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Metamagnetism and Lifshitz transitions in models for heavy fermions
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We investigate metamagnetic transitions in models for heavy fermions by considering the doped Kondo lattice
model in two dimensions. Results are obtained within the framework of dynamical mean field and dynamical
cluster approximations. Universal magnetization curves for different temperatures and Kondo couplings develop
upon scaling with the lattice coherence temperature. Furthermore, the coupling of the local moments to the
magnetic field is varied to take into account the different Landé factors of localized and itinerant electrons. The
competition between the lattice coherence scale and the Zeeman energy scale allows for two interpretations of
the metamagnetism in heavy fermions: Kondo breakdown or Lifshitz transitions. By tracking the single-particle
residue through the transition, we can uniquely conclude in favor of the Lifshitz transition scenario. In this
scenario, a quasiparticle band drops below the Fermi energy which leads to a change in topology of the Fermi
surface.
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I. INTRODUCTION

Kondo lattice systems are states of matter whose low-
temperature macroscopic properties are dominated by strong
correlations between Bloch fermion states and local spin
moments. They can host various, sometimes competing
orders and are therefore susceptible to tuning of external
parameters. How the strongly entangled Kondo state evolves
when competing mechanisms appear constitutes a vibrant
area of research.1–3 Prototypical heavy fermion materials are
intermetallic compounds with the rare-earth elements Ce or
Yb that deliver almost localized f electrons.

When an external magnetic field is applied to certain
fermion systems, unexpected nonlinear behavior of the mag-
netization at a well defined field value enters the stage.4,5

Equally, distinct anomalies of thermodynamic quantities and
in transport measurements occur at the same magnetic field.6,7

This phenomenon has been dubbed metamagnetism. At the
critical field, the heavy electron Fermi surface changes its
topology.6,8–10 Recent experiments witness a pronounced, first-
order metamagnetic transition (MMT) in the heavy-fermion
paramagnet CeTiGe.5 Metamagnetism has been known to
occur in CeRu2Si24 and, amongst other fermionic systems, a
pressure-tuned first-order MMT has been observed in bilayer
ruthenates.11

The thermodynamic signatures of heavy fermion com-
pounds have been related to a metamagnetic quantum critical
endpoint of the Ising universality class.12,13 The MMT in
heavy fermion systems has been addressed by static mean-field
(MF) studies14,15—presupposing a continuous transition—and
by dynamical mean field theory (DMFT). The magnetization
profile in Kondo systems has been shown to be closely related
to the quasiparticle coherence.16 Also, crystal field effects
have been included in a DMFT study.17 Apart from heavy
fermion systems, the metamagnetism of itinerant electrons has
been addressed by MF methods,18 functional renormalization
group,19 and DMFT.20

Lifshitz transitions are quantum phase transitions which
invoke a topological change of the Fermi surface.21–23 Lifshitz
transitions and Kondo breakdown scenarios have been inves-
tigated in fermionic large-N approaches.24,25 Zeeman-driven

Lifshitz transitions were shown to explain many anomalies in
thermodynamic and transport measurements of certain heavy
fermion metals.26

This study is motivated by the interplay of two competing
energy scales, the lattice coherence scale and a magnetic
Zeeman scale. By varying the magnitude of the Landé factors
we can show that the metamagnetic transition occurs when
both scales are comparable, thus allowing for interpretations
based on Kondo breakdown or Lifshitz transitions. The single-
particle residue is measured as a function of magnetic field
throughout the MMT and is shown to be consistent with the
picture of a coherent band dropping below the Fermi energy at
the transition. We supplement our analysis by single-particle
spectral data. Our results clearly point towards Lifshitz physics
as the key player in the MMT in models of heavy fermions.

We draw this conclusion based on a dynamical cluster
approximation (DCA) calculation of the Kondo lattice model
with a Hirsch-Fye quantum Monte Carlo (HF-QMC) solver.

The paper is organized as follows. Section II introduces the
model Hamiltonian and Sec. III reviews the DCA implemen-
tation. Sections IV and V contain the results of this study. We
finish with a discussion (Sec. VI) and the conclusion (Sec. VII).

II. MODEL

The essential aspects of heavy fermion systems are captured
by the Kondo lattice model (KLM).27,28 The KLM is an
effective low-energy model which is obtained upon integrating
out the valence fluctuations of the f orbitals in the periodic
Anderson model.29,30 In particular, the model captures the
crossover from independent magnetic impurities embedded in
a metallic host to a coherent heavy fermion state. The KLM at
half-filling has a unique spin singlet, insulating ground state31

that is adiabatically connected to the trivial band insulator of
the non interacting periodic Anderson model.30 The weakly
doped KLM exhibits a Fermi-liquid ground state.32

We investigate this model by means of DMFT and DCA33,34

with a quantum Monte Carlo cluster solver. The cluster
approximation is on spatial correlations which are essentially
cut off by the cluster dimension. Temporal correlations that
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drive the Kondo effect are fully accounted for in DMFT and
its cluster extensions.

We study the KLM supplemented with Zeeman terms on
the two-dimensional square lattice, H = Ht + HJ + HB:

H = −t
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) + J

∑
i

Sc
i · Sf

i

−μBB
∑

i

(
gcS

c
z,i + gf S

f

z,i

)
. (1)

The magnetic moments of itinerant (c) and local (f )
orbitals along the direction of the applied field are given by
μ

c,f

z,i = μBgc,f S
c,f

z,i . The couplings gc and gf are understood
as parameters. Physically, this is motivated by the pseudospin
nature of S

f

z,i : the spin degree of freedom originates from
a Kramer doublet and can take large values, which in turn
renormalizes the g factor gf .20

Drawing on the recently obtained phase diagram of the two-
dimensional KLM32,35,36 we concentrate on the paramagnetic
side of the transition and consider a metallic state with the
conduction band filling nc = 0.9.

The lattice of impurities introduces the coherence scale Tcoh

as the natural energy scale.37 The single-impurity Kondo scale,
itself being the natural scale in a single-impurity model, is a
local scale.27

Guidelines for these two scales in the KLM are provided by
large-N calculations.38 In the weak coupling limit (J/W � 1,
W is the bandwidth) and at small deviation from half-
filling (1 − nc � 1), a scaling of Tcoh ∝ TK ∝ We−ρ0(εF)/J is
obtained [ρ0(εF) is the free density of states at the Fermi level].

Two-dimensional Kondo systems are realized in surface
alloys, e.g., in the heavy fermion compound CePt5.39,40 In
the case that the distance to a continuous quantum critical
point is large enough so that the zero-dimensional Kondo
effect dominates over spatial fluctuations, one can expect that
a similar scenario of competing energy scales applies to the
three-dimensional case.

In the model [Eq. (1)] spin-orbit coupling is neglected,
which would generally cause the g factor to be a tensor.
Realistic modeling of heavy fermion materials requires a
more sophisticated approach, capturing these material-specific

features. Instead, the used model serves the purpose of
describing the generic interplay between the magnetic Zeeman
scale and the coherence scale of the Kondo system, which can
lead either to the Kondo breakdown or the Lifshitz transition
scenario.

III. METHOD

We use the Hirsch-Fye QMC technique to solve the
KLM on small clusters that contain two orbitals (DMFT
limit) and four orbitals, respectively. Cluster approximation
schemes are particularly well designed to capture the Kondo
physics since temporal correlations can be treated exactly.
The approximation is on spatial correlations that are short
ranged in the present situation. The DCA is a fully causal,
nonperturbative method which is systematically improved by
increasing the cluster sizes.33,34 In the following, we outline
our implementation for the KLM.

A static mean-field perspective can provide insight into
the low-energy properties of the KLM.41 It roots on the
saddle-point approximation which is the exact solution of the
SU (N ) KLM in the limit of N = ∞. However, it exhibits an
unphysical phase transition instead of the Kondo crossover.
Appropriate choices of the magnetic matrix elements that
couple the impurity f orbitals to the external magnetic filed
can recover the smooth Kondo crossover even in the large-N
limit of the KLM with an external magnetic field term.42

In order to solve the KLM, we implement the following
Hamiltonian:16,43

H = H0 + HU − J

4

∑
i

[∑
σ

c
†
i,σ fi,σ + f

†
i,σ ci,σ

]2

. (2)

Here, H0 = Ht + HB and the Hubbard term HU =
Uf

2

∑
i[
∑

σ n
f

iσ − 1]2 has been introduced. Local spin oper-

ators S
f

i are as usually mapped to auxiliary lattice fermions,
S

f

i = 1
2

∑
α,β f

†
i,ασαβfi,β . Their single occupancy is guaran-

teed for Uf → ∞ and, in this limit, the Hamiltonian (2) is
equivalent to the KLM (1).

The discretization β = M�τ on the interval [0,β] gives the
partition function Z = Z�τ + O[(�τ )2], with

Z�τ = Tr
M∏
l=1

{
exp[−�τH0]

∫
D[λ] exp

[
− i�τ

∑
i

λli

( ∑
σ

n
f

iσ − 1

)]

×
∫

D[φ] exp

[
− �τJ

∑
i

(
φ2

li − φli

∑
σ

(c†i,σ fi,σ + H.c.)

)]}
=

∫
D[λ,φ]exp

[ − Seff[λ,φ]
]
. (3)

In Eq. (3), the two successive Hubbard-Stratonovich (HS)
transformations reduce the quartic fermion terms to quadratic
terms. The integration measures D[λ,φ] denote integration
over spatial and time indices of the fields and contain
normalization factors.

The saddle point of the above defined action ful-
fills ∂Seff/∂φli = ∂Seff/∂λli = 0. Static mean-field theory is

obtained by dropping the τ dependence in the HS fields,
and one can furthermore request the homogeneous solution:
φli ≡ φ0,λli ≡ λ0. The saddle-point equations,

φ0 = 1

2N

〈∑
iσ

c
†
i,σ fi,σ + H.c.

〉
MF

, 1 = 1

N

〈∑
iσ

n
f

i,σ

〉
MF

,

(4)
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are then solved self-consistently. The respective mean-field
results for total magnetization and quasiparticle residues are
discussed in Sec. IV.

In order to go beyond mean field, a systematic 1/N

expansion around the mean-field solution can be performed.44

Instead, we integrate over all the field configurations through
application of the HF-QMC algorithm. The trace in Eq. (3) can
be carried out and expressed as a determinant of the Green’s
function matrix gσ . Then, the partition function

Z�τ =
∫

D[λ,φ]
∏
σ

det
[
g−1

σ

]
(5)

is sampled stochastically. In the actual implementation, two
discrete HS transformation are used.43 The Green’s function
matrix is measured and updated according to the Hirsch-
Fye algorithm.45 During the simulation of Eq. (2), double
occupancy of the f orbitals can be suppressed to the desired
accuracy. We take �τ = 0.25 during the simulations. We have
checked that smaller values of �τ do not alter the results.

The cluster approximation amounts to considering the
interaction terms of the Hamiltonian only on a subset M of
the lattice with Nc sites, which naturally defines the extent to
which spatial correlations are captured. We therefore solve the
model

H = H̃0 + J
∑
R∈M

Sc
R · Sf

R, (6)

by using the auxiliary Hamiltonian (2). H̃0 denotes the bath
which is determined self-consistently.

The DCA is naturally described in momentum space since
it relies on coarse graining of momentum space. Since the
interaction part of the Hamiltonian is local, it is not affected
by the coarse graining. The model Hamiltonian is solved on
a finite cluster of Nc sites that is embedded in a bath of N

sites (N 
 Nc). Since N is not a limiting factor one can
work directly in the thermodynamic limit. Therefore, the DCA
interpolates between two limiting cases: the DMFT (Nc = 1)
and the finite lattice (Nc = N ).

The DCA lattice self-energy is a step function in reciprocal
space:

�DCA
Latt (K,ω) = Nc

N

∑
k̃

�Latt(K + k̃,ω),

(7)
lim

Nc→N
�DCA

Latt (K,ω) = �Latt(K,ω).

The step size is �K = 2π/Nc, the cluster momenta K define
the centers of Nc reciprocal cells, and k̃ denotes the k

points that lie within these cells. The DCA self-consistent
scheme operates on the single-particle level of the self-energies
and it demands that �DCA

Cluster(K,ω) = �DCA
Latt (K,ω). The self-

consistent equations are

�DCA
Cluster(K,ω) = GDCA

Latt,av.(K,ω)−1 + �DCA
Latt (K,ω)

−GDCA
Cluster(K,ω)−1. (8)

Here, an effective bare Green function has been defined as

GDCA
Cluster(K,ω)−1 = GDCA

Latt,av.(K,ω)−1 + �DCA
Latt (K,ω). (9)

The DCA lattice averaged Green functions are coarse-grained
averages over cell momenta:

GDCA
Latt,av.(K,ω) = Nc

N

∑
k̃

1

ω − ε(K + k̃) + μ − �DCA
Latt (K,ω)

.

(10)

The Green function GDCA
Cluster(K,ω) is the bare Green function

that is the input for the cluster calculation. The cluster
calculation yields the cluster Green functions GDCA

Cluster(K,ω)
that enter Eq. (8). Once the self-energy is converged, the DCA
lattice Green function is computed:

GDCA
Latt (k,ω)−1 = ω − ε(k) + μ − �DCA

Latt (M(k),ω). (11)

The function M :k → K uniquely maps momenta to the
reciprocal cells.

The required CPU time of the HF-QMC algorithm scales
as (βNc)3.

IV. RESULTS

The magnetic field tunes the interacting Kondo system
[Eq. (1)] from strong coupling at low fields to weak coupling at
high fields, B/Tcoh 
 1. This limit is adiabatically connected
to two copies of non interacting c electrons, spin split by the
Zeeman energy, and fully polarized f moments. At low values
of the magnetic field, the hybridized band is expected to shift
in a rigid manner. At an intermediate energy scale, B ∼ Tcoh,
two different scenarios are conceivable: (1) a breakdown of
the Kondo effect itself at the relevant energy scale, or (2) a
continuous transition that preserves the quasiparticles. In sce-
nario (1), the quasiparticle itself is destroyed by the magnetic
field. The single-particle residue quantifies the overlap of the
interacting wave function with a bare conduction electron wave
function. Therefore, the loss of quasiparticle coherence has to
manifest itself as a sudden drop in this quantity for both both
spin projections. In scenario (2), quasiparticles remain intact at
the Fermi level. The spin-dependent Fermi surfaces undergo
Lifshitz transitions which modify their topology. As shown
below, data for the single-particle residue and single-particle
spectral function across the MMT support scenario (2).

The mean-field solution, derived from the saddle-point of
the SU (N ) KLM, can be seen as the best approximation
in quadratic fermionic terms to the fully correlated model.
Therefore, in the case that DMFT/DCA calculations support
the notion of quasiparticles, the MF perspective is legitimate.
The MF results are intended to complete the above described
scenario of Lifshitz transitions.

The magnetization profile of a heavy fermion model system
can serve directly as a measure of coherence. The plateau of the
occupation number difference m = ∑

σ σ (nc
σ + n

f
σ ) directly

relates to the hybridization gap in the quasiparticle bands.16 Its
position is fixed to x = 1 − nc by the Luttinger sum rule. The
physical magnetization M = − ∂F

∂B
= ∑

σ σ (gcn
c
σ + gf n

f
σ )

does not generally display a plateau when the orbital couplings
are not the same.
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A. Data collapse M(g f /gc,T/Tcoh,B/Tcoh)

For temperatures below the coherence scale Tcoh quasi-
particle bands are formed via coherent superposition of the
screening clouds of the local spins. To verify that the coherence
scale is the unique underlying scale a data collapse of DMFT
and DCA data is carried out by scaling the magnetization with
Tcoh. Because the plateau width of the occupation number is
a measure of the hybridization gap, a good estimate of Tcoh

is obtained from the position of the second kink at B = BL2,
determined by the intersections of linear fits at βt = 100 and
gf /gc = 1. The scaling then becomes

M(gf /gc,T ,B,J ) → M(gf /gc,T /Tcoh,B/Tcoh). (12)

Effectively, the Kondo coupling J/t has disappeared as a pa-
rameter in M . The data collapse is evident, as shown in Fig. 1.

For all values of gf /gc the magnetization shows two
pronounced kinks at B = BL1,2. The driving mechanism that

FIG. 1. (Color online) Tcoh-scaled magnetization
M(gf /gc,T /Tcoh,B/Tcoh) for (a) two-orbital DMFT and (b)
four-orbital DCA. The respective coherence temperatures are (a)
Tcoh(gf /gc = 1,J/t = 1.6) = 0.094t , Tcoh(gf /gc = 1,J/t = 1.4) =
0.057t , and Tcoh(gf /gc = 1,J/t = 1.3) = 0.044t ; (b) Tcoh(gf /gc =
1,J/t = 1.6) = 0.10t and Tcoh(gf /gc = 1,J/t = 2.0) = 0.18t .

FIG. 2. (Color online) The magnetic field value of the second
Lifshitz transition, BL2(gf /gc), agrees well with BL2(gf /gc) ∝
(gf /gc)−1.

shapes the magnetization is rooted in the competition of two
energy scales: the dominant magnetic energy scale gf μBB and
the Kondo scale Tcoh. At the second kink both scales become
comparable, such that BL2 ∝ g−1

f . The position of the second
kink in dependence of the coupling ratio is shown in Fig. 2,
and the data are in good agreement with the above argument.

Increased Zeeman coupling to the local spins provokes the
intermediate, plateaulike region to decrease and renders the
increase at B = BL2 much steeper.

Static MF calculations succeed in reproducing the qualita-
tive shape of M (Fig. 3). In the MF picture, the two kinks in
the magnetization correspond to two Lifshitz transitions.

At this point, the data collapse of the magnetization can
be compared to a scaling approach of the resistivity in a
recent cluster DMFT (CDMFT) study of the Anderson lattice
model close to half-filling of the conduction band, which
equally reveals the lattice coherence temperature as the single
underlying energy scale.46

Our calculated metamagnetic curves, as shown in Fig. 1,
bear notable similarity with recent experimental data of
the paramagnetic heavy-fermion system CeTiGe.5 This is
discussed in Sec. VI.

FIG. 3. (Color online) Static MF results for the magnetization M

and single-particle residue Zσ .

075108-4



METAMAGNETISM AND LIFSHITZ TRANSITIONS IN . . . PHYSICAL REVIEW B 86, 075108 (2012)

B. Single-particle quantities: residue Zσ and spectral
function Aσ (k,ω)

The analysis of the single-particle quantities is based on
the observation that the KLM has a Fermi-liquid ground state
for the chosen value of conduction band filling, nc = 0.9.,32

and for zero external magnetic field. The calculations were
performed for J/t = 1.3, gf /gc = 4, βt = 100, and βt =
200. For these parameters, we identify two Lifshitz transitions
that occur at μBBL1/t ≈ 0.002 and at μBBL2/t ≈ 0.01075.
The latter corresponds to the MMT.

A Fermi-liquid signature is the analyticity of the retarded
self-energy �(k,ω) around the Fermi energy such that �(k,ω)
allows for polynomial expansion. Then, the single-particle
residue reads, expressed with the k-independent Matsubara
self-energy �DMFT

σ (iωn),

[
ZDMFT

σ

]−1 = lim
T →0

[
1 − Im�DMFT

σ (ωn)

ωn

]
ωn=πT

. (13)

The quantity Im�DMFT
σ (ωn) across the MMT at B = BL2 is

displayed in Fig. 4. Evidently, the imaginary part of the
Matsubara self-energy is free of divergences for both spin
projections at low frequencies ωn. We take this as evidence for
the continuous transition scenario.

The excitations are tracked by the single-particle spectral
function

Aσ (k,ω) = − 1

π
ImGσ

Latt(k,ω); (14)

see Fig. 5. The analytic continuation from imaginary time-
dependent QMC data has been performed with the stochastic
maximum entropy method.47

The single-particle residues Zσ at βt = 100 and βt = 200
across the MMT are shown in Fig. 6(b). Z↓ essentially follows
the magnetization M(B) [Fig. 6(a)]. A↓(k,ω) displays well
defined quasiparticle weight across the MMT (Fig. 5) and
hence accounts for a metallic state.

Z↑ vanishes for an intermediate magnetic field range, close
to BL1 < B < BL2. In this locked phase, no up-spin Fermi
surface is present. At B = BL2, a topological change of the
Fermi surface occurs since one up-spin band crosses the Fermi

FIG. 4. (Color online) The imaginary part of Matsubara self-
energies Im�DMFT

σ=↓,↑(iωn) at values of the magnetic field close to
B = BL2.

FIG. 5. (Color online) Single-particle spectral function Aσ (k,ω)
across the MMT at the lowest temperature, βt = 200 (magnetic field
values are indicated by arrows in Fig. 6). The narrow distribution of
spectral weight close to the Fermi energy (dashed line) indicates that
Kondo coherence remains across the MMT.

level at the gamma point, (kx,ky) = (0,0). A↑(k,ω) shows a
sharply defined quasiparticle band just below and at B = BL2;
see Figs. 5(a) and 5(b). The fact that the residue Z↑ does
not vanish exactly at B = BL2 can be related to the finite
temperature. Also, we note that the single-particle residue is
not fully converged in the intermediate field range, even at the
lowest temperatures.

In the static MF scenario, the two Lifshitz transitions are
naturally present. As shown in Fig. 3, the single-particle
residue Z↑, calculated from the MF coherence factors at the
Fermi energy, displays the expected steplike behavior.

The Lifshitz transition at B = BL2 equally marks the
transition from heavy to light fermions, which is reflected
in the steep increase of Zσ as the magnetic field is ramped up
further; see Fig. 6(b). This is in accordance with the notion of
adiabatic continuity to free fermions which is expected in the
limit of high magnetic fields, i.e., weak coupling.48 Based on
the βt = 200 DMFT results, we conclude that a continuous
transition from low to high magnetic fields occurs, at least at
and above this temperature.

V. BEYOND DMFT

The DCA calculates the k-dependent self-energy
�DCA

σ (ωn,K). This leads to the estimate for the residue

[
ZDCA

σ (M(kf ))
]−1 = lim

T →0

[
1 − Im�DCA

σ (ωn,M(kf ))
ωn

]
ωn=πT

,

(15)

The map function M :kf → K maps the Fermi momentum to
the matching reciprocal patch.
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FIG. 6. (Color online) Magnetization M and single-particle
residue ZDMFT

σ across the MMT. (The arrows refer to the single-
particle spectra of Fig. 5.)

The four-orbital DCA measurements agree with the two-
orbital DMFT results in the limits of strong coupling (small
magnetic field) and weak coupling (large magnetic fields);
see Fig. 7(a). In the intermediate regime, around B = BL2,
deviations are detected in the magnetization as well as in the
single-particle residues. The inclusion of spatial fluctuations
softens the transition considerably. This can be understood
from the notion of an effective Landé factor gf which
becomes lower when spatial fluctuations are present, since,
on the two-site cluster, the local moment can be quenched
not only dynamically but also via local singlet formation. The
single-particle residue in the down-spin projection displays no
sign of vanishing across the MMT [Fig. 7(b)].

VI. DISCUSSION

Lifshitz transitions are continuous quantum phase transition
which do not change symmetry but Fermi surface topology.21

Strictly speaking, they are defined for free fermion systems
at zero temperature. Due to the unambiguous presence of
quasiparticles, the notion of Lifshitz transition can be carried
over to the KLM. Driven by the external magnetic field, two
consecutive Lifshitz transitions take place, at B = BL1,2, and
the second one is identified with the MMT. This scenario is
maintained when the f moments are allowed to couple more
strongly to the field by altering the ratio gf /gc.

FIG. 7. (Color online) Magnetization M and single-particle
residues Zσ from two-orbital (DMFT) calculations and four-orbital
(DCA) calculations. The k vectors K1 = (0,0) and K2 = (π,π )
denote the relevant DCA patches.

Collective effects challenging the quasiparticle coherence
seem to be of minor importance during the MMT, even when
B ∼ Tcoh. Naturally, our calculation scheme is limited to the
dominantly paramagnetic regime of the KLM. The choice
of parameters nc = 0.9 and J/t � 1.3 places our results
unambiguously in the paramagnetic phase.32,35,36 First steps
(Fig. 7) in a systematic DCA study of larger clusters that
can take into account the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction between local moments leave the Lifshitz
scenario at the MMT invariant. This is consistent with the
fact that temporal fluctuations that generate the Kondo effect
dominate the physics at the MMT. Close to a critical point
where the range of spatial fluctuations becomes large our
approximation will fail and another modeling will be required.

Transport signatures of the Lifshitz transition can be
calculated with the Boltzmann transport approximation. Topo-
logical changes of the bands that cross the Fermi energy
can strongly influence transport measurements, in particular
when these bands are shallow. This offers an explanation
for the anomalies observed in Zeeman driven heavy-fermion
systems.26

Compared to our results for the magnetic field dependent
single-particle spectrum (Fig. 5), similar results have been ob-
tained for the ferromagnetic phase of the Kondo lattice model
without external field terms.49 There, the spin-dependent shift
of the quasiparticle weight is generated dynamically and leads
to the notion of a spin-selective Kondo insulating phase.
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Our results are applicable to heavy fermion compounds
that have a magnetic-field-driven Lifshitz transition at the
coherence scale.

The materials CeTiGe5 and CeRu2Si26,50 have a MMT at
magnetic energy scales that are consistent with their estimated
coherence temperatures. In our model, the critical metamag-
netic field corresponds to the second Lifshitz transition at BL2.
In this mechanism of competing energy scales we expect that
the details of the band structure are of secondary importance.
This is in contrast to Lifshitz transitions at magnetic fields
much below the coherence scale where the details of the band
structure are essential.26

The metamagnetic signatures of our model (Fig. 1) are
similar to recent experimental data of the paramagnetic 4f -
based compound CeTiGe, which exhibits a pronounced first-
order MMT.5 Its anticipated coherence scale, Tcoh ≈ 55 K, is
of the same order as the critical magnetic field of μ0BMMT =
12.5 T, assuming in our model a g factor gf ≈ 7. Equally, at
lower fields, the magnetization is found to slightly change its
slope, which might correspond to a first Lifshitz transition
which in our model happens at BL1. The experimentally
observed distinct drop of the effective quasiparticle mass is
in accordance with our findings for the KLM (see Sec. IV).
Importantly, we find the MMT to be continuous both in the
two-orbital DMFT and in the four-orbital DCA calculations
and on the temperature scales we can access.

CeRu2Si2 exhibits a continuous MMT and simultaneously
a Zeeman-driven topology change of the Fermi surface.6,7

The magnetization increases seemingly linear as the mag-
netic field is increased towards the metamagnetic field.50

The critical field μ0BMMT = 7.8 T matches the coherence
temperature of Tcoh ≈ 20 K6,50 when the g factor in our
model is assumed to be gf ≈ 4. A Lifshitz transition at the
coherence scale is therefore a plausible scenario for the MMT
in CeRu2Si2.

VII. CONCLUSION

We have explored the Zeeman driven MMT in the Kondo
lattice model which is considered to be the paradigmatic
low-energy model for heavy fermion systems. Results for
the paramagnetic metallic phase of the KLM are obtained

in the framework of DMFT/DCA, which can exactly account
for the Kondo effect.

Upon scaling the relevant energy scales with the lattice
coherence scale, the collapse of the magnetization data to
a universal curve is observed, independent of the Kondo
interaction. This data collapse has been confirmed for a range
of Kondo couplings, temperatures, and ratios of Landé factors.
The pseudospin nature of the f orbitals, resulting from a
Kramer’s doublet, can be taken in account with an effective
Landé factor gf and the competition of magnetic scale and
coherence scale is invariant on the choice of gf .

We have traced the single-particle residue from low to high
magnetic fields and report that it is continuous at the lowest
temperatures our simulation can access. Two consecutive
Lifshitz transitions occur as the field is ramped up and cause
the change in topology of the spin-projected Fermi surfaces.
This lead us to the finding that the MMT in the KLM is
coincident with a continuous Lifshitz transition. The absence
of a singularity in the single-particle residue at the MMT
excludes the Kondo breakdown scenario.

At the temperature scale we can access, the sharp increase
of magnetization at the MMT can well be explained as a
consequence of a continuous Lifshitz transition in heavy-
fermion model systems where the Landé factor of the local
spins is larger than the one for the itinerant electrons. In the
course of this transition the excitations change their character
from heavy fermions to light fermions.

The recently observed first-order nature5 of the metam-
agnetic phase transition at a temperature T � Tcoh remains
an open issue. Of particular importance is understanding if
the KLM itself can account for the low-temperature first-order
nature of the transition or if other competing energy scales such
as coupling to the lattice51 have to be taken into consideration.
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