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We study, by means of exact-diagonalization techniques, the ground state of a few-fermion system with strong
short-range repulsive interactions trapped by a harmonic potential in one spatial dimension. Even when the
ground-state density profile displays, at strong coupling, very well pronounced Wigner oscillations with a 4kF

periodicity, the pair-correlation function does not show any signature of Wigner-molecule-type correlations. For
the sake of comparison, we present also numerical results for few-electron systems with Coulomb interactions,
demonstrating that their ground state at strong coupling is, on the contrary, a Wigner molecule.
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I. INTRODUCTION

Understanding the nature of the ground state of strongly
correlated few-fermion systems has attracted a great deal of
interest. A large body of literature is available in the context of
few-electron quantum dots, or “artificial atoms.”1 In this case
the relevant interaction potential is the long-range Coulomb
force between electrons. It is by now well established that
when Coulomb interactions are sufficiently strong, the ground-
state of a quantum dot, either one-2 or two-dimensional,3 is a
“Wigner molecule” (WM). This jargon stems from the Wigner
crystalline order that is displayed by an electron gas at ultralow
densities.4 The WM state is not characterized by a spontaneous
breaking of translational symmetry (which is absent to begin
with due to the confining potential of the dot) but rather by
strong short-range order that is evident in the density-density
correlation function (the so-called pair-correlation function).
The existence of WMs has been recently confirmed by inelastic
light-scattering studies of few-electron circular quantum dots5

as well as by tunneling spectroscopies of quantum wires6 and
carbon nanotubes.7

The ground state of one-dimensional (1D) systems of
fermions trapped in a parabolic potential and interacting
through a short-range potential has also been the subject of
numerous analytical and numerical studies.8,9 The interest in
these systems is not merely academic since gases of fermionic
atoms trapped in “atomic quantum wires” can be realized
experimentally10 and cooled to temperatures T ∼ 0.1 TF,
where TF is the Fermi temperature.11 The relevant interaction
potential in this case is a zero-range Fermi pseudopotential
acting only between antiparallel-spin fermions,12 V (x) =
g1Dδ(x), with an amplitude g1D which is controlled13 by the
three-dimensional (3D) scattering length. Recent advances in
atomic physics have made it possible also to confine only a
few fermionic atoms with tunable short-range interactions in
optical dipole traps.14,15

In the noninteracting g1D → 0 limit the ground-state
density profile of N fermions trapped in a parabolic potential
displays, despite the smooth boundaries, “Friedel oscillations”
with N/2 peaks,16 which are ultimately due to the Pauli

principle. In the noninteracting limit, indeed, the ground-state
density n0(x) is obtained by occupying exactly N/2 harmonic-
oscillator levels, each one with two fermions with antiparallel
spin,

n0(x) = 2
N/2−1∑
n=0

|φn(x)|2, (1)

where φn(x) = (2nn!π1/2�ho)−1/2 exp (−ξ 2/2)Hn(ξ ), with
ξ = x/�ho and �ho = (h̄/mω)1/2, are the eigenfunctions of a
1D harmonic oscillator with frequency ω. Here Hn(ξ ) is a
Hermite polynomial of degree n. Straightforward mathemati-
cal manipulations yield the following approximate expression
for n0(x) away from the trap edges:17

n0(x) ≈ nTF(x) − (−1)N/2

πLTF

cos[2kF(x)x]

1 − x2/L2
TF

, (2)

where nTF(x) = (2LTF/�
2
ho)[1 − (x/LTF)2]1/2 is the

Thomas-Fermi density profile, LTF = �hoN
1/2, and kF(0) =

πnTF(0)/2 = N1/2/�ho [the expression for kF(x) away from
the trap center can be found in Ref. 17].

What happens to this simple single-particle physics when
the strength of interparticle interactions is increased? In the
limit g1D → ∞ the δ-function interaction imposes an effective
Pauli principle between antiparallel-spin fermions. In this limit
we thus expect oscillations in the ground-state density n∞(x)
with a bulk periodicity controlled by 4kF(0). These have been
dubbed in the literature as “Wigner oscillations.” The transition
from the 2kF(0) Friedel oscillations to the 4kF(0) Wigner
oscillations in a parabolic trap is a smooth crossover: see, for
example, the extensive density-matrix renormalization group
study by Söffing et al.17

Looking, however, at a one-body observable such as the
ground-state density profile does not shed light on the nature
of the ground state at strong coupling. Especially important in
low-dimensional systems are, indeed, correlation functions.
In the absence of the parabolic trapping, we know from
bosonization18 that at strong coupling, i.e., when Kρ < 1/3,
Kρ being the Luttinger liquid parameter in the charge sector,
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1D interacting fermions are dominated by 4kF charge-density-
wave (CDW) correlations. Since in a Galilean invariant system
Kρ = vF/vρ , where vF is the bare Fermi velocity and vρ

is the velocity of density excitations and vρ → 2vF in the
limit g1D → ∞,8 we expect that the ground state at strong
coupling is completely dominated by 2kF spin-density-wave
correlations with no space for incipient CDWs. The situation
changes dramatically in a system with long-range interactions,
which stabilize 4kF CDW correlations.18–20

In this paper we analyze the nature of the ground state of
a 1D few-fermion system at strong coupling in the presence
of a parabolic potential, which breaks Galilean invariance.
More precisely, inspired by the body of literature discussed
above, we study both ground-state density profiles and
pair-correlation functions. We focus on the strong-coupling
regime, which is difficult to access with analytical techniques,
and rely on accurate numerical calculations based on the
exact-diagonalization method (also called “full configuration
interaction”).21 We find that even when the ground-state
density profile displays well-pronounced Wigner oscillations
with a 4kF(0) periodicity, the pair-correlation function does
not show any signature of WM-type correlations. We then
highlight the role of the interaction range by comparing
these findings with those for a system of electrons in-
teracting through the Coulomb potential. We demonstrate
that the ground state of this system at strong coupling is
a WM.

The structure of this paper is the following. In Sec. II,
the model and the observables of interest are introduced.
In Sec. III, we present our numerical results and dis-
cussions. Finally, a concluding section summarizes our
results.

II. THE MODEL AND THE OBSERVABLES OF INTEREST

We consider a two-component Fermi gas with N atoms
confined inside a strongly elongated harmonic trap. The two
species of fermionic atoms are assumed to have the same mass
m and different pseudospin σ =↑ or ↓ (hyperfine-state label).
The trapping potential is axially symmetric and characterized
by angular frequencies ω⊥ and ω in the radial and longitudinal
directions, respectively, with ω 	 ω⊥. Correspondingly, we
introduce the harmonic-oscillator lengths a⊥ = (h̄/mω⊥)1/2

and �ho = (h̄/mω)1/2.
The gas is dynamically 1D if the anisotropy parameter of the

trap is much smaller than the inverse atom number, ω/ω⊥ 	
N−1. It can thus be described by an inhomogeneous Gaudin-
Yang Hamiltonian,

Ĥ = T̂ + V̂ + Ŵ = − h̄2

2m

∑
σ

∫ +∞

−∞
dx
̂†

σ (x)∂2
x 
̂σ (x)

+ g1D

∫ +∞

−∞
dx
̂

†
↑(x)
̂†

↓(x)
̂↓(x)
̂↑(x)

+ 1

2
mω2

∑
σ

∫ +∞

−∞
dx
̂†

σ (x)x2
̂σ (x), (3)

where 
̂†
σ (x) [
̂σ (x)] is a field operator that creates (destroys) a

fermion with spin σ at position x and g1D 
 4h̄2asc/(ma2
⊥) (in

the limit asc 	 a⊥) is a parameter that determines the strength

of interparticle repulsions.13 The 3D scattering length asc can
be tuned by means of a magnetic field.10 The first term in
Eq. (3) (T̂ ) is the kinetic energy, whereas the second term (V̂)
describes two-body short-range interactions. Finally, the third
term (Ŵ) is the parabolic trapping potential.

Choosing �ho as the unit of length and h̄ω as the unit of
energy, Hamiltonian (3) is governed by the dimensionless
coupling parameter:

λ = g1D

�hoh̄ω
. (4)

In this paper we focus our attention on the dependence of two
key quantities on λ for strong interparticle repulsions (λ � 1):
(i) the local spin-resolved density,

nσ (x) = 〈
̂†
σ (x)
̂σ (x)〉/Nσ , (5)

and (ii) the pair-correlation function (PCF),

ḡσσ ′(x) =
∫ +∞

−∞
dx ′gσσ ′

(
x ′ + x

2
, x ′ − x

2

)
, (6)

which is defined in terms of the two-body correlator,

gσσ ′(x,x ′) = 〈
̂†
σ (x)
̂†

σ ′(x ′)
̂σ ′(x ′)
̂σ (x)〉
Nσ (Nσ ′ − δσσ ′)

, (7)

with Nσ being the number of atoms with spin σ . We also
introduce the total density, n(x) = ∑

σ Nσnσ (x)/N , and the
total PCF, ḡ(x) = ∑

σ,σ ′ Nσ (Nσ ′ − δσσ ′)ḡσσ ′(x)/N(N − 1). In
all the definitions above 〈. . .〉 denotes the expectation value
over the ground state of Hamiltonian (3). We recall that
gσσ ′(x,x ′) measures the conditional probability of finding a
fermion with spin σ ′ at position x ′ when another fermion
of spin σ is known to be at position x, whereas ḡσσ ′(x)
provides the probability of finding two fermions at a relative
distance x.

For the sake of comparison, we present also numerical
results for another model interparticle potential, in the presence
of the same trapping potential as in Eq. (3): we have studied a
Hamiltonian identical to the one in Eq. (3), except for the term
in the second line, which now reads

V̂Y = 1

2

∑
σ,σ ′

∫ +∞

−∞
dx

∫ +∞

−∞
dx ′
̂†

σ (x)
̂†
σ ′(x ′)

×VY(|x − x ′|)
̂σ ′(x ′)
̂σ (x). (8)

As a model potential we use the following Yukawa inter-
action:

VY(|x − x ′|) = e2

κ
√

a2 + (x − x ′)2
exp (−|x − x ′|/r), (9)

where a > 0 regularizes VY(|x − x ′|) when x ′ → x and
r is a tunable parameter that represents the range of
VY(|x − x ′|). In the limit r/�ho → ∞, VY(|x − x ′|) reduces
to a Coulomb potential, and the corresponding Hamiltonian
ĤY = T̂ + V̂Y + Ŵ describes few-electron quantum dots
embedded, e.g., in a 1D quantum wire,2 with κ being the
relative dielectric constant of the wire. In the opposite limit,
r/�ho → 0, VY(|x − x ′|) mimics a short-range interaction.
Using the same dimensionless variables which have been
used above for the inhomogeneous Gaudin-Yang Hamiltonian,
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we find that the dimensionless coupling constant for ĤY is
given by

λY = e2

κ�hoh̄ω
. (10)

Due to the presence of the parameters r and a in Eq. (9),
the few-electron problem depends not only on λY but also
on the ratios r/�ho and a/�ho. The latter has been fixed to
a/�ho = 10−1 for all our numerical calculations.22

III. NUMERICAL RESULTS

In Fig. 1 we report numerical results for the spin-resolved
density profiles nσ (x) of N = 4 and N = 5 fermionic atoms.
All the data presented in Fig. 1 and in all the figures below
have been calculated for λ = 15 and are qualitatively similar
to those obtained for other values of N , whereas N > 6 is
beyond our reach. In this ultrastrong coupling regime mean-
field-like methods yield completely incorrect results (while we
have checked that our numerical results at weak coupling can
be explained very well by Bethe-Ansatz density functional
theory9). In both panels of Fig. 1 we clearly see N distinct
peaks in the total density profile n(x), i.e., Wigner oscillations

FIG. 1. (Color online) Spin-resolved and total ground-state den-
sity profiles (in units of �−1

ho ) as functions of x/�ho for λ = 15.
(a) Results for N = 4 particles (all curves overlap). (b) Results for
N = 5.

FIG. 2. (Color online) Pair-correlation function ḡσσ ′ (x) (in units
of �−1

ho ) vs x/�ho for the same system parameters as in Fig. 1. Note
that ḡ↑↑(x = 0) = 0, a manifestation of Pauli’s exclusion principle.

with a 4kF(0) periodicity. Note also the “antiferromagnetic”
spatial pattern of the spin-resolved densities nσ (x) in which
n↓(x) has a maximum in correspondence of every minimum
of n↑(x). Quite surprisingly, the PCFs corresponding to the
density profiles in Fig. 1, which are plotted in Fig. 2, do not
display any sign of WM-type short-range order. Despite the
well-defined Wigner oscillations in the density profile, the
ground state seems to display liquid-type correlations, without
any sign of interaction-induced localization.

In Fig. 3 we compare the results reported in Fig. 1 with
those for few electrons interacting through the Coulomb
potential [r/�ho = ∞ in Eq. (9)]. For the sake of comparison,
in producing the data for Fig. 3 we have chosen λY = 15,
which is the same value used for the short-range coupling λ in
Fig. 1. Also the total density profile in Fig. 3 is characterized
by Wigner oscillations with a contrast that is much higher
than in the case of fermions interacting through short-range
forces.

Moreover, as is well known from the earlier literature,2 at
this large value of λY the ground state of the few-electron
system is definitely a WM. This is illustrated in Fig. 4,
where we have presented the total PCFs corresponding to the
density profiles in Fig. 3. In the case of Coulomb interactions
(solid red line) we note that ḡ(x) displays exactly N − 1
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FIG. 3. (Color online) The total density profile n(x) of a system of
fermions interacting with short-range interactions is compared with
that of electrons interacting through Coulomb interactions. The data
for short-range interactions have been produced by setting λ = 15
(same data as shown in Fig. 1). The data for Coulomb interactions
have been produced by setting λY = 15 and a/�ho = 10−1.

well-defined peaks, a clear-cut signature of the WM nature
of the ground state. Note also an “excluded-volume” region,
i.e., a finite range of values of x close to the origin in which
ḡ(x) ∼ 0, which is typical of electronic systems at ultrastrong
coupling.23

In Fig. 4(b) we present also numerical results for the PCF of
N = 5 fermions interacting through the Yukawa potential (9)
for different values of the range r/�ho. Upon decreasing the
range r/�ho, ḡ(x) progressively loses structure, becoming
identical to the one calculated with the Gaudin-Yang model (3)
for r/�ho ∼ 0.1.

IV. CONCLUSION

In conclusion, we have studied density profiles and pair-
correlation functions of few-fermion systems with short-range
interactions at strong coupling. We have discovered that the
nature of the ground state of these systems, at least in the
regime of coupling constants we have investigated, is not a
Wigner molecule, despite the well-defined Wigner oscillations
displayed by the density profile. We believe that the ground
state of this system is not localized into a Wigner molecule

FIG. 4. (Color online) The total pair-correlation function ḡ(x) of
a system of fermions described by the Gaudin-Yang Hamiltonian
(black solid lines in both panels) is compared with that of fermions
interacting through the Yukawa potential with a variable range r (in
units of �ho). The data labeled Coulomb interactions (red solid lines
in both panels) correspond to r/�ho = ∞ in Eq. (9). The parameters
used to produced the data are identical to those in Fig. 3.

because of the short-range nature of the interatom interactions.
Systems with identical statistics but long-range Coulomb
forces, such as electrons trapped in a quantum dot embedded in
a thin quantum wire, are Wigner molecules at similar coupling
constants. Since one-dimensional few-fermion systems with
tunable short-range interactions have been recently created,14

our predictions can be tested experimentally by using local
probes that access both spatial density distribution and density-
density correlation functions.

ACKNOWLEDGMENTS

Gao X. is supported by the NSFC and the Zhejiang Provin-
cial NSFC under Grants No. 11174253 and No. R611015. M.R.
thanks S. Reimann for useful discussions and acknowledges
support from Fondazione Cassa di Risparmio di Modena
through the project COLDandFEW and from CINECA-
ISCRA through Grant No. HP10C1E8PI.

075110-4



ABSENCE OF WIGNER MOLECULES IN ONE- . . . PHYSICAL REVIEW B 86, 075110 (2012)

*gaoxl@zjnu.edu.cn
†massimo.rontani@nano.cnr.it
1L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots (Springer,
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