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Percolation transition in quantum Ising and rotor models with sub-Ohmic dissipation
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We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models.
The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely.
As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an
unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-
temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating
percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase
transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.
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I. INTRODUCTION

The interplay between geometric, quantum, and thermal
fluctuations in randomly diluted quantum many-particle sys-
tems leads to a host of unconventional low-temperature
phenomena. These include the singular thermodynamic and
transport properties in quantum Griffiths phases1,2 as well as
the exotic scaling behavior of the quantum phase transitions
between different ground state phases.3,4 Recent reviews of
this topic can be found, e.g., in Refs. 5 and 6.

An especially interesting situation arises if a quantum
many-particle system is diluted beyond the percolation thresh-
old pc of the underlying lattice (see, e.g., Ref. 7 and references
therein). Although the resulting percolation quantum phase
transition is driven by the geometric fluctuations of the
lattice, the quantum fluctuations lead to critical behavior
different from that of classical percolation. In the case of a
diluted transverse-field Ising magnet, the transition displays
exotic activated (exponential) dynamic scaling8 similar to
what is observed at infinite-randomness critical points.3,4 The
percolation transition of the quantum rotor model shows
conventional scaling (at least in the particle-hole symmetric
case where topological Berry phase terms are unimportant9),
but with critical exponents that differ from their classical
counterparts.10,11 For site-diluted Heisenberg quantum antifer-
romagnets, further modifications of the critical behavior were
attributed to uncompensated geometric Berry phases.12,13

In many realistic systems, the relevant degrees of freedom
are coupled to an environment of “heat-bath” modes. The
resulting dissipation can qualitatively change the low-energy
properties of a quantum many-particle system. In particular,
it has been shown that dissipation can further enhance the
effects of randomness on quantum phase transitions. In generic
random quantum Ising models, for instance, the presence of
Ohmic dissipation completely destroys the sharp quantum
phase transition by smearing14–19 while it leads to infinite-
randomness critical behavior in systems with continuous-
symmetry order parameter.20–22 Interestingly, super-Ohmic
dissipation does not change the universality class of random
quantum Ising models17,19 but plays a major role in systems
with continuous-symmetry order parameter.23

It is therefore interesting to ask what are the effects
of dissipation on randomly diluted quantum many-particle

systems close to the percolation threshold. It has recently been
shown that Ohmic dissipation in a diluted quantum Ising model
leads to an unusual percolation quantum phase transition24 at
which some observables show classical critical behavior while
others are modified by quantum fluctuations.

In the present paper, we focus on the influence of sub-Ohmic
dissipation (which is qualitatively stronger than the more
common Ohmic dissipation) on diluted quantum Ising models
and quantum rotor models. When coupled to a sub-Ohmic
bath, even a single quantum spin displays a nontrivial quantum
phase transition from a fluctuating to a localized phase25 whose
properties have attracted considerable attention recently (see,
e.g., Ref. 26 and references therein). Accordingly, we find that
the quantum dynamics of sufficiently large percolation clusters
freezes completely as a result of the coupling to the sub-
Ohmic bath, effectively turning them into classical moments.
The interplay between large frozen clusters and smaller
dynamic clusters gives rise to unconventional properties of
the percolation transition, which we explore in detail.

Our paper is organized as follows: In Sec. II, we define our
models and discuss their phase diagrams at a qualitative level.
Section III is devoted to a detailed analysis of the quantum
rotor model in the large-N limit where all calculations can be
performed explicitly. In Sec. IV, we go beyond the large-N
limit and develop a general scaling approach. We conclude in
Sec. V.

II. MODELS AND PHASE DIAGRAMS

A. Diluted dissipative quantum Ising and rotor models

We consider two models. The first model is a d-dimensional
(d � 2) site-diluted transverse-field Ising model8,27–29 given
by the Hamiltonian

HI = −J
∑
〈i,j〉

ηiηjσ
z
i σ z

j − hx

∑
i

ηiσ
x
i , (1)

a prototypical disordered quantum magnet. The Pauli matrices
σ z

i and σx
i represent the spin components at site i, the

exchange interaction J couples nearest neighbor sites, and the
transverse field hx controls the quantum fluctuations. Dilution
is introduced via the random variables ηi which can take the
values 0 and 1 with probabilities p and 1 − p, respectively.
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We now couple each spin to a local heat bath of harmonic
oscillators,16,30

H = HI +
∑
i,n

ηi

[
νi,na

†
i,nai,n + 1

2
λi,nσ

z
i (a†

i,n + ai,n)

]
, (2)

where ai,n (a†
i,n) is the annihilation (creation) operator of the

nth oscillator coupled to spin i, νi,n is its natural frequency, and
λi,n is the coupling constant. All baths have the same spectral
function

E(ω) = π
∑

n

λ2
i,nδ(ω − νi,n) = 2παω1−ζ

c ωζ e−ω/ωc , (3)

with α and ωc being the dimensionless dissipation strength and
the cutoff energy, respectively. The exponent ζ characterizes
the type of dissipation; we are mostly interested in the
sub-Ohmic case 0 < ζ < 1. For comparison, we will also
consider the Ohmic (ζ = 1) and super-Ohmic cases (ζ > 1).
Experimentally, local dissipation (with various spectral den-
sities) can be realized, e.g., in molecular magnets weakly
coupled to nuclear spins31,32 or in magnetic nanoparticles in
an insulating host.33

The second model is a site-diluted dissipative quantum
rotor model which can be conveniently defined in terms of
the effective Euclidean (imaginary time) action10

A =
∫

dτ
∑
〈ij〉

Jηiηjφi(τ ) · φj (τ ) +
∑

i

ηiAdyn[φi]

(4)
Adyn[φ] = α

2
T

∑
ωn

ω1−ζ
c |ωn|ζ φ̃(ωn) · φ̃(−ωn).

Here, the random variables ηi = 0,1 again implement the
site dilution, and ωn are bosonic Matsubara frequencies. The
rotor at site i and imaginary time τ is described by φi(τ ):
a N -component vector of length N1/2. Its Fourier transform
in imaginary time is denoted by φ̃(ωn). The dynamic action
Adyn stems from integrating out the heat-bath modes, with the
parameter α measuring the strength of the dissipation, and the
exponent ζ characterizing the type of the dissipation, as in the
first model [see Eq. (3)].

B. Classical percolation theory

We now briefly summarize the results of percolation
theory34 to the extent necessary for our purposes. Consider a
regular d-dimensional lattice in which each site is removed at
random with probability p.35 For small p, the resulting diluted
lattice is still connected in the sense that there is a cluster
of connected nearest neighbor sites (called the percolating
cluster) that spans the entire system. For large p, on the other
hand, a percolating cluster does not exist. Instead, the lattice
is made up of many isolated clusters consisting of just a few
sites.

In the thermodynamic limit of infinite system volume,
the two regimes are separated by a sharp geometric phase
transition at the percolation threshold p = pc. The behavior
of the lattice close to pc can be understood as a geometric
critical phenomenon. The order parameter is the probability
P∞ of a site to belong to the infinite connected percolation
cluster. It is obviously zero in the disconnected phase (p > pc)
and nonzero in the percolating phase (p < pc). Close to pc, it

varies as

P∞ ∼ |p − pc|βc (p < pc), (5)

where βc is the order parameter critical exponent of classical
percolation. (We use a subscript c to distinguish quantities
associated with the lattice percolation transition from those of
the quantum phase transitions discussed below). In addition
to the infinite cluster, we also need to characterize the finite
clusters on both sides of the percolation threshold. Their typical
size, the correlation or connectedness length ξc, diverges as

ξc ∼ |p − pc|−νc (6)

with νc the correlation length exponent. The average mass
Sc (number of sites) of a finite cluster diverges with the
susceptibility exponent γc according to

Sc ∼ |p − pc|−γc . (7)

The complete information about the percolation critical
behavior is contained in the cluster size distribution ns , i.e., the
number of clusters with s sites excluding the infinite cluster
(normalized by the total number of lattice sites). Close to the
percolation threshold, it obeys the scaling form

ns(p) = s−τcf [(p − pc)sσc ]. (8)

Here, τc and σc are critical exponents. The scaling function
f (x) is analytic for small x and has a single maximum at some
xmax > 0. For large |x|, it drops off rapidly:

f (x) ∼ exp(−B1x
1/σc ) (x > 0), (9)

f (x) ∼ exp[−(B2x
1/σc )1−1/d ] (x < 0), (10)

where B1 and B2 are constants of order unity. The classical
percolation exponents are determined by τc and σc: the
correlation lengths exponent νc = (τc − 1)/(dσc), the order
parameter exponent βc = (τc − 2)/σc, and the susceptibility
exponent γc = (3 − τc)/σc. Right at the percolation threshold,
the cluster size distribution does not contain a characteristic
scale, ns ∼ s−τc , yielding a fractal critical percolation cluster
of fractal dimension Df = d/(τc − 1).

C. Phase diagrams

Let us now discuss in a qualitative fashion the phase
diagrams of the models introduced in Sec. II A, beginning
with the diluted dissipative quantum Ising model Eq. (2).
If we fix the bath parameters ζ and ωc and measure all
energies in terms of the exchange interaction J , we still need
to explore the phases in the three-dimensional parameter space
of transverse field hx , dissipation strength α and dilution p. A
sketch of the phase diagram is shown in Fig. 1. For sufficiently
large transverse field and/or sufficiently weak dissipation, the
ground state is paramagnetic for all values of the dilution
p. This is the conventional paramagnetic phase that can be
found for hx > h∞(α) or, correspondingly, for α < α∞(hx).
Here, h∞(α) is the transverse field at which the undiluted bulk
system undergoes the transition at fixed α while α∞(hx) is its
critical dissipation strength at fixed hx .

The behavior for hx < h∞(α) [or α > α∞(hx)] depends
on the dilution p. It is clear that magnetic long-range order
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FIG. 1. (Color online) Schematic ground state phase diagram of the diluted dissipative quantum Ising model [Eq. (2)] for fixed values
of ζ < 1, ωc, and J . The three panels show three cuts through the three-dimensional parameter space of dilution p, transverse field hx , and
dissipation strength α. (a) α-p phase diagram at a fixed transverse field hx with hx > h∞ (α = 0) such that the dissipationless system is in the
paramagnetic phase. This phase diagram also applies to the rotor model Eq. (4). (b) hx-p phase diagram at a fixed dissipation strength α. (c)
hx-α phase diagram at fixed dilution p < pc. CSPM refers to the cluster super-paramagnetic phase, transition (i) denotes the smeared generic
(field or dissipation-driven) quantum phase transition, and (ii) and (iii) denote the percolation quantum phase transitions in the two regimes
with or without dynamic clusters, respectively.

is impossible for p > pc, because the lattice consists of
finite-size clusters that are completely decoupled from each
other. Each of these clusters acts as an independent magnetic
moment. For hx < h∞(α) and p > pc, the system is thus in a
cluster super-paramagnetic phase.

Let us consider a single cluster of s sites in more detail. For
small transverse fields, its low-energy physics is equivalent
to that of a sub-Ohmic spin-boson model, i.e., a single
effective Ising spin (whose moment is proportional to s)
in an effective transverse-field hx(s) ∼ hxe

−Bs with B ∼
ln(J/hx) and coupled to a sub-Ohmic bath with an effective
dissipation strength αs = sα.8,24 With increasing dissipation
strength and/or decreasing transverse field, this sub-Ohmic
spin-boson model undergoes a quantum phase transition from
a fluctuating to a localized (frozen) ground state.25 This implies
that sufficiently large percolation clusters are in the localized
phase, i.e., they behave as classical moments. The cluster
super-paramagnetic phase thus consists of two regimes. If the
transverse field is not too small, h1(α) < hx < h∞(α) [or if
the dissipation is not too strong, α1(hx) > α > α∞(hx)], static
and dynamic clusters coexist. Here, h1(α) is the critical field of
a single spin in a bath of dissipation strength α while α1(hx) is
its critical dissipation strength in a given field hx . In contrast,
for hx < h1(α) [or α > α1(hx)] all clusters are frozen, and the
system behaves purely classically.

Finally, for dilutions p < pc, there is an infinite-spanning
percolation cluster that can support magnetic long-range order.
Naively, one might expect that the critical transverse-field
(at fixed dissipation strength α) decreases with dilution p

because the spins are missing neighbors. However, in our case
of sub-Ohmic dissipation, rare vacancy-free spatial regions
can undergo the quantum phase transition independently from
the bulk system. As a consequence, the field-driven transition
[transition (i) in Fig. 1] is smeared,15,18 and the ordered phase
extends all the way to the clean critical field h∞(α) for all
p < pc. Analogous arguments apply to the critical dissipation
strength at fixed transverse field hx .

The infinite percolation cluster coexists with a spectrum of
isolated finite-size clusters whose behavior depends on the

transverse field and dissipation strength. Analogous to the
super-paramagnetic phase discussed above, the ordered phase
thus consists of two regimes. For h1(α) < hx < h∞(α) [or
α1(hx) > α > α∞(hx)], static (frozen) and dynamic clusters
coexist with the long-range-ordered infinite cluster. For hx <

h1(α) [or α > α1(hx)], all clusters are frozen, and the system
behaves classically.

The phase diagram of the diluted quantum rotor model with
sub-Ohmic dissipation (4) can be discussed along the same
lines. After fixing the bath parameters ζ and ωc and measuring
all energies in terms of the exchange interaction J , we are
left with two parameters, the dilution p and the dissipation
strength α. The zero-temperature behavior of a single quantum
rotor coupled to a sub-Ohmic bath is analogous to that of the
corresponding quantum Ising spin. With increasing dissipation
strength, the rotor undergoes a quantum phase transition from
a fluctuating to a localized ground state. This follows, for
instance, from mapping36 the sub-Ohmic quantum rotor model
onto a one-dimensional classical Heisenberg chain with an
interaction that falls off more slowly than 1/r2. This model
is known to have an ordered phase for sufficiently strong
interactions.37 As a result, all the arguments used above to
discuss the phase diagram of the diluted sub-Ohmic transverse-
field Ising model carry over to the rotor model [Eq. (4)]. The
α-p phase diagram of the rotor model thus agrees with the
phase diagram shown in Fig. 1(a).

In the following sections, we investigate the percolation
quantum phase transitions of the models Eqs. (2) and (4),
i.e., the transitions occurring when the dilution p is tuned
through the lattice percolation threshold pc. These transitions
are marked in Fig. 1 by (ii) and (iii).

III. DILUTED QUANTUM ROTOR MODEL IN THE
LARGE-N LIMIT

In this section, we focus on the diluted dissipative quantum
rotor model in the large-N limit of an infinite number of order-
parameter components. In this limit, the problem turns into a
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self-consistent Gaussian model. Consequently, all calculations
can be performed explicitly.

A. Single percolation cluster

We begin by considering a single percolation cluster of s

sites. For α > α∞, this cluster is locally in the ordered phase.
Following Refs. 38 and 39, it can therefore be described as a
single large-N rotor with moment s coupled to a sub-Ohmic
dissipative bath of strength αs = sα. Its effective action is
given by

Aeff = T
∑
ωn

[
1

2
ψ̃(ωn)�nψ̃(−ωn) − sH̃z(ωn)ψ̃(−ωn)

]
, (11)

where �n = ε + sαω
1−ζ
c |ωn|ζ , ψ represents one rotor com-

ponent, and Hz is an external field conjugate to the order
parameter.

In the large-N limit, the renormalized distance ε from
criticality of the cluster is fixed by the large-N (spherical)
constraint 〈|ψ(τ )|2〉 = 1. In terms of the Fourier transform,
ψ̃(ωn) defined by

ψ(τ ) = T
∑
ωn

ψ̃(ωn) exp [−iωnτ ], (12)

the large-N constraint for a constant field Hz becomes

T
∑
ωn

1

ε + sαω
1−ζ
c |ωn|ζ

+
(

sHz

ε

)2

= 1. (13)

Solving this equation gives the renormalized distance from
criticality ε as a function of the cluster size s.

At zero temperature and field, the sum over the Matsubara
frequencies turns into an integration, and the constraint
equation reads

1

π

∫ ωc

0
dω

1

ε0 + sαω
1−ζ
c |ω|ζ

= 1. (14)

(We denote the renormalized distance from criticality at
zero temperature and field by ε0.) The critical size sc above
which the cluster freezes can be found by setting ε0 = 0 and
performing the integral (14). This gives

sc = 1/[πα(1 − ζ )]. (15)

As we are interested in the critical behavior of the clusters,
we now solve the constraint equation for cluster sizes close
to the critical one, sc − s � sc. This can be accomplished by
subtracting the constraints at s and sc from each other. We
need to distinguish two cases: 1/2 < ζ < 1 and ζ < 1/2. In
the first case, the resulting integral can be easily evaluated after
moving the cutoff ωc to infinity. This gives

ε0 = αsc[−ζ sin(π/ζ )α(sc − s)]ζ/(1−ζ )ωc (for ζ > 1/2).

(16)

In the second case, ζ < 1/2, we can evaluate Eq. (14) via a
straight Taylor expansion in (sc − s). This results in

ε0 = α2scπ (1 − 2ζ )(sc − s)ωc (for ζ < 1/2). (17)

It will be useful to rewrite Eqs. (16) and (17) in a more compact
manner:

ε0(s) = [Aζ (1 − s/sc)]x/(1−x)ωc, (18)

where Aζ = −(αsc)1/ζ ζ sin(π/ζ ) for ζ > 1/2, and Aζ =
(αsc)2π (1 − 2ζ ) for ζ < 1/2, and x = max{1/2,ζ }.

In order to compute thermodynamic quantities, we will also
need the value of ε(s) at nonzero temperature. The constraint
equation for small but nonzero temperature can be obtained
by keeping the ωn = 0 term in the frequency sum of Eq. (13)
discrete, while representing all other modes in terms of an ω

integral. This gives

T

ε
+ 1

π

∫ ωc

0
dω

1

ε + sαω
1−ζ
c |ω|ζ

= 1. (19)

Solving this equation for asymptotically low temperatures
results in the following behaviors. For clusters larger than
the critical size, s > sc, ε vanishes linearly with T via
ε = T s/(s − sc). Clusters of exactly the critical size have
ε = Ax

ζω
1−x
c T x . For smaller clusters (s < sc), low tem-

peratures only lead to a small correction of the zero-
temperature behavior ε0. Writing ε(T ) = ε0 + δT , we obtain
δ = [s/(sc − s)][x/(1 − x)]. Clusters with sizes close to the
critical one show a crossover from the off-critical to the critical
regime with increasing T . For s � sc, this means

ε(T ) ≈
{
ε0(1 + δT /ε0) (for ε0 � εT ),
εT (otherwise), (20)

with εT = Ax
ζω

1−x
c T x .

The constraint equation at zero temperature but in a nonzero
ordering field Hz can be solved analogously.39 For asymp-
totically small fields, we find ε(Hz) = sHz[s/(s − sc)]1/2 in
the case of clusters of size s > sc. At the critical size,
ε(Hz) = [Ax

ζω
1−x
c (scHz)2x]1/(1+x), and for s < sc we obtain

ε(Hz) = ε0 + δ(sHz)2/ε0. Larger fields lead to a crossover
from the off-critical to the critical regime. For s � sc, it reads

ε(Hz) ≈
{
ε0[1 + δ(sHz/ε0)2] (for ε0 � εHz

),
εHz

(otherwise),
(21)

with εHz
= [Ax

ζω
1−x
c (sHz)2x]1/(1+x).

Observables of a single cluster can now be determined by
taking the appropriate derivatives of the free energy Fcl =
−T ln(Z) with

Z =
∏
n

Zn, (22)

where

Zn = T

ε + sαω
1−ζ
c |ωn|ζ

exp

(
T

2

sH̃z(ωn)sH̃z(−ωn)

ε + sαω
1−ζ
c |ωn|ζ

)
. (23)

The dynamical (Matsubara) susceptibility and magnetization
are then given by

χcl(iωn) = s2

ε + sαω
1−ζ
c |ωn|ζ

, (24)

and

mcl(ωn) = T
s2H̃z(ωn)

ε + sαω
1−ζ
c |ωn|ζ

, (25)

respectively, where ε is given by the solution of the constraint
equation discussed above. (Note that the contribution of a
cluster of size s to the uniform susceptibility is proportional to
s2). Therefore, in the above two limiting cases, we can write
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the uniform and static susceptibility of a cluster of size s < sc

as a function of temperature as follows:

χcl(T ) ≈ s2/ε(T ). (26)

Large clusters (s > sc) behave classically, χcl ≈ s(s − sc)/T ,
at low temperatures. Finally, for the critical ones χcl ≈ s2/εT .

In order to calculate the retarded susceptibility χcl(ω), we
need to analytically continue the Matsubara susceptibility by
performing a Wick rotation to real frequency, iωn → ω + i0.
The resulting dynamical susceptibility reads

χcl(ω) = s2

ε + αω
1−ζ
c |ω|ζ [cos(πζ/2) − i sin(πζ/2)sgn(ω)]

.

(27)

Using Eq. (21), the single cluster magnetization in a small
ordering constant field Hz is given by

mcl = χclHz ≈
{
Hzs

2/ε0 (for ε0 � εHz
),

Hzs
2/εHz

(otherwise).
(28)

Thermal properties (at zero field) can be computed by using
the “remarkable formulas” derived by Ford et al.,40 which
express the free energy (the internal energy) of a quantum
oscillator in a heat bath in terms of its susceptibility and the
free energy (internal energy) of the free oscillator. For our
model, they read, respectively

Fcl = −μ + 1

π

∫ ∞

0
dωFf (ω,T )Im

[
d

dω
ln χcl(ω)

]
, (29)

and

Ucl = −μ + 1

π

∫ ∞

0
dωUf (ω,T )Im

[
d

dω
ln χcl(ω)

]
. (30)

Here, Ff (ω,T ) = T ln[2 sinh (ω/(2T ))] and Uf (ω,T ) =
(ω/2) coth(ω/(2T )). The extra μ terms stem from the La-
grange multiplier enforcing the large-N constraint.39

The entropy Scl = (Ucl − Fcl)/T can be calculated simply
by inserting Eq. (27) into Eqs. (29) and (30) and computing
the resulting integral. For the dynamical clusters (s < sc), the
low-temperature entropy behaves as

Scl = Bζαsω1−ζ
c

T ζ

ε0
, (31)

where Bζ is a ζ -dependent constant. At higher temperatures
(greater than T ∗ ∼ ε

1/ζ

0 ω
1−1/ζ
c ), the entropy becomes weakly

dependent on T .41

In the low-T limit, the specific heat Ccl = T (∂Scl/∂T ) thus
behaves as

Ccl = Bζ ζαsω1−ζ
c

T ζ

ε0
. (32)

B. Complete system

After discussing the behavior of a single percolation
cluster, we now turn to the full diluted lattice model. The
low-energy density of states of the dynamic clusters ρdy(ε) =∑

s<sc
nsδ(ε − ε0(s)) is obtained combining the single-cluster

result [Eq. (18)] with the cluster-size distribution [Eq. (8)],

yielding

ρdy(ε) = A−1
ζ (x−1 − 1)

ns(ε)sc

ωc

(
ε

ωc

)(1−2x)/x

, (33)

where s(ε) is the size of a cluster with renormalized distance
ε from criticality [which can be obtained inverting Eq. (18)].
Notice that ρdy shows no dependence on ε in the case ζ < 1/2.
In particular, it does not diverge with ε → 0, in contrast to the
case ζ > 1/2.

We now discuss the physics at the percolation transition,
starting with the total magnetization m. We have to distinguish
the contributions mdy from dynamical clusters, mst from
frozen finite-size clusters, and m∞ from the infinite percolation
cluster, if any. For zero ordering field Hz, mdy vanishes,
because the dynamic clusters fluctuate between up and down.
The frozen finite-size clusters individually have a nonzero
magnetization, but it sums up to zero (mst = 0), because
they do not align coherently for Hz = 0. Hence, the only
coherent contribution to the total magnetization is m∞. Since
the infinite cluster is long-range ordered for small transverse
field hx < h∞(α), its magnetization is proportional to the
number P∞ of sites in the infinite cluster, giving

m = m∞ ∼ P∞(p) ∼
{|p − pc|βc (for p < pc),

0 (for p > pc).
(34)

The magnetization critical exponent β is therefore given by
its classical lattice percolation value βc. In response to an
infinitesimally small ordering field Hz, the frozen finite-size
clusters align at zero temperature, leading to a jump in m(Hz)
at Hz = 0. The magnitude of the jump is given by mst =∑

s>sc
ns . At the percolation threshold, mst ≈ (1 − pc)s2−τc

c ,
and it vanishes exponentially for both p → 0 and p → 1.
The total magnetization in an infinitesimal field (given by
m∞ + mst ) is analytic at p = pc, and only clusters with sizes
below sc are not polarized.

To estimate the contribution mdy of the dynamic clusters,
we integrate the magnetization of a single cluster [Eq. (28)]
over the DOS given in Eq. (33). For ζ > 1/2, we find that

mdy = Cζnsc
s2
c

(
Hzsc

ωc

)3(1−ζ )/(1+ζ )

, (35)

where nsc
is the density of critical clusters, and Cζ =

A
−3ζ/(1+ζ )
ζ ζ/(2ζ − 1). For ζ < 1/2, the integration gives

mdy = nsc
s2
c

Aζ

(
scHz

ωc

) [
1 + ln

(
θ0(

Aζωcs2
c H

2
z

)1/3

)]
, (36)

where θ0 is a cutoff energy.
Because the three contributions to the magnetization have

different field dependence, the system shows unconventional
hysteresis effects. The infinite cluster has a regular hysteresis
loop (for p < pc), the finite-size frozen clusters do not show
hysteresis, but they contribute jumps in m(Hz) at Hz = 0, and
the dynamic clusters contribute a continuous but singular term
(see Fig. 2).

The low-temperature susceptibility is dominated by the
contribution χst of the static clusters, with each one adding
a Curie term of the form s(s − sc)/T . Summing over all static

075119-5



MANAL AL-ALI, JOSÉ A. HOYOS, AND THOMAS VOJTA PHYSICAL REVIEW B 86, 075119 (2012)

cp
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FIG. 2. (Color online) The magnetization as a function of dilution
p for different ordering fields Hz at absolute zero. The solid line is
the magnetization at Hz = 0 (the contribution of the infinite cluster
only). The dashed line is for an infinitesimal field, and the remaining
ones represent stronger fields. Insets display the hysterisis curves in
the (i) ordered and (ii) disordered phases.

clusters, close to the percolation threshold, we find that

χst ∼
∑
s>sc

ns

s(s − sc)

T
∼ 1

T
|p − pc|−γc . (37)

For p → 0 and p → 1, the prefactor of the Curie term vanishes
exponentially. The infinite cluster contribution χ∞ remains
finite (per site) for T → 0, because the infinite cluster is in the
ordered phase.

To determine the contribution χdy of the dynamical clusters,
we integrate the single-cluster susceptibility [Eq. (26)] over the
low-energy DOS in Eq. (33). For ζ > 1/2, this gives

χdy = C ′
ζ

nsc
s3
c

ωc

(
T

ωc

)1−2ζ

, (38)

with C ′
ζ = A

−2ζ
ζ [ζ/(2ζ − 1)]. For ζ < 1/2, we find

χdy = A−1
ζ

nsc
s3
c

ωc

[
1 + ln

(
θ0

(AζωcT )1/2

)]
. (39)

The retarded susceptibility of the fluctuating clusters can
be obtained by integrating the single-cluster susceptibility
[Eq. (27)] over the distribution [Eq. (33)]. This leads to

Im χdy(ω) = Dζ

nsc
s3
c

ωc

∣∣∣∣ ω

ωc

∣∣∣∣
1−2x

sgn(ω), (40)

with Dζ = A−1
ζ ( 1

x
−1)π sin (θ ( 1

x
−2))/[sin( π

x
)(π (1−ζ ))

1
x
−2].

We notice that Im χdy has no ω dependence for ζ < 1/2.
Finally, we consider the heat capacity. The dynamical

cluster contribution can be obtained by summing the single-
cluster heat capacity [Eq. (32)] over ρdy(ε), yielding Cdy ∼
nsc

sc(T/ωc)1−ζ for ζ > 1/2 and Cdy ∼ nsc
sc(T/ωc)ζ for ζ <

1/2.

IV. BEYOND THE LARGE-N LIMIT: SCALING APPROACH

In the last subsection, we have studied the percolation
quantum phase transition of the diluted sub-Ohmic rotor model
[Eq. (4)] in the large-N limit. Let us now go beyond the large-N
limit and consider the rotor model with a finite number of
components as well as the quantum Ising model [Eq. (2)].

We begin by analyzing a single percolation cluster of s

sites. For strong dissipation α > α∞ (or weak fluctuations

hx < h∞), this cluster can be treated as a compact object
that fluctuates in (imaginary) time only. As pointed out in
Sec. II C, in the presence of sub-Ohmic dissipation, such a
cluster undergoes a continuous quantum phase transition from
a fluctuating to a localized phase as a function of increasing
dissipation strength or, equivalently, cluster size s.

Even though the critical behavior of this quantum phase
transition is not exactly solvable, we can still write down a
scaling description of the cluster free energy

Fcl(r,Hz,T ) = b−1Fcl(rb
1/(νszs ),Hzb

ys ,T b), (41)

where r = αs − αc = (s − sc)α is the distance from criticality,
b is an arbitrary scale factor, and νszs and ys are the critical
exponents of the single-cluster quantum phase transition. (We
use a subscript s to distinguish the single-cluster exponents
from those associated with the percolation quantum phase
transition of the diluted lattice.)

Normally, one would expect the two exponents νszs and ys

to be independent. However, because the sub-Ohmic damping
corresponds to a long-range interaction in time, the exponent
η takes the mean-field value 2 − ζ for all ζ .42–44 This also
fixes the exponent ys in Eq. (41) to be ys = (1 + ζ )/2. Thus,
there is only one independent exponent in addition to ζ ; in
the following we choose the susceptibility exponent γs . This
implies, via the usual scaling relations, that the correlation
time exponent is given by νszs = γs/ζ .

The values of the cluster exponents in the large-N case of
Sec. III are given by γs = ζ/(1 − ζ ) and νszs = 1/(1 − ζ ).
In the general case of finite-N rotors and for the quantum
Ising model, they can be found numerically. Notice the scaling
form of the free energy [Eq. (41)] applies to bath exponents
ζ > 1/2. For ζ < 1/2, the single-cluster critical behavior is
mean-field-like.

The behavior of single-cluster observables close to the
(single-cluster) quantum critical point can now be obtained by
taking the appropriate derivatives of the free energy [Eq. (41)].
For example, the static magnetic susceptibility at T = 0 and
Hz = 0 behaves as

χ (r,ω = 0) ∼ r−γs . (42)

Using this result, we can derive a generalization of the prob-
ability distribution ρdy(ε) of the inverse static susceptibilities
ε = χ−1. We find

ρdy(ε) =
∫ sc

1
ds ns δ[ε − c(sc − s)γs ] ∼ nsc

ε(1−γs )/γs (43)

right at the percolation threshold. In the large-N limit, γs =
ζ/(1 − ζ ) implying ρdy(ε) ∼ ε(1−2ζ )/ζ in agreement with the
explicit result in Eq. (33).

Let us now discuss how the properties of the percolation
quantum phase transition in the general case differ from those
obtained in the large-N limit in Sec. III B. We focus on the case
ζ > 1/2. If the single-cluster critical behavior is of mean-field
type (ζ < 1/2), the functional forms of the results in Sec. III B
are not modified at all. The total magnetization is the sum of
the magnetization m∞ of the infinite percolation cluster, mst

stemming from the large (s > sc) frozen percolation clusters,
and mdy provided by the dynamic clusters having s < sc. Both
m∞ and mst are completely independent of the single-cluster
critical behavior. The behavior of the spontaneous (zero-field)
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magnetization across the percolation transition in the general
case is thus identical to that of the large-N limit [see Eq. (34)
and Fig. 2]. In contrast, the magnetization–magnetic field
curve of the dynamic clusters does depend on the value of
γs . Integrating the single cluster magnetization of all dynamic
clusters [analogous to Eq. (28)] gives

mdy ∼ H [1−ζ+2ζ/γs ]/(1+ζ )
z . (44)

In the large-N limit, this recovers the result [Eq. (35)], as
expected.

The low-temperature susceptibility can be discussed along
the same lines. The contributions χ∞ and χst do not depend
on the single-cluster critical behavior. Integrating the single-
cluster susceptibility over all dynamic clusters using (43)
yields (at p = pc)

χdy ∼ T (1−γs )ζ/γs . (45)

If we use the large-N value of γs , we reproduce Eq. (38).
The scaling ansatz [Eq. (41)] for the single-cluster free

energy thus allows us to discuss the complete thermodynamics
across the percolation quantum phase transition. Dynamic
quantities can be analyzed in the same manner. For example,
the scaling form of the single-cluster dynamic susceptibility
reads

χcl(r,Hz,T ,ω) = b2ys−1χcl(rb
1/(νszs ),Hzb

ys ,T b,ωb). (46)

The contribution of the fluctuating clusters to the low-
temperature dynamic susceptibility can be found by integrating
the single-cluster contribution over the distribution [Eq. (43)].
This leads to

Im χdy(ω) ∼ |ω|(1−γs )ζ/γs sgn(ω). (47)

In the large-N limit this corresponds to Im χdy(ω) ∼
|ω|1−2ζ sgn(ω) in agreement with Eq. (40) for ζ > 1/2. In
summary, even though the critical behavior is not exactly
solvable for finite-N rotors and quantum Ising models, we
can express the properties of the percolation quantum phase
transition in terms of a single independent exponent of the
single-cluster problem (which can be found, e.g., numerically).

V. CONCLUSIONS

We have investigated the effects of local sub-Ohmic
dissipation on the quantum phase transition across the lattice
percolation threshold of diluted quantum Ising and rotor
models. Experimentally, such local dissipation (with various
spectral densities) can be realized, e.g., in molecular magnets
weakly coupled to nuclear spins31,32 or in magnetic nanopar-
ticles in an insulating host.33 Further potential applications
include diluted two-level atoms in optical lattices coupled to an
electromagnetic field, random arrays of tunneling impurities in
crystalline solids or, in the future, large sets of coupled qubits
in noisy environments.

As even a single spin or rotor undergoes a localization
quantum phase transition for sufficiently strong sub-Ohmic
damping, the quantum dynamics of large percolation clusters
in the diluted lattice freezes completely. The coexistence of
these frozen clusters which effectively behave as classical
magnetic moments and smaller fluctuating clusters, if any,
leads to unusual properties of the percolation quantum phase

transition. In this final section, we put our results into broader
perspective.

Let us compare the three different quantum phase tran-
sitions separating the paramagnetic and ferromagnetic phases
[transitions (i), (ii), and (iii) in Fig. 1]. The generic transition (i)
occurs as a function of transverse field or dissipation strength
for p < pc. This transition is smeared by the mechanism of
Ref. 15 because rare vacancy-free spatial regions can undergo
the quantum phase transition independently from the bulk
system. For p < pc, these rare regions are weakly coupled
leading to magnetic long-range order instead of a quantum
Griffiths phase.18,19

In contrast, the percolation transitions (ii) and (iii) are not
smeared but sharp. The reason is that different percolation
clusters are completely decoupled for p > pc. Thus, even
if some of these clusters have undergone the (localization)
quantum phase transition and display local order, their local
magnetizations do not align, leading to an incoherent contri-
bution to the global magnetization. Deviations from a pure
percolation scenario change this conclusion. If the interaction
has long-range tails (even very weak ones), different frozen
clusters will be coupled, and their magnetizations align
coherently. This leads to a smearing of the dilution-driven
transition analogous to that of the transition (i). However, if
the long-range tail of the interaction is weak, the effects of the
smearing become important at the lowest energies only. What
is the difference between the percolation transitions (ii) and
(iii) in Fig. 1? If all percolation clusters are frozen [transitions
(iii)] low-temperature observables behave purely classically. If
large frozen and smaller dynamic clusters coexist [transitions
(ii)] quantum fluctuations contribute to the observables at the
percolation transition.

We now compare the case of sub-Ohmic dissipation
considered here to the cases of Ohmic and super-Ohmic
dissipation as well as the dissipationless case. To do so, we
need to distinguish the quantum Ising model and the rotor
model.

The percolation transitions of the dissipationless and super-
Ohmic rotor models display conventional critical behavior, but
with critical exponents that differ from the classical percolation
exponents.38 (This holds for the particle-hole symmetric case
in which complex Berry phase terms are absent from the
action.9) In the Ohmic rotor model, the percolation transition
displays activated scaling as at infinite-randomness critical
points.38

For the diluted quantum Ising model, the percolation tran-
sition displays activated scaling already in the dissipationless8

and super-Ohmic cases.19 In the presence of Ohmic dis-
sipation, sufficiently large percolation clusters can undergo
the localization transition independently from the bulk. The
resulting percolation transition24 is similar to the one discussed
in the present paper; it shows unusual properties due to an
interplay of frozen and dynamic percolation clusters.

All these results suggest that quantum phase transitions
across the lattice percolation threshold can be classified analo-
gously to generic disordered phase transitions5,10 (provided the
order parameter action does not contain complex terms). If a
single finite-size percolation cluster is below the lower critical
dimension of the problem, it can not undergo a phase transition
independent of the bulk system. The resulting percolation
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transition displays conventional critical behavior (this is the
case for the dissipationless and super-Ohmic rotor models).
If a single finite-size cluster can undergo the transition by
itself (i.e., it is above the lower critical dimension of the
problem), the resulting percolation transition is unconventional
with some observables behaving classically while others are
influenced by quantum fluctuations. This scenario applies to
the sub-Ohmic models studied in this paper as well as the
Ohmic quantum Ising model. Finally, if a single percolation
cluster is right at the lower critical dimension (but does not
undergo a phase transition), the percolation quantum phase

transition shows activated critical behavior. This scenario
applies to the dissipationless quantum Ising model as well
as the Ohmic quantum rotor model.

ACKNOWLEDGMENTS

This work has been supported in part by the NSF under
Grant No. DMR-0906566, by FAPESP under Grant No. 2010/
03749-4, and by CNPq under Grant Nos. 590093/2011-8 and
302301/2009-7.

1M. Thill and D. A. Huse, Physica A 214, 321 (1995).
2A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996).
3D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
4D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
5T. Vojta, J. Phys. A 39, 143R (2006).
6T. Vojta, J. Low Temp. Phys. 161, 299 (2010).
7T. Vojta and J. A. Hoyos, in Recent Progress in Many-Body
Theories, edited by J. Boronat, G. Astrakharchik, and F. Mazzanti
(World Scientific, Singapore, 2008), p. 235.

8T. Senthil and S. Sachdev, Phys. Rev. Lett. 77, 5292 (1996).
9R. M. Fernandes and J. Schmalian, Phys. Rev. Lett. 106, 067004
(2011).

10T. Vojta and J. Schmalian, Phys. Rev. B 72, 045438 (2005).
11T. Vojta and R. Sknepnek, Phys. Rev. B 74, 094415 (2006).
12L. Wang and A. W. Sandvik, Phys. Rev. Lett. 97, 117204 (2006).
13L. Wang and A. W. Sandvik, Phys. Rev. B 81, 054417 (2010).
14A. J. Millis, D. K. Morr, and J. Schmalian, Phys. Rev. Lett. 87,

167202 (2001).
15T. Vojta, Phys. Rev. Lett. 90, 107202 (2003).
16G. Schehr and H. Rieger, Phys. Rev. Lett. 96, 227201 (2006).
17G. Schehr and H. Rieger, J. Stat. Mech. (2008) P04012.
18J. A. Hoyos and T. Vojta, Phys. Rev. Lett. 100, 240601 (2008).
19J. A. Hoyos and T. Vojta, Phys. Rev. B 85, 174403 (2012).
20J. A. Hoyos, C. Kotabage, and T. Vojta, Phys. Rev. Lett. 99, 230601

(2007).
21A. Del Maestro, B. Rosenow, M. Müller, and S. Sachdev, Phys.

Rev. Lett. 101, 035701 (2008).
22T. Vojta, C. Kotabage, and J. A. Hoyos, Phys. Rev. B 79, 024401

(2009).
23T. Vojta, J. A. Hoyos, P. Mohan, and R. Narayanan, J. Phys.:

Condens. Matter 23, 094206 (2011).
24J. A. Hoyos and T. Vojta, Phys. Rev. B 74, 140401(R) (2006).

25R. Bulla, N.-H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601
(2003).

26A. Winter, H. Rieger, M. Vojta, and R. Bulla, Phys. Rev. Lett. 102,
030601 (2009).

27A. B. Harris, J. Phys. C 7, 3082 (1974).
28R. Stinchcombe, J. Phys. C 14, L263 (1981).
29R. R. dos Santos, J. Phys. C 15, 3141 (1982).
30L. F. Cugliandolo, G. S. Lozano, and H. Lozza, Phys. Rev. B 71,

224421 (2005).
31N. V. Prokofev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669

(2000).
32I. Chiorescu, W. Wernsdorfer, A. Müller, H. Bögge, and B. Barbara,
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