenelike
model.14 The model has a broken symmetry such that hopping
to two nearest neighbors is t but to the third neighbor is t ′.
When t ′ differs from t , the graphene “Dirac points” wander
away from the K and K ′ points, and at t ′ = 2t they merge,
resulting in the semi-Dirac spectrum. This group began a
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study of low energy properties of such a system,15 which was
continued by Banerjee et al.16 and will be extended in the
present paper.

In this paper we first provide results for the Hall coefficient
and plasma frequency versus doping level, finding some new
behavior along with some somewhat conventional results. Our
transport results are obtained within a semiclassical picture,
following most transport studies in solids. Further work will
be required to address behavior at very low doping level, where
a fully quantum treatment is expected to be required. In the
final section we provide selected results for Klein tunneling
of semi-Dirac particles, a problem that acquires extra richness
due to the variable angle of the barrier with respect to the
anisotropic dispersion.

II. SEMI-DIRAC DISPERSION

Semi-Dirac dispersion is quadratic along one symmetry
direction in the Brillouin zone and linear along the direction
perpendicular to it: massless Dirac (i.e., Weyl). Choosing kx

and ky to be the momentum variables and taking h̄ = 1 except
occasionally for clarity, the semi-Dirac dispersion is given by

εk = ±
√[

k2
x

2m

]2

+ [vky]2, (1)

where the effective mass m applies along kx and v is the
velocity along ky (the massless direction). For intermediate
angles β = arctan(ky/ky), the dispersion is of an entirely new
type. Two natural scales are introduced, one for the momentum
and the other for the energy: p = 2mv (momentum scale)
and ε0 = p2

2m
= 2pv. (Untidy factors of 2 appear because of

the clash between the natural classical 1
2pv and relativistic

pv units for energy.) One can then define the dimensionless
momenta KX = h̄kx

p
and Ky = h̄ky

p
in terms of which the semi-

Dirac dispersion given by Eq. (1) becomes

εk = ±ε0

√
K4

x + K2
y . (2)

The corresponding velocity �vk = ∇kεk can be scaled to a
dimensionless form �VK using

�VK ≡ �vk

v
= ∇KξK. (3)

Figure 1 shows semi-Dirac Fermi surfaces as well as contour
plots of �VK .

We first compute 〈v2
x〉 and 〈v2

y〉, which are the averages

of the Fermi surface velocity vF = (〈v2
x〉 + 〈v2

y〉)
1
2 for the

semi-Dirac dispersion in the nonrelativistic and the relativistic
directions respectively, which will prove to be useful later,
and will also give the semiclassical conductivity tensor σαβ =
e2τD(ε)〈vαvβ〉. They are defined as follows:

〈vαvβ(ε)〉 =
∑

k

vαvβδ(εk − ε)/
∑

k

δ(εk − ε)

= 1

2π2D(ε)

∫
dkt

vαvβ

|vk| , (4)
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FIG. 1. (Color online) (a) Fermi surfaces of semi-Dirac disper-
sion, along with arrows representing �VK. The length of an arrow is
proportional to the magnitude of �VK. As can be seen from the figure,
the arrow length is constant along the Ky axis indicating a constant
velocity in the relativistic (y) direction. �VK’s are all normal to the
constant Fermi energy contours, as they should be. (b) The surface
and contour plot of the magnitude of �VK. The magnitude is constant in
the y direction as opposed to the monotonically changing values in the
nonrelativistic (x) direction, with rapid variation of other directions
of propagation.

where D(ε) is the density of states. For semi-Dirac dispersion
the density of states was obtained earlier16 as

D(ε) = I1

√
2mε

π2v
= I1

2m

π2

√
ε

ε0
, (5)

with proportionality coefficient
√

m/v2. The integral I1 is
given by

I1 =
∫ 1

0
ds(1 − s4)−

1
2 ≈ 1.3110. (6)

Bácsi et al. have studied the quantum critical exponents
of point Fermi surface semimetals17 with D(ε) ∝ |ε|r for a
continuous range of r including this r = 1/2 case.
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The squared Fermi velocities for semi-Dirac dispersion are
obtained as 〈

v2
x

〉 = 4I3

I1

ε

m
, (7a)

〈
v2

y

〉 = I2

I1

ε0

m
≈ 1.3v2. (7b)

Note that the former involves only m, the latter only v. The
integrals I2 and I3 are given by

I2 =
∫ 1

0
ds(1 − s4)

1
2 ≈ 0.8740, (8a)

I3 =
∫ 1

0
ds

s6

(1 − s4)
1
2

≈ 0.3595. (8b)

Thus the ratio of 〈v2
x〉 to 〈v2

y〉 scales as ε/ε0, which reflects
the extreme anisotropy at small doping. For the VO2 system
where semi-Dirac dispersion was discovered,9,10 only very
small doping levels will remain within the energy range
represented by the semi-Dirac dispersion ( ε

ε0
∼ 10−4), but we

consider more general cases.

III. FARADAY ROTATION IN THE CONTEXT OF THE
SEMI-DIRAC SYSTEM

A. The semiclassical equation of motion

The behavior of point Fermi surface semimetals in a
magnetic field has stimulated lively interest due to unusual
quantum Hall effect behavior, with the case of graphene
having been reviewed recently by Goerbig.18 The semiclassical
equation of motion of an electron in a magnetic field �B is given
by

h̄
d�k
dt

= −e

c
�vk × �B. (9)

Using Eq. (3) for �vk in Eq. (9), one obtains the following
expressions:

dKx

dt
= −ω0Ky, (10a)

dKy

dt
= 2ω0K

3
x , (10b)

where Kx and Ky are the dimensionless variables associated
with momentum introduced before, and ω0 is given by

ω0 = eBv2

cε
= eB

mc

ε0

ε
, (11)

where B is the magnetic field, and ε the Fermi energy. The
Fermi surface orbiting frequency diverges as the doping level
decreases; the Fermi surface orbit length goes smoothly to
zero whereas the mean velocity remains finite. Eliminating Ky

from Eqs. (10a) and (10b), the following differential equation
is obtained:

d2Kx

dt2
= −2ω2

0K
3
x . (12)

In order to solve this second order differential equation, we
multiply both sides of the equation by K̇x (K̇x denotes the
time derivative of Kx). Both the right and the left sides of the

equation can then be written as total derivatives, which can be
integrated to give

K̇2
x = −ω2

0K
4
x + C, (13)

where the constant C can be determined from the condition that
K̇x = 0 when Kx = Kx,max. Kx,max = (ε/ε0)1/2 corresponds
to Ky = 0, from the semi-Dirac dispersion given by Eq. (2),
and the rest follows from Eq. (10a). Hence Eq. (13) becomes

K̇x = ±ω0

√
K4

x,max − K4
x . (14)

Integrating the above equation (numerically) one can get Kx

as a function of time. Once Kx is known, Ky can be obtained
from Eq. (10b). The differential equation for the cyclotron
orbit is obtained by dividing Eq. (10b) by Eq. (10a). Solving
for that, we obtain the semi-Dirac constant energy contour as
an expression for the cyclotron orbit, which is expected, since
the energy of an electron does not change when it moves under
the influence of magnetic field.

B. The cyclotron frequency

Equation (14) can be integrated using the limit −Kx,max to
Kx,max for the variable Kx to obtain the time period. The result
for the time period (T ) thus obtained is

ω0T = 4I1

Kx,max
= 4I1

√
ε/ε0, (15)

where I1 is given by Eq. (6). From Eq. (15), the fundamental
semi-Dirac cyclotron frequency �c ≡ 2π

T
is obtained as

�c/ω0 = π

2
I−1

1

√
ε0/ε. (16)

The cyclotron frequencies for the parabolic and the lin-
ear dispersion cases are given by ( μBB

h̄
= eB

mc
) and eBv2

cε
,

respectively (μB is the Bohr magneton). Comparing with
Eq. (16), we see that the cyclotron frequencies for all three
cases(the parabolic, linear, and semi-Dirac) depend linearly
on the magnetic field. The cyclotron frequency is independent
of the Fermi energy for parabolic dispersion, whereas it varies
as ε− 1

2 for the semi-Dirac dispersion and as ε−1 for the linear
Dirac dispersion. One important aspect of the semi-Dirac
dispersion is that the semi-Dirac dispersion being anisotropic
in the momentum space can have harmonics of the fundamental
cyclotron frequency given by Eq. (16). This feature is absent in
the Dirac or the two-dimensional parabolic dispersion where
the energy momentum dispersion is isotropic giving rise to
only one value for the cyclotron frequency.

C. Faraday Rotation

The Faraday rotation angle is given by the expression19

θ (ω,B) = Z0fs(ω)Re[σxy(ω,B)], (17)

where Z0 is the impedance of the vacuum, fs is the spectrally
featureless function specific to the substrate, and σxy is the
dynamic Hall conductivity. According to the Drude formula
the dynamic Hall conductivity is given by19

σxy = −2D
π

ωc

ω2
c − (

ω + i
τ

)2 , (18)

075124-3



S. BANERJEE AND W. E. PICKETT PHYSICAL REVIEW B 86, 075124 (2012)

where D is the Drude weight, given by D = π
6 e2D(ε)〈v2〉.

Taking the real part of Eq. (18) and using it in Eq. (17), we
obtain

θ (ω,B) = −2Z0fs(ω)Dωc

π
I (ω), (19)

where I (ω) is given by

I (ω) = ω2
c − ω2 + 1

τ 2(
ω2

c − ω2 + 1
τ 2

)2 + 4ω2

τ 2

. (20)

Extremizing I (ω) and inserting the resulting expression for
I (ω) in Eq. (19), we obtain the following expression for the
maximum value of the Faraday rotation angle θ :

θ (ω,B) = −Z0fs(ω)Dωcτ
2

2π
((

ω2
cτ

2 + 1
) 1

2 − 2
) . (21)

The Drude weight D ∼ ε for Dirac dispersion [since
D(ε) ∼ ε, and 〈v2〉 is a constant]. The Dirac cyclotron
frequency ωc ∼ ε−1. Hence the product Dωc that appears
in the numerator of Eq. (21) is independent of the doping
level for Dirac dispersion. For semi-Dirac dispersion, D ∼ ε

1
2 ,

which follows from the fact that the product D(ε)〈v2〉 ∼
D(ε)〈v2

y〉, where vy is the speed in the relativistic direction,

and that D(ε)〈v2
y〉 ∼ ε

1
2 . The last step follows by combining

Eqs. (5) and (7b). For the same dispersion ωc ∼ ε− 1
2 [from

Eq. (16)]. Hence, like Dirac dispersion, Dωc for the semi-
Dirac dispersion is independent of the doping energy. For
two-dimensional parabolic dispersion, ωc is independent of
the doping energy, but D ∼ ε. Hence Dωc depends on the
doping energy. This is a significant difference when compared
to the Dirac and the semi-Dirac dispersion.

For Dirac and semi-Dirac systems the dependence of the
Faraday angle on the doping level arises from the term ωcτ

in the denominator of Eq. (21), whereas the numerator is
independent of doping. For those dispersions one can fine
tune the Fermi energy to obtain a large value of the Faraday
angle by bringing the term ωcτ close to three, so that the term
(ω2

cτ
2 + 1)

1
2 − 2 appearing in the denominator goes to zero

causing a significant value for the Faraday angle.

IV. HALL COEFFICIENT

According to semiclassical Bloch-Boltzmann transport
theory, the Hall coefficient of a two dimensional Fermi liquid
(in the x-y plane) is20

RH ≡ RH
xyz = �kvx(k)[v(k) × ∇(k)]zvy(k)

(−∂f

∂ε

)
[
�kv2

x(k)
(−∂f

∂ε

)][
�kv2

y(k)
(−∂f

∂ε

)] . (22)

Due to the algebraic complexity of the first and second
derivatives of ξK , this expression is formally unwieldy. We
show however that general properties of this expression lead
to a simple and familiar result for RH .

The numerator of Eq. (22) is the area Av spanned by
the velocity vector over the Fermi surface.21 In the zero
temperature limit each term in the denominator reduces to
a line integral along the Fermi surface. The carrier density n is
proportional to the area swept by the vector k over the Fermi

surface, which is the area AFS enclosed by the Fermi surface.
Hence the quantity RHn is given by

RHn = AvAFS∮
dkl

v2
x

vk

∮
dkl

v2
y

vk

. (23)

Using the fact that the gradient ∇kε is perpendicular to the
vector line element dkl along the Fermi surface, so that the
dot product between them is zero, the denominator of Eq. (23)
reduces to∮

dkl

v2
x

vk

∮
dkl

v2
y

vk

=
∮

dkyvx

∮
dkxvy. (24)

Using Eq. (24) in Eq. (23) we obtain

RH n = AvAFS∮
dkyvx

∮
dkxvy

. (25)

RH n as given by Eq. (25) is unity for the semi-Dirac
dispersion. This result can be argued directly from Eq. (25)
in the following way. The semi-Dirac dispersion is symmetric
both in the x and the y directions. Hence we can restrict the
limits of the integrals appearing in Eq. (25) to the first quadrant.
For the first term in the denominator of Eq. (25), carrying out
the integration by parts one obtains:

−
∫

dkyvx = −kyvx |fi +
∫

dvxky, (26)

i and f correspond to the points on the Fermi surface with ky =
0 and kx = 0, respectively. The boundary terms in Eq. (26) at i

and f are zero because ky and the x component of the gradient
at the semi-Dirac Fermi surface vanish at i and f , respectively.
Using the above reasoning the first term in the denominator
of Eq. (25) is changed to

∫
dvxky . Making use of this along

with the definition of area under a curve (for the terms in the
numerator), Eq. (25) can be written as

RHn = −
∫

dkxky

∫
dvxvy∫

dvxky

∫
dkxvy

. (27)

vy for the semi-Dirac dispersion evaluated on the Fermi surface
turns out to be proportional to ky as can be seen from Eq. (2).
Hence it is observed that in Eq. (27) the numerator and the
denominator are equal except for a minus sign. That explains
why we obtain RH n = −1 for the semi-Dirac dispersion.
Incidentally, vy is proportional to ky for the Dirac and the
parabolic dispersion relations. Hence, RH n is equal to −1
for those dispersions too. So it can be said that the Hall
coefficient times the carrier density is a topologically invariant
quantity for a certain class of band structures, reminiscent of
the geometrical representation of Ong.21

V. PLASMON FREQUENCY

The plasmon frequency for the semi-Dirac system can
be computed by setting the random phase approximation
expression for the dielectric constant

ε(q,ω) = 1 − v(q)χ0(q,ω) (28)

to zero.22,23 χ0(q,ω) is the polarizability and v(q) is the Fourier
transform of the Coulomb potential. χ0(q,ω) is given by the
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FIG. 2. (Color online) Angular depandence of the function F in
Eq. (34).

Lindhard expression

χ0q,ω) =
∫

d2k

(2π )2

f (εk) − f (εk+q)

ω + εk − εk+q
. (29)

Expanding εk+q in Eq. (29) for small q (we treat only this
regime), the numerator in Eq. (29) takes the following form at
low temperature:

f (εk) − f (εk+q) = �vk · �qδ(εk − ε). (30)

Expanding the denominator as well, Eq. (29) becomes

χ0q,ω) =
∫

d2k

(2π )2

�vk · �q
ω

(
1 + �vk · �q

ω

)
δ(εk − ε). (31)

The Coulomb potential vq) in two dimensions is

v(q) = 2πe2

κq
, (32)

where q =
√

q2
x + q2

y , and κ is the background dielectric

constant of the medium. Using Eqs. (31) and (32) in Eq. (28),
and setting ε(q,ω) = 0, the plasmon frequency is

ω2
p = 8I3

π

e2qε0

κ
F (θ ), (33)

where F (θ ) is given by

F (θ ) = ξ
3
2

(
cos2 θ + 1

4
ξ−1 I2

I3
sin2 θ

)
, (34)

and I2 and I3 are given by Eq. (8a) and in Eq. (8b), respectively.
ε0 is the energy scale defined earlier. θ denotes the angle that
the plasmon wave vector makes with the nonrelativistic axis
kx of the semi-Dirac dispersion. Recall that the Fermi energy
variable is defined as ξ ≡ ε

ε0
. ωp ∝ √

q is characteristic of a
two-dimensional system.

The function F (θ ) is plotted against θ in Fig. 2. Using
Eq. (5) for the semi-Dirac density of states and Eqs. (7a) and

(7b) for the mean square Fermi velocities, Eq. (33) reduces to

ωp
2 = π

e2qh̄D(ε)

κ

(〈
v2

x

〉
cos2 θ + 〈

v2
y

〉
sin2 θ

)
. (35)

The plasmon frequency is highly anisotropic and reaches its
maximum along the relativistic direction, which could be a
signature characteristic of a semi-Dirac system.

VI. MAGNETIC SUSCEPTIBILITY

In this section we consider the magnetic susceptibilities
for the semi-Dirac dispersion. The Pauli spin susceptibility is
given by

χsp/μ2
B = D(ε), (36)

where D(ε) is the density of states. Using Eq. (5) for the
semi-Dirac density of states, Eq. (36) reduces to

χsp/μ2
B = 2m

π2

√
ξ, (37)

where ξ is the same dimensionless variable related to the Fermi
energy appearing in the previous section. For a noninteracting
Fermi liquid the orbital susceptibility is given by24

χorb/μ
2
B = − m2

12π3

∫
d2k

[
∂2εk

∂k2
x

∂2εk

∂k2
y

+ 2

(
∂2εk

∂kx∂ky

)2

+ 3

2

(
∂εk

∂kx

∂3εk

∂kx∂k2
y

+ ∂εk

∂ky

∂3εk

∂ky∂k2
x

)]
δ(ε − εk).

(38)

Using Eq. (2) for εk in Eq. (38) and doing the integral, we
obtain

χorb/μ
2
B = −2

√
2I4

3π3

m
3
2 v

ε
1
2

, (39)

where the integral I4 is given by

I4 =
∫ 1

0
dα

−33α10 + 41α6 − 9α2

(1 − α4)
1
2

. (40)

Evaluating the numerical value for I4 and using the dimen-
sionless variable ξ , Eq. (39) reduces to

χorb/μ
2
B = −0.0798m

π3

√
ε0

ε
. (41)

We observe that the orbital susceptibility for the semi-Dirac
system is always diamagnetic. The absolute value of the ratio
of the spin to the orbital susceptibilities {the ratio of Eq. (37)
to Eq. (41)] of the semi-Dirac dispersion is given by∣∣∣∣ χsp

χorb

∣∣∣∣ ∼ 80mξ. (42)

Hence orbital magnetic susceptibility for the semi-Dirac
dispersion dominates the spin susceptibility at low energy.
This result is distinct qualitatively from both the Dirac and
the parabolic dispersion cases. For the doped Dirac dispersion
the orbital susceptibility vanishes identically. For conventional
two-dimensional parabolic dispersion the orbital susceptibility
calculated using Eq. (38) is found to be 6π times smaller
than its spin susceptibility. Hence the unusually large orbital
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susceptibility can be considered a distinctive feature of the
semi-Dirac dispersion.

VII. HEAT CAPACITY

We show here how the heat capacity for the noninteracting
two-dimensional semi-Dirac electron gas is similar to that
of the three-dimensional noninteracting electron gas with the
parabolic energy-momentum dispersion at both the low and the
high temperature ends. The similarity becomes equality at high
temperature. Relative to the natural energy scale ε0 introduced
at the beginning, the low and the high temperatures can be
considered. The low temperature heat capacity per particle for
the semi-Dirac dispersion is

cv = 2I1

3
mk2

BT

√
ε

ε0
, (43)

which is calculated using Sommerfeld expansion25 [I1 is given
in Eq. (6)]. It is observed that the heat capacity in Eq. (43) is
proportional to D(ε) ∝ √

ε, as it must be because cv depends
only on the spectrum of energy levels. A similar type of
dependence with energy is observed for the three-dimensional
electron gas with the parabolic energy-momentum dispersion.
The difference between them is in the prefactors. This
difference disappears quite nicely in the high temperature end
as is shown in the following. At high temperature, the heat
capacity for the three-dimensional electron gas is given by
3
2kB . In order to emphasize a technique that will be used for
the semi-Dirac problem, a derivation of the above result for the
three-dimensional electron gas is first outlined in the following.
The parabolic three-dimensional Hamiltonian is given by
Hparabolic = 1

2m
(p2

x + p2
y + p2

z ), so it follows that ∂Hparabolic

∂pi
= pi

m

[where i = x,y,z]. Hence Hparabolic can be written as

Hparabolic = 1

2

(
px

∂Hparabolic

∂px

+ py

∂Hparabolic

∂py

+pz

∂Hparabolic

∂pz

)
. (44)

By the equipartition theorem, the ensemble average of each of
px

∂Hparabolic

∂px
, py

∂Hparabolic

∂py
, and pz

∂Hparabolic

∂pz
is kBT .26 Hence taking

the ensemble average of the Hamiltonian in Eq. (44), one
obtains

〈Hparabolic〉 = 3

2
kBT . (45)

The derivative of 〈Hparabolic〉 with respect to T gives the heat
capacity as 3

2kB .
Next, the classical semi-Dirac Hamiltonian is given by

HsD =
√

p4
x

4m2
+ v2p2

y. (46)

Taking the derivatives of HsD with respect to px and py gives,
in spite of its complex form, the analogous expression

HsD = 1

2
px

∂HsD

∂px

+ py

∂HsD

∂py

. (47)

In the same way as before, by the equipartition theorem, the
averages of each of px

∂HsD
∂px

,py
∂HsD
∂py

is kBT . Hence the ensemble

average of HsD is given by

〈HsD〉 = 1
2kBT + kBT = 3

2kBT , (48)

thus cv = 3
2kB for semi-Dirac dispersion in the high T limit.

This result is exactly that of a three-dimensional noninteracting
gas with parabolic dispersion.

This rather unexpected result can also be obtained directly
starting from the Boltzmann distribution. In the low tem-
perature limit the semi-Dirac heat capacity has the same T

dependence as the noninteracting three-dimensional parabolic
system. In the high temperature end of the spectrum the heat
capacities are identical. Hence a two-dimensional semi-Dirac
system effectively behaves as a three-dimensional system
so far as heat capacities are concerned. The appearance of
this third degree of freedom can have potential technological
applications. For example, a semi-Dirac nanostructure could
be used as an efficient heat sink. More generally, a semi-Dirac
system can function quite differently compared to other two-
dimensional systems for thermal management as well as for
many other applications.

VIII. KLEIN TUNNELING

The Klein paradox is the name given to the phenomenon of
the complete transmission of a particle at selected energies or
geometric configurations through a potential barrier even when
the barrier is arbitrarily high. For the conventional tunneling
problem, the probability of transmission decreases exponen-
tially with the height and thickness of the barrier. In order for
Klein tunneling to take place, there must be hole states having
negative energies available to promote tunneling. The positive
potential in the barrier region raises the hole states, making
them available. For “relativistic” Dirac-Weyl dispersion (as
in graphene) Katsnelson and collaborators27 have shown that
Klein tunneling can occur and that transmission is unusually
robust at near-normal incidence. Klein tunneling is also
possible in conventional (massive) zero-gap semiconductors
including double-layer graphene,27 with an angular behavior
that is distinct from that of graphene. Klein tunneling therefore
is expected for particles with semi-Dirac dispersion, but there
should be many distinctions. The low-energy Hamiltonian
corresponding to the semi-Dirac dispersion can be taken as16

H = vp̂yτ3 + p̂2
x

2m
τ1, (49)

where the τ ’s are the Pauli matrices in orbital space and p̂x(y)

are the momentum operators.

A. Rotation of the Frame

The semi-Dirac system is (highly) anisotropic. The poten-
tial barrier can be oriented at an arbitrary angle with respect
to the x̂,ŷ axes, after which one might consider a particle
impinging on the barrier from another arbitrary angle. This
extension from the isotropic systems of graphene or zero-
gap semiconductors leads to a rather complicated tunneling
problem that could form the basis of a separate study. To keep
the algebra and the physical picture as simple as possible,
we consider only the special case of normal incidence of a
semi-Dirac quasiparticle onto a potential barrier of width d,
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FIG. 3. (Color online) The top view of the potential barrier is
shown. It extends infinitely in one direction (η̂ direction), but limited
to a spatial length d in the orthogonal direction (ξ̂ direction), which
makes an angle α with the nonrelativistic direction. An electron with
energy E is incident normally on the potential, i.e., along the ξ̂

direction.

which is inclined at an angle π
2 + α with respect to the x

(nonrelativistic) axis as shown in Fig. 3. A set of orthogonal
axes ξ and η with respect to the barrier are defined. η̂ is the
direction along which the potential is infinitely extended. The
electron is incident on the potential along ξ̂ , which makes an
angle α with respect to the x̂ axis. The barrier has thickness
d along the ξ axis. We work in the regime where the energy
of the incident semi-Dirac particle is small compared to the
barrier potential. There are three real space regions: to the left
of the barrier where the potential is zero, within the barrier
with positive potential V , and to the right of the barrier where
again the potential vanishes. We refer to these regions as I , II ,
and III , respectively, and the wave functions are denoted by
�I , �II , �III , respectively. The momentum operators along
the x and the y (relativistic) directions can be written in terms
of the variables ξ and η as follows:

p̂x = p̂ξ cos α − p̂η sin α
(50)

p̂y = p̂ξ sin α + p̂η cos α,

where p̂ξ (η) are the corresponding momentum operators given
by −i∂/∂ξ (η). Since we are considering incidence normal to
the barrier, it is straightforward to show that the η degree of
freedom can be eliminated from the problem. The Hamiltonian
in Eq. (49) takes the following form:

H = vp̂ξ sin ατ3 + p̂2
ξ

2m
cos2 ατ1

(51)

= vαp̂ξ τ3 + p̂2
ξ

2mα

τ1.

This transformed kinetic “Hamiltonian” has both linear (mass-
less) and quadratic (massive) contributions, governed by an
increased mass mα = m/cos2α and a decreased velocity vα =
vsinα. Thus the orientation of the barrier allows the tuning of
the relative amounts of linear and quadratic dispersion. In the

limits α = 0 and π/2, the problem reverts to the problem for
zero-gap semiconductors and for graphene, respectively.

For a value of α between these limits, the forward
propagating wave, which is of the form eikξ times a spinor,
is still an admissible eigenstate of the Hamiltonian. Operating
on the planewave with the Hamiltonian in Eq. (51) gives an
expression that can be written as

Hk = vk sin α[τ3 + τ1 tan θ ], (52)

where

tan θ = cos2 α

sin α

k

2mv
= k

2mαvα

= k

pα

. (53)

Thus tanθ reflects the magnitude of the particle momentum
relative to the scaled semi-Dirac momentum pα = 2mαvα.

When k goes to −k as is the case when one considers the
backward propagating wave e−ikξ , aside from the positive
multiplicative factor vk which changes sign, the Hamiltonian
in Eq. (51) changes from τ3 + τ1 tan θ to −[τ3 − τ1 tan θ ]. The
corresponding eigensystems are given for quick reference in
the Appendix.

B. Derivation of the Resonance Condition

The time independent Schrodinger equation in a given
potential can be written as

hψ = (E − V )ψ, (54)

where h is the part of the Hamiltonian without the potential
V . In regions I and III (E − V ) is positive, and the positive
eigenvalue form of the solution as given by Eq. (A2a) in the
Appendix for the forward propagating wave and by Eq. (A4a)
for the backward propagating wave need to be considered in
those regions. In region II , V being much larger than E results
in (E − V ) being negative. Hence the negative eigenvalue
solutions as given by Eqs. (A2b) and (A4b) appearing in the
Appendix are of importance in that region. Momenta in regions
I and III are equal, denoted by k1, and denoted by k2 in region
II . k1 and k2 are given by

vk1 sin α(cos θ1)−1 = E, (55a)

vk2 sin α(cos θ2)−1 = V − E, (55b)

where θ1 and θ2 are given by

tan θ1(2) = cos2 α

sin α

k1(2)

2mv
= k1(2)

pα

. (56)

Finally, the wave functions in the three regions are

�I = eik1ξ

(
cos(θ1/2)

sin(θ1/2)

)
+ re−ik1ξ

(
sin(θ1/2)

cos(θ1/2)

)
,

−∞ < x < 0,

�II = t1e
ik2ξ

(
sin(θ2/2)

−cos(θ2/2)

)
+ r1e

−ik2ξ

(
cos(θ2/2)
−sin(θ2/2)

)
,

0 < x < d,

�III = t2e
ik1ξ

(
cos(θ1/2)

sin(θ1/2)

)
, d < x < ∞, (57)
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where r , t1, r1, and t2 are constants determined by matching.
The absolute square of t2 gives the transmission coefficient.
Matching the wave functions at the boundaries y = 0 and
y = d, one obtains for the transmission

|t2|2 = (sin θ2 cos θ2 cos θ1)2

A2 + B2 − 2AB cos k2d
, (58)

where A and B are given by

A = [sin ((θ2 − θ1)/2) cos θ2

+ sin(θ2 + θ1)/2] cos ((θ2 − θ1)/2)
(59)

B = sin θ2 sin2 ((θ2 + θ1)/2).

It can be shown that when

cos k2d = 1, (60)

the denominator in Eq. (58) becomes equal to the numerator.
The resonance condition as given by Eq. (60) implies

k2d = 2nπ ; → k2 = npd, (61)

where n is an integer and the characteristic momentum scale
pd = 2π/d has been introduced. From Eqs. (55a) and (61) we
obtain the following condition for complete transmission of an
incident wave:[

n2 sin2 α + n4 cos4 α

(
π

mvd

)2
] 1

2

= (V − E)d

2πv
(62)

or equivalently in terms of “renormalized” constants

n

[
1 + n2

(
pd

pα

)2
] 1

2

= (V − E)

pdvα

. (63)

Equation (63) gives the resonance condition, either for reso-
nant energies En(α,d,V ) or for orientations αn(d,V − E), for
full transmission.

The limiting cases are α → 0 and α → π/2. The latter
limit corresponds to normal incidence of a particle with
“relativistic” Dirac-Weyl dispersion which is treated in Ref. 27,
where it was shown that there is complete transmission even
if the potential barrier is large. The resonance condition for
this limiting case can be obtained setting α = π/2 in Eq. (63).
The α = 0 limit becomes the case of conventional massive
particle tunneling, which must be treated separately (see the
following subsection). The semi-Dirac system provides for,
and interpolates between smoothly, the two very different
limits. Figure 4 provides a schematic illustration where there
is a single resonant orientation of the barrier.

C. Limiting case α = 0

This case corresponds to the potential being perpendicular
to x (the nonrelativistic direction), so ky = 0. The Hamiltonian
admits evanescent as well as propagating wave solutions only
in this case; in a sense the relativistic character dominates the
behavior except at α = 0. It is instructive to follow the mixing
of the positive and negative energy components. Operating on
propagating waves e±ikxx the Hamiltonian in Eq. (49) takes
the following form in the k space:

H = k2
x

2m
τx, (64)

FIG. 4. (Color online) Complete transmission for various orien-
tations of the potential.

with the conventional massive eigenvalues ± k2
x

2m
. For evanes-

cent waves the eigenvalues are interchanged, resulting in a
mixing of positive and negative energy functions in a way that
does not occur with nonzero ky .

The energy of the incident particle for both the propagating

and the evanescent cases are the same: (E = k2
x

2m
). The mo-

menta in regions {I , III} and II are denoted by k′′
1 = √

2mE

and k′′
2 = √

2m|V − E|, respectively. The form of the wave
function in the three regions are

�I = eik′′
1 x

(
1
1

)
+ r ′′e−ik′′

1 x

(
1
1

)
+ t ′′′ek′′

1 x

(
1

−1

)
,

−∞ < x < −d,

�II = t ′′1 eik′′
2 x

(
1

−1

)
+ r ′′

1 e−ik′′
2 x

(
1

−1

)

+ t ′′′1 ek′′
2 x

(
1
1

)
+ r ′′′

1 e−k′′
2 x

(
1
1

)
, − d < x < d,

�III = t ′′2 eik′′
1 x

(
1
1

)
+ r ′′′

2 e−k′′
1 x

(
1

−1

)
, d < x < ∞,

(65)

where r ′′,t ′′′,t ′′1 ,r ′′
1 ,t ′′′1 ,r ′′′

1 ,t ′′2 ,r ′′′
2 are constants. In Eq. (65), for

regions I and III the evanescent waves are constructed in
such a way that they don’t diverge when |x| becomes large.
There is no backward traveling wave in region III . |t ′′2 |2 is the
transmission coefficient.

Equating the wave function and its derivative at the
boundaries x = 0 and x = d, for the transmission coefficient
we obtain

|t ′′2 |2 =
∣∣∣∣∣ 4ik′′

1k′′
2e−ik′′

2 d

e−k′′
2 d (k′′

2 + ik′′
1 )2 − ek′′

2 d (k′′
2 − ik′′

1 )2

∣∣∣∣∣
2

. (66)

Equation (66) is the same as that given by Katsnelson et al.27 in
the context of the tunneling probability for the bilayer graphene
dispersion. k′′

2 gets large as the potential V gets large. Because
of the presence of the exponential factor ek′′

2 d in the denom-
inator, the transmission coefficient given by Eq. (66) goes to
zero as the potential goes to infinity. Thus there is no perfect
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transmission when the potential is in the nonrelativistic direc-
tion and the particle is incident normally, as mentioned above.

IX. SUMMARY

In this paper several low energy properties of the semi-
Dirac, semi-Weyl degenerate semimetal have been studied.
Whereas some of the properties are intermediate between
the conventional parabolic and the linear “Dirac” (graphene)
dispersion, as is the case for the cyclotron frequency, some
other properties can be distinct and rather unusual. The
dependence of the Hall coefficient nevertheless depends on
doping level in the usual way, and we illuminate how this
result is related to the form of the dispersion relation. Results
for Klein tunneling for the case of semi-Dirac dispersion
have been obtained for normal incidence on an arbitrarily
oriented barrier in the 2D plane, revealing that an electron can
tunnel through the barrier with probability one, subject to a
resonance condition being met, except for the direction where
linear dispersion does not enter the problem. The extreme
anisotropy of the plasmon frequency is a distinctive feature of
a semi-Dirac system.

Intriguing behavior for the Faraday rotation and the low-
to high-temperature crossover of the heat capacity have
been provided. Finally, we note that the behavior of the
orbital susceptibility is distinct from both quadratic and linear
systems, being strongly dependent on doping level. Also we
remind that our transport results have been obtained within the
semiclassical approximation. Several properties of graphene
require treatment beyond the semiclassical one28,29 at very
low doping, and we anticipate that the semi-Dirac system may
be even more delicate in this limit than is graphene.
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APPENDIX: 2 × 2 EIGENSYSTEMS

(1) The eigenvalues λ± and eigenstates �± of the 2 × 2
real matrix

τz + tan θτx (A1)

are given by:

λ+ = (cos θ )−1; �+ =
(

cos(θ/2)
sin(θ/2)

)
, (A2a)

λ− = −(cos θ )−1; �− =
(

sin(θ/2)
− cos(θ/2)

)
. (A2b)

(2) For the matrix

−[τz − tan θτx], (A3)

the eigensystems are

λ+ = (cos θ )−1 : �+ =
(

sin(θ/2)
cos(θ/2)

)
, (A4a)

λ− = −(cos θ )−1 : �− =
(

cos(θ/2)
− sin(θ/2)

)
. (A4b)
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