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We study the ground-state phase diagram of the spin-1/2J1-J2 Heisenberg model on the square lattice with
an accurate bosonic resonating-valence-bond (RVB) wave function. In contrast to the RVB ansatz based on
Schwinger fermions, the representation based on Schwinger bosons, supplemented by a variational Monte
Carlo technique enforcing the exact projection onto the physical subspace, is able to describe a fully gapped
spin liquid in the strongly frustrated regime. In particular, a fully symmetric Z2 spin liquid is stable between
two antiferromagnetic phases; a continuous transition at J2 = 0.4J1, when the Marshall sign rule begins to be
essentially violated, and a first-order transition around J2 = 0.6J1 are present. Most importantly, the triplet gap
is found to have a nonmonotonic behavior, reaching a maximum around J2 = 0.51J1, when the lowest spinon
excitation moves from the � to the M point, i.e., k = (π,0).
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I. INTRODUCTION

The search for quantum spin liquids in frustrated quantum
antiferromagnets has a long history.1 In recent years, thanks
to the advance of numerical techniques, several candidates
for spin liquids have emerged in two-dimensional systems.
These include the Hubbard model on the honeycomb lattice,2

the spin-1/2 Heisenberg model on the kagome lattice,3 and
more recently the spin-1/2 J1-J2 Heisenberg model on the
square lattice.4 In all these cases, a small but finite spin
gap has been found and, according to generalizations of the
Lieb-Schultz-Mattis theorem for higher dimensionalities,5 a
topological degeneracy is expected. In spite of these results,
descriptions based upon fermionic resonating-valence-bond
(RVB) theory predict more often the existence of gapless
spin-liquid states. For example, for the J1-J2 model on the
square lattice,6 the Heisenberg model on the triangular7 or the
kagome lattice,8 and, more recently, also for the unfrustrated
honeycomb lattice,9 the fermionic RVB theory always predicts
a gapless spin-liquid phase with a Dirac-type spinon dispersion
as the best variational state.

The J1-J2 model represents the simplest model to study the
effect of frustration in a (low-dimensional) magnetic system;
for this reason it has been investigated by many different
approaches in the last 20 years.10–17 At the classical level, the
system is magnetically ordered for J2 < 0.5J1 with the stan-
dard antiferromagnetic pattern at q = (π,π ). For J2 > 0.5J1,
the ordering wave vector is moved to q = (π,0) or (0,π ); these
two ordered phases are separated by a first-order transition.
Within the linear spin-wave approach, which goes beyond the
classical theory, quantum fluctuations destroy the magnetic
order in the intermediate region of 0.4J1 � J2 � 0.6J1, hence
leading to a magnetically disordered state.18 However, the
nature of this disordered phase is still elusive and several
proposals have been made. These include valence-bond solids
with broken spatial symmetries11,14,19,20 or gapless spin-liquid
states.6 The latter proposal is especially attractive, since it
provides a simple and very accurate fermionic RVB wave

function for 0.4J1 � J2 � 0.55J1. This state has a Dirac-type
spinon dispersion and Z2 gauge structure and becomes stable
for J2 � 0.4J1.

More recently, density-matrix renormalization-group
(DMRG) calculations provided some evidence for a fully
gapped spin liquid in the intermediate region of 0.4J1 � J2 �
0.62J1.4 Within this numerical approach, the spin gap in-
creases linearly from J2 � 0.4J1, reaches a maximum around
J2 � 0.59J1, and then rapidly decreases. For J2 � 0.62J1,
a collinear magnetic order occurs. The spin-liquid phase
determined by these DMRG calculations is thus inconsistent
with the fermionic RVB theory, due to the presence of a finite
spin gap.

In this paper, we investigate the spin-liquid phase of the
J1-J2 model with a bosonic RVB wave function.21 This is
motivated by the following concerns. First, while the fermionic
RVB state is found to be unable to open a spin gap for this
system, a bosonic spin-liquid state is by definition gapped,
because otherwise the (bosonic) spinon would condense and
the system would develop magnetic order. Second, since
the spin-liquid phase is found to exist in a quite small
region between two magnetically ordered phases (for which a
bosonic description is quite accurate), it is natural to expect
that the intermediate spin-liquid phase inherits some bosonic
characteristic.

The bosonic RVB state has been adopted in many previous
studies22,23 and is found to describe quite well both the
magnetic ordered state and the disordered state for unfrustrated
systems.24,25 For frustrated magnetic systems, the use of the
bosonic RVB wave function is very limited, since the loop gas
algorithm for the bosonic RVB state encounters serious sign
problems; moreover, the computation of the wave function
amplitude in the orthogonal Ising basis involves permanents
of matrices,26 implying a computational cost that grows
exponentially with the size of the system. Only very recently
has this approach been implemented on small clusters for the
kagome lattice.27
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Here, the bosonic RVB state is obtained after project-
ing the ground state of the mean-field Schwinger -boson
Hamiltonian28 into the physical subspace with one spin per
site. After this projection, the wave function turns out to
be equivalent to the standard Liang-Doucot-Anderson RVB
ansatz,21 defined only in terms of a bosonic pairing function
(that connects opposite sublattices). To enforce the physical
symmetry of the model in the RVB state, we have made a full
symmetry classification of the Schwinger-boson mean-field
ansatz on the square lattice with the projective symmetry group
(PSG) technique.29–31 Then, we have performed variational
Monte Carlo simulations in order to optimize such a bosonic
RVB state, by using both the permanent Monte Carlo algorithm
and the loop gas algorithm.

We find that the bosonic RVB wave function gives a rather
good variational description of the system. In addition, we find
that the phase diagram predicted by the DMRG calculations
can be well reproduced. More specifically, the system is found
to enter a fully gapped spin-liquid state around J2 = 0.4J1

through a continuous transition, when the Marshall sign rule
in the ground state begins to be essentially violated. A level
crossing of the spinon excitation is observed around J2 =
0.51J1, when the gap minimum of the spinon excitation branch
is moved from the � to the M [i.e., k = (π,0)] point and a kink
appears in the spin gap as a function of J2.

Finally, by PSG symmetry considerations, it can be shown
that the spin gap is always finite at the M point in the spin-liquid
region [while it can vanish at (π,π ), at the transition to the
antiferromagnetic phase for small J2]. This fact implies that
the magnetic structure factor is always finite at the M point,
ruling out a continuous transition to the collinear phase at
large J2.

The paper is organized as follows: in Sec. II, we describe the
model and the method; in Sec. III, we present our numerical
results; finally, in Sec. IV, we draw our conclusions.

II. THE MODEL AND METHODS

In this paper, we consider the following model:

H = J1

∑
〈i,j〉

�Si · �Sj + J2

∑
〈〈i,j〉〉

�Si · �Si, (1)

where 〈i,j 〉 and 〈〈i,j 〉〉 indicate nearest-neighbor and next-
nearest-neighbor sites on the square lattice, respectively; �Si

denotes the spin operator at site i.
In the Schwinger-boson representation,28 the spin op-

erator is written as �S = 1
2

∑
α,β b†α �σα,βbβ , where bα is

a boson operator and �σ is the Pauli matrix. Bosons
should satisfy the no-double-occupancy constraint

∑
α b†αbα

= 1, in order to be a faithful representation of the spin-
1/2 operator. Within this representation, the Heisenberg
superexchange coupling can be written as (apart from additive
constants) �Si · �Sj = − 1

2 Â
†
i,j Âi,j = 1

2 B̂
†
i,j B̂i,j , where Âi,j =

bi↑bj↓ − bi↓bj↑ and B̂i,j = b
†
i↑bj↑ + b

†
i↓bj↓.28

In the mean-field treatment, we replace Âi,j and B̂i,j

with their mean-field expectation values Ai,j and Bi,j , so

we have

HMF = −1

2

∑
i,j

(�i,j Â
†
i,j + H.c.)

+ 1

2

∑
i,j

(Fi,j B̂
†
i,j + H.c.)

+ λ
∑

i

(∑
α

b
†
iαbiα − 1

)
, (2)

where �i,j = Ji,jAi,j , Fi,j = Ji,jBi,j , and the chemical poten-
tial λ is introduced to fulfill, on average, the single-occupancy
constraint. The mean-field ground state has the general
form of

|MF〉 ∝ exp

⎧⎨
⎩

∑
i,j

a(Ri,Rj )(b†i↑b
†
j↓ − b

†
i↓b

†
j↑)

⎫⎬
⎭ |0〉. (3)

Then, a suitable RVB wave function in the physical Hilbert
space with one boson per site may be obtained by projecting
the mean-field state, namely,

|RVB〉 = PG|MF〉, (4)

where PG is a Gutzwiller projector that enforces the constraint
of one boson per site. The equivalence of the RVB state
with the standard Liang-Doucot-Anderson state21 is clear after
projection onto the physical subspace.

The form of the RVB amplitude a(Ri,Rj ) is determined
by the parameters �i,j , Fi,j , and λ. At the mean-field level,
�i,j and Fi,j are nonzero only on those bonds with Ji,j 	=
0. However, from the variational point of view, we can take
{�i,j ,Fi,j ,λ} as a set of free parameters to construct the RVB
state. In such a case, we can also introduce �i,j and Fi,j on
longer bonds, for which Ji,j = 0.

In order to describe a spin-liquid state with the full sym-
metry of the model, the mean-field parameters {�i,j ,Fi,j ,λ}
must satisfy certain symmetry conditions. Since there exists
a U(1) gauge degree of freedom in the Schwinger-boson
representation of the spin operator (i.e., bi,α → bi,αeiφi leaves
�Si unchanged), the symmetry requirement on the mean-field
Hamiltonian is actually the U(1) gauge projective extension
of the physical symmetry of the model. Such symmetry
conditions on the mean-field ansatz can be readily worked
out by the so-called PSG technique developed by Wen29 for
the fermionic representation. The bosonic version of the PSG
is the U(1) subset of the fermionic PSG.30,31 Here, we will just
point out some basic structures that are relevant to our study.

In the Schwinger-boson formalism, the mean-field param-
eters �i,j and Fi,j describe antiferromagnetic and ferromag-
netic local correlations, respectively (see Appendix A for the
possible phases implied by this ansatz). Here, we assume
a nonzero �i,j between nearest-neighbor sites. Then, we
find that a nonzero �i,j between next-nearest-neighbor sites
is compatible only with the so-called type-B translational
property of the mean-field Hamiltonian,29,30 which implies
a unit cell with two sites. We find that such a state is
much higher in energy than any state in the so-called type-A
class, characterized by a manifestly translationally invariant
mean-field ansatz. Therefore, in the following we restrict our
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FIG. 1. (Color online) An illustration of the mean-field param-
eters starting from a site in the sublattice A. Gray and dark dots
denote sites in sublattices A and B. Here, only bonds up to the third
neighbors are reported, since longer-range parameters are found to
be negligibly small after optimization. The pairing term is always
directed from sublattice A to sublattice B.

analysis only to translationally invariant states. Within the
type-A states, we find the following general rules for the
mean-field ansatz for a symmetric spin-liquid state. First,
for sites belonging to different sublattices, only a real �i,j

is allowed. Second, for sites in the same sublattice, only a
realFi,j is allowed. Considering the site i as belonging to the
A sublattice,32 the allowed mean-field parameters up to the
fourth neighbor are given by

Fi,i+�δ1
= 0, �i,i+�δ1

= �, (5)

Fi,i+�δ2
= F, �i,i+�δ2

= 0, (6)

Fi,i+�δ3
= F2x, �i,i+�δ3

= 0, (7)

Fi,i+�δ4
= 0, �i,i+�δ4

= �2xy, (8)

where �δμ (with μ = 1, . . . ,4) denotes the vectors connecting
the site i to its neighbors, up to the fourth distance. Here,
{λ,F,�,F2x,�2xy} are a set of real parameters. An illustration
of the ansatz used in this study is shown in Fig. 1. For the sites
i belonging to the B sublattice, the signs of � and �2xy should
be reversed (since �i,j is odd on interchanging i and j ).

At the mean-field level, both F2x and �2xy are zero, and the
Hamiltonian is given by

HMF =
∑

k∈MBZ

ψ
†
k

⎛
⎜⎜⎜⎝

εk 0 0 �k

0 εk −�k 0
0 −�k εk 0

�k 0 0 εk

⎞
⎟⎟⎟⎠ ψk, (9)

in which MBZ indicates the reduced (magnetic) Brillouin
zone, ψ

†
k = (b†Ak↑,b

†
Bk↑,bA−k↓,bB−k↓), εk = λ + 2Fg(k), and

�k = 2�γ (k). Here g(k) = cos(kx) cos(ky) and γ (k) =
[cos(kx) + cos(ky)]/2. The mean-field spectrum is given by
Ek =

√
ε2
k − �2

k and the minimal spinon gap is given by

Emin =
{√

(λ + 2F )2 − (2�)2, 2λF < �2,

λ − 2F, 2λF > �2.

For the first case, the gap minimum is located at the � point,
while for the second case the gap minimum is at the M point.

Finally, the RVB amplitudes derived from the mean-field
ground state are given by

a(Ri − Rj ) = 1

N

∑
k∈MBZ

�k

εk + Ek

eik·(Ri−Rj ), (10)

where N is the number of sites, i ∈ A, and j ∈ B. The RVB
amplitudes between sites in the same sublattice are identically
zero. We would like to mention that, within the standard
formulation based upon Monte Carlo sampling,21–23 only
positive pairing functions a(Ri − Rj ) have been considered so
far. In our formulation this restriction applies only for standard
antiferromagnetic phases, while negative amplitudes are found
in the much more interesting spin-liquid phase.

III. RESULTS

The mean-field Hamiltonian (9) has been studied by Mila
and collaborators,33 showing that no spin-liquid phases are
stabilized and a direct transition between two ordered phases
is present, with a phase diagram that is very similar to that in
the classical limit. In order to go beyond this approximation,
we now move to the projected RVB state of Eq. (4), to
assess the possibility that quantum fluctuations may induce
a finite spin gap and, therefore, a stable spin liquid. We
thus determine the parameters in the bosonic RVB state by
optimizing the energy of the original J1-J2 model rather than
by solving the self-consistent equations. Then, the spinon gap
can be estimated by inserting back the optimized parameters
into the mean-field dispersion relation Ek . Note that the RVB
wave function does not depend on the overall energy scale of
the system. As a result, the spinon gap can be determined only
up to a normalization constant. Here we will use the chemical
potential λ as the unit of energy. To have an estimate of the
absolute scale of the spinon gap, we determine the pairing
potential � from the equation

� = J1〈Âi,i+x〉 = J1

N

∑
k∈MBZ

�kγ (k)

Ek

(11)

by inserting on the right-hand side the optimized values of
�/λ and F/λ, which are (�/λ)opt and (F/λ)opt. Then λ can
be determined by requiring that �/λ = (�/λ)opt.

The computation of the bosonic RVB wave function is very
expensive in the Ising basis, since it requires the calculation
of permanents, for which no polynomial algorithm exists.26

However, on small clusters the calculation is still affordable.
In this work, we have used a 6 × 6 cluster to perform the
optimization of the parameters in the RVB wave function.34 It
is important to note the key difference between the mean-field
theory and the projected RVB wave function. In the mean-
field theory, the chemical potential λ is determined by the
self-consistent equation for the total boson number. When the
spinon gap approaches zero, the number of bosons will diverge.
Thus, on any finite lattice, the spinon gap can never be zero and
a finite-size gap must exist (see Appendix B for the details on
the spinon gap in the mean-field approach). On the contrary,
after projection, the constraint of one boson per site is satisfied
exactly and such a divergence will not appear. Therefore, the

075111-3



TAO LI, FEDERICO BECCA, WENJUN HU, AND SANDRO SORELLA PHYSICAL REVIEW B 86, 075111 (2012)

FIG. 2. (Color online) (a) The optimized values for various
parameters 2F/λ and 2�/λ. The lines without symbols denote the
solutions of the mean-field self-consistent equations. (b) 2F2x/λ and
the (normalized) spinon gap at the � point.

RVB wave function is well behaved even when the spinon
gap is zero. This fact implies that a vanishing spinon gap can
be realized exactly after optimization of the corresponding
projected RVB wave function on a relatively small cluster.

From our numerical optimization, we find that a spin gap
cannot be opened if we keep �/λ and F/λ only. Moreover,
by a direct optimization of the pairing amplitudes a(Ri − Rj ),
a good accuracy can be achieved only by including a third-
neighbor parameter F2x/λ, while the fourth-neighbor param-
eter �2xy/λ is found to always negligibly small. Therefore, in
the following, we optimize the wave function with �/λ, F/λ,
and F2x/λ as variational parameters. In particular, we find that
the inclusion of F2x/λ is crucial for the opening of the spin
gap. The optimized values of the parameters in the RVB wave
function are shown in Fig. 2.

The spinon gap at the � and the M points is shown in
Fig. 3(a). Around J2 = 0.51J1, a level crossing in the spinon
excitation occurs and the gap minimum changes from � to
M . By further increasing J2, the spinon gap at M decreases
and eventually approaches zero around J2 = 0.6J1. At this
point the system becomes unstable with respect to magnetic
ordering at q = (π,0). It should be noted that, although the
spinon gap at the M point approaches zero continuously for
J2 = 0.6J1, our state cannot be continuously connected to
the collinear ordered state, and a first-order transition must
exist between the fully symmetric spin liquid and the collinear
ordered magnetic phase. This is clearly seen in the static spin
structure factor:

S(q) = 1

2

∑
k

(
εkεq−k − �k�q−k

EkEq−k

− 1

)
. (12)

Since �k=(π,0) = 0 by symmetry (see Appendix C), the
singularity in the coherence factor for Ek=(π,0) → 0 is removed
and the spin structure factor at q = (π,0) is always finite.
Thus, the state cannot be connected to the collinear ordered

FIG. 3. (Color online) (a) The normalized spinon gap at the �

and M points in the spin-liquid regime. (b) Normalized triplet gap at
q = (π,π ) and q = (π,0) (b).

phase, in which S(π,0) diverges. Therefore, we conclude that
a first-order transition must exist between the spin liquid and
the collinear ordered phase.

Given the results for the spinon spectrum of Fig. 3(a), it
is possible to make some prediction on the behavior of the
triplet gap as a function of J2. Indeed, to construct a triplet
excitation at q = (π,π ), we can use two spinons both from
either the � point or the M point.35 On the contrary, for a
triplet excitation with momentum q = (π,0), we should use
one spinon from the � point and another spinon from the M

point. Therefore, the lowest triplet excitation is always realized
at q = (π,π ) and the energy of triplet excitation at q = (π,0)
is always finite; see Fig. 3(b). This is consistent with the result
of the static spin structure factor mentioned above and points
to the fact that our spin-liquid state cannot be continuously
connected to the collinear ordered phase. We note that the
peculiar behavior of the triplet excitations found in this work
represents a surprising consequence of fractionalized spinon
excitations in the spin-liquid phase.

We would like to mention that our results for the spin gap are
quite similar to those from the DMRG calculations.4 Indeed,
within both approaches, the spin gap is found to open around
J2 = 0.4J1 and close around J2 = 0.62J1. In addition, a sharp
maximum is present, although its position in the bosonic RVB
approach is found to correspond to a lower value of J2 with
respect to the DMRG study. Moreover, taking the value of λ

estimated from Eq. (11), which is λ ≈ 1.02J1 at J2 = 0.5J1,
we have that the maximal spin gap is quite consistent with the
DMRG prediction.

In this work, the sharp maximum in the spin gap is inter-
preted as the result of a level crossing in the minimum of the
spinon spectrum (from the � to the M point). In such a picture
the lowest triplet excitation within the symmetric spin-liquid
phase is always at q = (π,π ). However, other possibilities for
this structure may exist, among which a nematic spin-liquid
phase, which breaks the reflection symmetry x → y but with
all other physical symmetries intact, is especially interesting.36
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FIG. 4. (Color online) Accuracy of the ground-state energy
calculated from the best fermionic of Ref. 6 and bosonic RVB
variational wave functions on a 6 × 6 lattice.

Since the DMRG calculations have been done on rectangular
clusters, the nematic liquid phase can be connected to the
symmetric state continuously on finite lattices.

To further check the accuracy of the bosonic RVB wave
function, we computed the relative error in the ground-state
energy, namely, �E = |E0 − Evar|/|E0|, where E0 is the exact
ground-state energy and Evar is the variational energy of the
RVB state. In Fig. 4, we report the accuracy of the bosonic RVB
wave function on the 6 × 6 cluster, in comparison with the best
fermionic RVB wave function.6 For small J2, the bosonic RVB
wave function is much more accurate than the fermionic RVB
wave function, which cannot describe magnetically ordered
states. In this region, our results for the bosonic wave function
agree with previous calculations reported in Ref. 37, obtained
with a different algorithm22 or a different parametrization.23

For J2 � 0.45J1, the fermionic wave function becomes more
accurate. However, the errors in both wave functions are
similar and both increase with the same trend on increasing J2

up to J2 = 0.6J1.
As pointed out in Ref. 6, the sign structure of the ground

state is crucial for the origin of the spin-liquid phase. For J2 =
0, the ground-state wave function satisfies the Marshall sign
rule.38 However, the Marshall sign rule is essentially violated
only for J2 � 0.4J1 and, in the fermionic RVB approach,
a Z2 spin-liquid phase emerges just at the same point.6 A
similar scenario also appears in the bosonic representation.
In this case, when the RVB amplitudes from sublattice A to
sublattice B are positive, then the wave function satisfies the
Marshall sign rule; otherwise (if some amplitudes are negative)
the Marshall sign rule is violated. In Fig. 5, we plot all the
independent RVB amplitudes a(Ri,Rj ) on a 6 × 6 lattice of
the optimized wave function (with the amplitude between
the nearest-neighbor sites equal to 1). For J2 < 0.4J1, all
amplitudes are positive and thus the wave function has the
Marshall sign. For J2 > 0.4J1, the amplitude on bond (1,2)
becomes negative and the Marshall sign rule is violated. It
is just at this point that the spin gap opens. Thus, the origin
of the spin gap and the existence of the spin-liquid phase
can be understood as a result of violation of the Marshall
sign rule. Such an understanding is consistent with several
previous studies,39 in which the topological degeneracy, which

FIG. 5. (Color online) (a) The normalized RVB amplitudes
a(Ri,Rj ) at different distances on a 6 × 6 lattice as functions of
J2/J1. The nearest-neighbor (1,0) amplitude has been taken equal
to 1. (b) The average Marshall sign of Eq. (13) calculated from the
bosonic and fermionic RVB wave functions and the exact ground
state on a 6 × 6 lattice as a function of J2/J1.

is a hallmark of gapped spin liquids, is argued to be absent in
systems satisfying the Marshall sign rule.

Finally, we report in Fig. 5 the average Marshall signs in
the bosonic and fermionic RVB wave functions:

〈S〉 =
∑

x

|〈x|RVB〉|2sgn{〈x|RVB〉(−1)N↑(x)}, (13)

where |RVB〉 denotes the RVB variational state (either bosonic
or fermionic) and the sum is over the orthogonal Ising basis |x〉;
for comparison, we also report the results for the exact ground
state, where |RVB〉 is replaced by |�0〉. The fermionic RVB
wave function is better in the sense of sign structure, and this
is consistent with the fact that the fermionic wave function
has a lower energy for large J2. However, it is clearly seen
that both the bosonic and the fermionic RVB wave functions
underestimate seriously the frustration of the sign in the spin-
liquid regime.

IV. CONCLUSIONS

In conclusion, we find that the bosonic RVB wave function
generates a ground-state phase diagram of the J1-J2 model on
the square lattice that is qualitatively consistent with DMRG
results. A gapped spin-liquid phase is found for 0.4J1 < J2 <

0.6J1. The spin-liquid phase is connected to the staggered
magnetic ordered state through a continuous transition but
cannot be connected continuously to the collinear magnetic
ordered state, and a first-order transition between the two must
exist. The spin gap is found to have a maximum around J2 =
0.51J1, as a result of the level crossing between the spinons
at � and M points. This fact implies that the lowest triplet
excitation is found to be always at q = (π,π ) in the spin-liquid
phase. We also found that the spin gap opens at the same point
where the system violates the Marshall sign rule. This fact
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provides strong support for previous arguments for the absence
of topological order in systems satisfying the Marshall sign
rule. Although these outcomes are in good agreement with
recent DMRG calculations of Ref. 4, the gapless Dirac-type
fermionic RVB ansatz remains slightly more accurate at the
variational level in the highly frustrated regime.
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APPENDIX A: THE VARIOUS PHASES DESCRIBED BY
THE WAVE FUNCTION STUDIED IN THIS WORK

The various phases described by the wave function studied
in this work are shown in Fig. 6. Here, we report the various
properties as functions of two parameters, namely, F/λ and
�/λ. The case with nonzero F2x/λ is qualitatively similar. The
condensation lines denote the magnetically ordered states with
staggered or collinear patterns. The three regions A, B, and
C denote spin-liquid phases. In regions A and B, the spinon
gap minimum is realized at the � point, while in the region C

the gap minimum is moved to the M point. In region B, the
Marshall sign rule is violated while it is satisfied in region A.
The region with slanted lines is physically nonaccessible.

APPENDIX B: THE MEAN-FIELD FINITE-SIZE GAP

In the mean-field theory, the spinon is always gapped when
the system is defined on a finite lattice. We report in Fig. 7 the
spinon gap obtained by solving the mean-field self-consistent
equations. Here, we would like to emphasize that the origin of
a spinon gap obtained on finite lattices with the projected
bosonic RVB wave function is totally different from that
obtained within the mean-field approximation. Indeed, after
projection, the number of spinons is fixed (each site is occupied
by one and only one spinon) and the RVB wave function is
always well defined.

FIG. 6. (Color online) Phases described by the bosonic RVB wave
function |RVB〉 in the parameter space (F/λ,�/λ).

FIG. 7. (Color online) The spinon gap predicted by mean-field
theory at both � and M points. For the � point, we show the scaling
of the mean-field gap with the linear size of the system. The mean-field
gap at the M point in the thermodynamic limit is also reported (dashed
line).

In fact, we find that the spinon gap is exactly zero for
J2 < 0.4J1 from our optimization on the 6 × 6 lattice; see
Fig. 3. Instead, the finite-size gap in the mean-field theory is
much larger and smoother than that obtained with the projected
bosonic RVB wave function. In addition, we note that the
mean-field theory always predicts a very large gap at the M

point in the thermodynamic limit.

APPENDIX C: THE PROOF OF �k=(π,0) = 0

For the ansatz of type A, which is manifestly translationally
invariant in the so-called uniform gauge, the gauge transfor-
mations of the PSG for symmetric bosonic spin-liquid state
are found to be (we have adopted the convention of Ref. 29)

GPx
= η

ix
xPx

η
iy
yPx

eiφx ,

GPy
= η

ix
yPx

η
iy
xPx

eiφx ,

GPxy
= eiφxy ,

in which ηxPx
,ηyPx

= ±1, φx,φxy = 0,π/2.
If we require �i,j to be nonzero between nearest-neighbor

sites, the PSG should satisfy

ηxPx
= −ηyPx

, ηxPx
= −e2iφx .

In the uniform gauge, �i,j is a function only of Rj − Ri , so
we can write �i,j as �(dx,dy ), in which the distance (dx,dy) =
(jx − ix,jy − iy). By applying Px and Py successively, we have

�(−dx ,−dy ) = (ηxPx
ηyPx

)dx+dy �(dx ,dy )

= (−1)dx+dy �(dx ,dy ).

However, from the fact that �i,j = −�j,i , we have

�(−dx ,−dy ) = −�(dx ,dy ).

We thus conclude that �i,j is nonzero only between sites in
the opposite sublattices.

To show further that �k=(π,0) = 0, we need to go to the
sublattice uniform gauge.32 For φxy = 0, the gauge transfor-
mation from the uniform gauge to the sublattice uniform gauge
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is given by

Wi = (−1)[(ix+iy )/2],

while for φxy = π/2, it is given by

Wi = (−1)[(ix−iy )/2],

in which [r] means the largest integer that is not greater
than r . In the sublattice uniform gauge, the pairing term
�(dx ,dy ) has s-wave symmetry from any site in the A

or B sub-lattice (but has opposite signs for �i,j starting
from the A and B sublattices). Thus the total contribution
to the Fourier transform of �(dx ,dy ) from distance (dx,dy)
and all the other symmetry-related distances is proportional
to

�(dx ,dy )[cos(kxdx) cos(kydy) + cos(kxdy) cos(kydx)].

Since �(dx ,dy ) is nonzero only when dx + dy is an odd integer,
it is easy to see that �k=(π,0) = 0.
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