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Magnetic inelastic neutron scattering studies of iron-based superconductors reveal a strongly temperature-
dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy
resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES)
and scanning tunneling spectroscopy (STS) allow us to study the fingerprints of fluctuation modes via their
interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an
experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES
and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order
parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from
momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling
between spin fluctuations and electronic excitations for the superconducting mechanism.
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I. INTRODUCTION

Shortly after the discovery of high-temperature supercon-
ductivity in Fe-based pnictide compounds by Hosono and
collaborators1 a magnetic Cooper-pairing mechanism was
proposed.2,3 A pure electron-phonon interaction as the primary
pairing mechanism was, however, found to be unlikely.4,5 It is
believed that the proximity of antiferromagnetic spin density
waves and superconductivity in the phase diagram6,7 is likely to
support a pairing scenario where superconductivity is driven
dominantly by an electron-electron interaction mediated by
spin fluctuations.8,9 The spin excitation spectrum of the
iron pnictides (and iron chalcogenides) shows pronounced
similarities with other superconductors where a magnetic
pairing mechanism is under debate. This includes for instance
a strong temperature dependence of the spectrum in the normal
state, which was studied in iron pnictides by Inosov et al.,10 as
well as the presence of a spin resonance feature below a gapped
continuum in the superconducting state,10–12 which also ap-
pears in cuprates and in some heavy fermion superconductors.

Angle-resolved photoemission spectroscopy (ARPES) ex-
periments on iron pnictides13 reveal a sharp Fermi surface
consisting of multiple electron and hole pockets (see, e.g.,
Ref. 14 and references herein). These exhibit comparable
superconducting order parameter amplitudes at Fermi surface
sheets which are nearly nested by the antiferromagnetic wave
vector, Q.15,16 It thus seems likely that magnetic and electronic
order are closely related.17 In the case of antiferromagnetic
spin fluctuations as the origin for pairing, the order parameter
must have different sign at the electron and hole pockets.18–20

In this context, we recently endeavored to answer the question
of how strongly electrons couple to spin fluctuations in
these compounds.9 To this end, we investigated low-energy
dispersion anomalies, whose position and shape can be traced
back to a coupling of bosonic modes—a method which has
been proven to be a powerful tool previously in the case
of cuprate superconductors.21 In iron-based superconduc-
tors such anomalies have been observed in the hole-doped

122 compound Ba1−x KxFe2As2 by Wray et al.,22 Koitzsch
et al.,23 and Richard et al.24 These experiments reveal that
the electronic dispersion features a self-energy effect, which
is most pronounced at an energy ε0 ≈ 25 meV.

Shortly before that, inelastic neutron scattering studies
by Christianson et al.11 of the same compound revealed the
development of a spin resonance in the superconducting state.
This resonance appears at an energy �res ≈ 14 meV, is situated
at the in-plane antiferromagnetic wave vector Q = (π,π ), and
is weakly dispersive in the qz direction.25–27 Guided by similar
studies in cuprate superconductors, we look for corresponding
signatures in the available ARPES data.22–24 There, it was
observed that (i) the superconducting excitation gap at the
Fermi surface pockets nested by Q has the absolute value
� ≈ 12 meV, (ii) the self-energy effect occurs at an energy
ε0 ≈ �res + �, and (iii) ε0 follows an order-parameter-like
evolution in temperature as the resonance energy does. Thus,
it is intuitively plausible to conjecture that the magnetic
resonance is responsible for the observed self-energy effects.
By numerical calculation we show that this conjecture is
theoretically well founded.

Motivated by the experimental procedures24 to quantify
self-energy effects in angle-resolved photoemission experi-
ments, we concentrated in a previous Letter on the so-called
effective self-energy as extracted directly from the electronic
spectral function.9 Such an approach allowed us to make
an immediate comparison with ARPES experiments. In the
present work we are taking a more detailed look into our
model, introducing the formalism used for our calculations,
discussing the renormalization effects entering the electronic
structure as well as the Fermi surface, and applying our model
to photoemission and tunneling experiments.

II. THE SPIN-FLUCTUATION SPECTRUM
AND THE RESONANCE MODE

The appearance of a low-energy resonance mode in
the dynamic magnetic susceptibility upon entering the
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superconducting state is a feature well known from uncon-
ventional superconductors (for a review concerning cuprates
see Ref. 21). As it results from scattering between Fermi
surface sheets with opposite order-parameter sign its detailed
experimental and theoretical investigation is a powerful tool to
study the symmetry of the superconducting gap.12,28 Various
microscopic theoretical treatments are able to reproduce the
resonance feature, such as, for example, in methods employing
the random phase approximation (RPA) or in the fluctuation
exchange (FLEX) approximation. However, in all known
treatments specific assumptions and approximations are nec-
essary. Strong correlations usually lead to vertex corrections
in a Feynman diagrammatic technique, which, in most cases,
are either neglected or, in the absence of any good expansion
parameter, introduced by ad hoc methods or educated guesses
(as in conserving approximations such as FLEX). As our
results do not depend on the specific microscopic model for the
resonance excitation, we prefer here a semiphenomenological
approach. Most of the magnetic correlations are included
automatically within the semiphenomenological approach
used here by relying on experimental results.

In the following section we introduce an effective model for
the spin susceptibility and establish the connection to recent
neutron scattering experiments.

A. Spin susceptibility

In this section we summarize the semiphenomenological
approach we employ in this paper, which has already
been successfully used to describe optimally doped and
overdoped cuprate superconductors.21,29–32 To motivate its
application to iron-based superconductors we recall one
possible interpretation of the resonance mode in the spin
susceptibility. We underline, however, that this interpretation
is not necessary for our predictions to hold, as we base the
spin excitation spectrum on the experimental observations.

Let us divide the phase space of electronic excitations into
high-energy and low-energy regions, the latter being located
around the Fermi surfaces and populated by the electronic
quasiparticles (see, e.g., Ref. 33). Incoherent spin fluctuations
are dominated by high-energy electronic excitations; however,
fine features such as the resonance mode result from modifi-
cations in the low-energy electronic spectrum. In the case of
Fermi surface nesting in the vicinity of certain “nesting points”
a common approximation is given by the RPA enhanced
susceptibility

χ̂(ω,q) = {
χ̂−1

high(q) − �̂
(1)
high(q) 	̂(ω,q) �̂

(2)
high(q)

}−1
, (1)

where �̂
(1,2)
high (q) are vertex functions involving only high-

energy processes, 	̂(ω,q) describes the polarization due to
low-energy processes, and a hat denotes a matrix structure
due to orbital degrees of freedom.21 (Note that the vertex
functions occur twice here as they contain no low-energy
inclusions.) We neglect for simplicity in the following a
possible q dependence of the vertex functions. The high-
energy part χ̂high accounts for intermediate- or long-range
antiferromagnetic correlations and thus can be well ap-
proximated by the phenomenological Ornstein-Zernike form

χ̂high(q) = χ̂Q/(1 + ξ 2 |q − Q|2) with ξ ≡ ξ ( Q) a correlation
length, and where χ̂Q is nonzero only for the relevant orbitals.

In order to find a suitable analytic form that fits the
experimental data near the antiferromagnetic wave vector
Q, it is a common procedure to start from an approximation
for 	̂(ω, Q) in the energy region of interest. To this end, let
us consider a simple two-band model consisting of holelike
and electronlike bands, ζh and ζe respectively, nearly nested
by the antiferromagnetic wave vector Q, and let us neglect
for a moment the orbital structure. In the normal state
interband scattering can lead to a relaxation process exciting a
particle-hole pair around the Fermi surface. Such excitations
most likely appear near the nesting points at the electron
(e) and hole (h) pockets, i.e., where ζh(k) ≈ ζe(k − Q) + ω.
Linearizing the dispersions around the nesting points,

[ζh(k),ζe(k − Q)] = [kx,ky]V̂
T

, will lead to Im	(ω, Q) ∝
�

(1)
high�

(2)
high

∫
dζh

∫
dζe det(V̂

−1
)[f (ζh) − f (ζe)]δ(ω − [ζh−ζe]),

where f is the Fermi distribution function, and V̂ is a
matrix with components proportional to the Fermi velocity
components. For small frequencies ω → 0 the imaginary
part is linear in energy (and the real part negligibly small),
leading to an approximation for the susceptibility of

χ c(ω,q) = χQ

1 + ξ 2
c |q − Q|2 − ı(ω/�max)

. (2)

A detailed investigation of the spin dynamics in optimally
doped BaFe1.85Co0.15As2 was performed by Inosov et al.10

By including a temperature dependence in the parameters in
Eq. (2), that is, replacing χQ → χT , ξc → ξT , and �max →
�T

max, they were able to show that the energy and momentum
dependence as well as the temperature behavior of Eq. (2)
fit well with the normal state behavior, which validates theo-
retical models based on an itinerant description of magnetic
excitations.

In the superconducting state a low-energy resonance ap-
pears with a weight that follows the temperature dependence
of the superconducting gap. This again can be understood in a
similar manner. Particle-hole excitations in the superconduct-
ing state that result from scattering between the two bands are
suppressed below the two-particle excitation gap

2�̆q ≡ min (|�h(k)| + |�e(k − q)|) , (3)
{k∈FS}

where �e/h is the superconducting gap at the electron/hole
pocket. Excitations in the continuum set in above this
threshold, i.e., Im	(ω,q) ∝ 2�̆q sign(ω) θ (|ω| − 2�̆q). For
different signs between �h(k) and �e(k − q), the coherence
factors appearing in 	(ω,q) are such that the real part
has a logarithmic divergence at 2�̆q . Furthermore, it can
be expanded for small ω, i.e., Re	(ω,q) ∝ ω2/2�̆q . We
define the resonance energy �res,q via χhigh(q)�2

high 	(ω,q) ≈
ω2/�2

res,q and insert this expression into Eq. (1) to get

χ r(ω,q) = χQ

1 + ξ 2
r |q − Q|2 − (ω + ı�res)2/�2

res,q
. (4)

Here we have introduced a small broadening �res � �res,q of
the resonance mode, which accounts for its experimentally
observed finite width. The resonance mode can be identified
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with the pole in Eq. (4), which is moved by the amount �res

into the lower complex half plane. If the correlation length ξr is
sufficiently large, the susceptibility is sharply peaked around
Q, in the region |q − Q| � ξ−1

r .
We rewrite Eq. (4) as

χ r(ω,q) = wQ/π

1 + ξ 2
r |q − Q|2 · 2�res(q)

�res(q)2 − (ω + ı�res)2
, (5)

with �res(q) = �res,q(1 + ξ 2
r |q − Q|2)1/2 and wQ =

πχQ�res, Q/2. In the following we adopt the approximation
to neglect the dispersion of the resonance energy with
momentum. That is, we replace Eq. (5) by

χ r(ω,q) = wQ/π

1 + ξ 2
r |q − Q|2 · 2�res

�2
res − (ω + ı�res)2

. (6)

This form has the advantage of fitting the energy and
momentum width independently. From experiment is it
known that the dispersive features have much less weight
then the resonance itself, and thus this will lead to a strongly
reduced influence on the electronic single-particle dispersions.
There have been experimental and theoretical investigations
of the doping dependence of the bosonic dispersion.34,35

They show that the incommensurability of the resonance
and the dispersion of the resonance mode depend on the
doping level. Below and up to optimal doping the resonance
energy is centered around the antiferromagnetic wave vector,
whereas at higher dopings the spectral weight becomes large
around two wave vectors and is therefore incommensurate.34

Within the accuracy of the known parameters, neglecting the
dispersive features will be sufficient for our purpose.

B. Ba1−x KxFe2As2

In this section we outline our phenomenological approach
for the case of iron-based superconductors. We shall focus
on hole-doped Ba1−x KxFe2As2, since we will compare our
predictions with the available experimental angle-resolved
photoemission spectra for this compound.

Spin fluctuations that originate from the spin of the
conduction electrons are closely connected to the Fermi
surface topology of the electronic structure. In our model we
employ a tight-binding fit in an orbital basis that was obtained
from the density functional theory (DFT) band structure of
BaFe2As2 by Graser et al.36 The dominant contribution to
the density of states in the energy range ±1–2 eV around
the chemical potential originates from the five Fe 3d orbitals
(with some hybridization with the As 4p orbitals mainly for
energies above the chemical potential). This energy range will
be sufficient for our purposes. The resulting reduction of the
Hamiltonian to a five-orbital basis reads

H0 =
∑
kσ

∑
mn

d†
m(kσ )[ζmn(k) + δmnεn] dn(kσ ). (7)

Here d
†
m(kσ ) creates an electron with momentum k and spin

σ in the orbital m, where m = 1,2, . . . ,5 corresponds to the
five orbitals dxz, dyz, dx2−y2 , dxy,and d3z2−r2 . The parameters
ζmn and εn are listed in Ref. 36. The canonical transformation

d†
μ(kσ ) =

∑
m

am
μ (k)d†

m(kσ ) (8)

diagonalizes the Hamiltonian, leading to eigenvalues ζ ′
μ(k)

and eigenvectors am
μ (k) = 〈mk|μk〉, where μ represents the

band index. Because ζmn(−k) = ζmn(k)∗ the eigenvectors
can be chosen such that an

ν (−k) = an
ν (k)∗ holds. The set of

eigenvectors for each k is orthonormal (or can be chosen so),
i.e.,

∑
m am

μ (k)∗am
ν (k) = δμν and

∑
μ am

μ (k)∗an
μ(k) = δmn.

In order to simulate hole doping we apply a rigid shift of
the chemical potential; i.e., we define the new band structure
ζμ(k) = ζ ′

μ(k) − μ0 with μ0 = −50 meV. This was shown to
be at least applicable for materials in which doping occurs
via substitution in regions outside of the conducting Fe-As
planes and subsequent charge transfer, as in the case of
Ba1−x KxFe2As2.37,38 This assumption is consistent with our
results for weak to moderate coupling, which show that the
renormalization of the chemical potential due to the coupling
between electronic excitations and spin fluctuations is in this
case well approximated by a linear dependence between the
chemical potential and the charge carrier concentration (for
details see below).

The dominant processes for spin fluctuations are the
interactions between electrons at the various Fe orbitals of
the same atom (inter- and intra-orbital Coulomb interaction,
Hund’s coupling, and intra-orbital pair hopping). Thus, spin
fluctuations are described naturally in an orbital basis, whereas
electronic excitations are easier to discuss within a band
picture. Because we are interested in the influence of spin
fluctuations on electronic excitations, it is useful to recall the
orbital characters at each Fermi surface point.

Throughout this paper, we adopt the notation of Ref. 36
corresponding to 1 Fe/unit cell. Figure 1 summarizes the
orbital contributions to the Fermi surface for three values of
kz: 0, π/2, and π .

Starting with kz = 0, Figs. 1(a)–1(c) show the partial
spectral function for the bare bands,

An(k) =
∑

μ

an
μ(k)an

μ(k)∗
δ

δ2 + ζμ(k)2
(9)

for the orbitals n = dyz, dx2−y2 , and dxy , respectively (where
δ = 4 meV is a broadening factor), whereas Fig. 1(d) shows
the dominant orbital contributions to the Fermi surface only.
Corresponding orbital characters for kz = π/2 and kz = π are
shown in Figs. 1(e)–1(h) and 1(i)–1(l) respectively.

Magnetic excitations can be described in terms of the
dynamic spin susceptibility χmn

pq , where the measured sus-
ceptibility χ is the sum over all orbital contributions, χ =∑

mn χmm
nn . As can be seen in Fig. 1, the hole pockets at

(0,0,kz) and (π,π,kz) are nearly nested (taking into account
the finite momentum width ξ−1

r of the spin excitations) to
the electron pockets at (0,π,kz) and (π,0,kz) by the wave
vectors Q1 ≡ (π,0,qz) and Q2 ≡ (0,π,qz), which connect
Fermi surface sheets with same orbital character and cor-
respond to antiferromagnetic correlations in the respective
direction. Fluctuation exchange approaches have shown that
the magnetic mode predominantly scatters between orbitals
with the same character.39–41 According to that we neglect all
interorbital contributions in our model; i.e., we only couple
the part χn ≡ χnn

nn to the electronic excitations, and we assume
χ ≈ ∑

n χn.
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FIG. 1. (Color online) Orbital character at the Fermi surface
for Ba1−x KxFe2As2 (x = 0.4): (a)–(c) Partial spectral function
An(k) = ∑

μ |an
μ(k)|2 δ/(δ2 + ζμ(k)2) at kz = 0 for the orbitals n =

dyz, dx2−y2 , and dxy , respectively. The corresponding figure for the dxz

orbital is obtained from (a) by a 90◦ rotation. (d) Dominant orbital
contributions to the Fermi surface at kz = 0 (with the dxz orbital
in green). The various Fermi surface sheets are named α1,2 (hole
sheets), β1,2 (electron sheets), and γ (hole sheet). (e)–(h) The same
as in (a)–(d) for kz = π/2. (i)–(l) The same as in (a)–(d) for kz = π .
The two nesting vectors Q1 and Q2 are shown in (l).

As can be seen from Fig. 1, the dx2−y2 orbital has negligible
intra-orbital contributions to nesting, because the electron
pockets have very little of its character. Thus, we only take into
account the remaining orbitals (n = dxz, dyz, dxy ≡ 1, 2, 4).
To simplify notation, we introduce the parameters

bn,α =
{

1/2 for (nα) = (21),(12),(41),(42)

0 else

}
(10)

to account for the orbital selective mode coupling via the
wave vectors Qα=1,2 [see Fig. 1(l)]. With this, the normal
state susceptibility will be modeled by an equivalent of the
Ornstein-Zernike form in Eq. (2),

χ c
n(ω,q) =

∑
α=1,2

bn,α χn
T

1 + ξ 2
T |q − Qα|2 − ı

(
ω

/
�T

max

) , (11)

with temperature-dependent parameters χn
T = χn

0 /(T + θ ),
ξT = ξ0/

√
T + θ , and �T

max = �0(T + θ ), as motivated by
Ref. 10. Here θ is the Curie-Weiss temperature.

In the superconducting state a particle-hole excitation gap
opens up in the spin excitation spectrum, a resonance peak
appears within this gap, and spectral weight is shifted into
this magnetic resonance. Accordingly, the magnetic spectrum
now consists of two parts, the low-energy resonance and the
particle-hole continuum.

Particle-hole excitations appear above a temperature-
dependent threshold of

2�̆(T ) ≈ min{|kμ

F −kν
F|≈ Qα}

(∣∣�T
μ

(
kμ

F

)∣∣ + ∣∣�T
ν

(
kν

F

)∣∣) , (12)

where �T
μ and �T

ν are the superconducting gaps at the
nested pockets, and kμ

F and kν
F are the corresponding Fermi

wave vectors. For high excitation energies the susceptibility
should recover the normal state behavior. Motivated by these
observations we approximate the gapped continuum by the
same functional form (but with different magnitude; see below)
as in the normal state, Eq. (11), and write for the imaginary
part of the complex dynamical susceptibility

χ ′′sc
n (ω,q) = χ ′′c

n (ω,q) for |ω| > 2�̆(T ). (13)

Neutron scattering experiments have shown that the resonance
follows an order-parameter-like evolution. Therefore, we
assume the temperature dependence

�T
res = �r

√
1 − T/Tc, (14)

and we apply the Lorentzian form of Eq. (5) in order to model
the resonance below the threshold, i.e.,

χ ′′sc
n (ω,q) = χ ′′r

n (ω,q) for |ω| < 2�̆(T ), (15)

with

χ r
n(ω,q) =

∑
α=1,2

2 wn,α(q)

π
· �T

res(
�T

res

)2 − (ω + ı�res)2
. (16)

Here the momentum distribution enters via the weight function

wn,α(q) = bn,αwn
T

1 + ξ 2
r |q − Qα|2 . (17)

Note that the momentum and orbital dependence of the
susceptibility is contained in the factors bn,α [Eq. (10)]. We
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FIG. 2. (Color online) Energy dependence of the dynamic spin
susceptibility in units of χ0 (103 K)−1: (a) and (c) Illustration of
the local sum rule at two different temperatures. (b) Temperature
evolution of the magnetic resonance. (c) Temperature dependence of
the resonance weight factor wT /χT .

determine the real part (up to a constant; see below) from χ ′′sc
n

by exploiting the Kramers-Kronig relations

χ ′sc
n (ω,q) = 1

π
P

∫ ∞

−∞
dω′ χ ′′sc

n (ω′,q)

ω′ − ω
. (18)

The resulting energy dependence of the dynamical suscepti-
bility and its variation with temperature are shown in Fig. 2.

The resonance weight factors wn
T in Eq. (17) are determined

by a local sum rule (Appendix B), which fixes the ratio between
resonance and continuum, wn

T /χn
T . They are chosen so that

the integrated spin structure factor,
∫ ∞
−∞ dω

∫
dq S(ω,q), with

S(ω,q) = 2h̄
∑

n χ ′′
n (ω,q)/(1 − e−h̄ω/kBT ), remains tempera-

ture independent. In general the weight factors χn
T and wn

T

depend on the orbital character. In order to determine the
relative weight between wxz

T = w
yz

T (χxz
T = χ

yz

T ) and w
xy

T (χxy

T )
we studied the electronic dispersions at the X point of the
Brillouin zone and find that experiments are best reproduced
when the weight is roughly equal. We thus set wxz

T = w
yz

T =
w

xy

T ≡ wT and χxz
T = χ

yz

T = χ
xy

T ≡ χT and are left with∫ 2�̄(T )

−2�̄(T )
dω

∫
d3q

χ ′′r
n(ω,q) − χ ′′c

n(ω,q)

1 − e−h̄ω/kBT
= 0 (19)

to fix wT /χT . We illustrate this procedure in Figs. 2(a) and 2(c):
When integrating over energy and momentum the green area
above and under the dashed curve has to be (approximately) the
same. The ratio is in excellent agreement with the functional
form wT /χT = (1 − T 2/T 2

c )wT =0 K/χT =0 K [Fig. 2(e)].
We apply the model above to Ba0.6 K0.4Fe2As2 and use

the experimentally motivated parameter set in Table I. The

TABLE I. Parameter set appropriate for Ba0.6 K0.4Fe2As2.

�0 ξ0 θ ξr �r �res

0.375 meV
K 5.84 K1/2 30 K 2 15.5 meV 3 meV

only remaining parameter to be fixed is the quantity g2χ0,
where the overall weight χ0 can in principle be extracted from
experiment but is not known for this compound, and g is the
coupling constant between electrons and spin fluctuations. To
account for the periodicity in momentum space we replace the
factors |q − Qα|2 in Eqs. (11) and (17) by

|q − Qα|2 → 4

[
sin2

(
qx − Qαx

2

)
+ sin2

(
qy − Qαy

2

)]
(20)

and neglect the qz dependence for our purpose as it varies
weakly.25,26 We use the in-plane lattice constant a and the
out-of-plane lattice constant c as units of length.

The resulting energy dependence of the spin excitation
spectrum and its evolution with temperature is presented in
Fig. 2(b). Experimentally, the resonance appears at an energy
of �T =7 K

res ≈ 14 meV11 below the particle-hole continuum
ω < 2�̆(T = 15 K) ≈ 24 meV.15 In momentum space the
mode is peaked around the wave vectors Qα=1,2 with a
correlation length ξr of nearly twice the lattice constant. When
the temperature is decreased below Tc, the resonance gains
weight and eventually becomes the dominating part of the
spectrum at low energies. Note that the gain in weight is due
to two parallel processes: a suppression of high-energy weight
due to an increase in correlations (already present in the normal
state) and an increase of the superconducting gap (and thus the
spin excitation gap) with decreasing temperature.

As we will see later, the characteristic temperature depen-
dence of the resonance mode imprints itself onto the electronic
spectrum, where the resonance leads to a significant effect
below 30 K.

III. COUPLING TO SPIN FLUCTUATIONS

We are ultimately interested in the renormalization of the
electronic dispersion and in the electronic lifetime as a result of
the coupling of conduction electrons to spin fluctuations both
in the normal and in the superconducting state. We model this
coupling by an effective electron-electron interaction mediated
by the exchange of spin fluctuations. We concentrate on
the leading (quadratic) contribution in the coupling constant.
This approximation can be justified in part by a phase-space
consideration. Small parameters are introduced by the re-
stricted phase-space areas available for electronic quasiparticle
excitations as well as for the low-lying spin-fluctuation modes.
This introduces stringent kinematic restrictions.42

A. Formalism

In this section we summarize the formalism we use to study
these effects. We use a perturbative approach based on Gor’kov
Green’s functions with the coupling between the conduction
electrons and the spin fluctuations as the expansion parameter.
The unperturbed Green’s functions are diagonal in band index,
with normal (diagonal) and anomalous (off-diagonal) com-
ponents G(0)

μ (ε,k) and F (0)
μ (ε,k). The renormalized Green’s

functions, Gμν and Fμν , are not diagonal in band index due
to the interactions induced by spin-fluctuation exchange. The
Green’s functions in the orbital basis, Gmn and Fmn, are related
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to those in band representation, Gμν and Fμν , by

Gmn(ε,k) =
∑
μν

am
μ (k)an

ν (k)∗ Gμν(ε,k), (21)

Fmn(ε,k) =
∑
μν

am
μ (k)an

ν (−k) Fμν(ε,k). (22)

We couple electrons to the spin-fluctuation spectrum with
an energy- and momentum-independent coupling constant g

(instantaneous and local coupling). The retarded diagonal and
off-diagonal self-energies are then given by

�R
mn = δmn�

R
n , �R

mn = δmn�
R
n , (23)

written in terms of the retarded (R) and Keldysh (K) Green’s
functions

�R
n = − ı

2
g2

(
GK

nn ∗ χR
n + GR

nn ∗ χK
n

)
, (24)

�R
n = − ı

2
g2 (

F K
nn ∗ χR

n + F R
nn ∗ χK

n

)
, (25)

with (A ∗ B)(ε,k) = ∫
dω
2π

∫
d3q

(2π)3 A(ε − ω,k − q) B(ω,q) as
explained in Ref. 21. In equilibrium the Keldysh components
are given by

χK
n (ω,q) = 2ı ImχR

n (ω,q) [1 + 2 b(ω)],

GK
nn(ε,k) = 2ı ImGR

nn(ε,k) [1 − 2f (ε)],

F K
nn(ε,k) = [

F R
nn(ε,k) − F R

nn(−ε,−k)
]

[1 − 2f (ε)],

where f and b are the fermionic and bosonic distribution
functions. The normal and superconducting state dispersion
relations are given by χn = χ c

n and χn = χ sc
n , respectively,

where n = 1,2, 4. The self-energies then enter the Dyson
equation in terms of Nambu-Gor’kov Green’s functions

ĜR−1

mn = Ĝ(0)R−1

mn − �̂R
mn =

∑
μ

am
μ an∗

μ

(
Ĝ(0)R−1

μ − �̂R
n

)
, (26)

where we used the completeness relation
∑

μ am
μ an∗

μ = δmn and

ĜR
mn =

(
GR

mn F R
mn

F̃ R
mn −G̃R

mn

)
, (27)

�̂R
mn =

(
�R

mn �R
mn

�̃R
mn −�̃R

mn

)
, (28)

with Ã(ε,k) = A∗(−ε,−k). From Eq. (26) we obtain

ĜR−1

mn (ε,k) =
∑

μ

am
μ (k)an

μ(k)∗
[
Zn(ε,k)(ε + ıδ)1̂

− ζ n
μ(ε,k)τ̂3 − �n(ε,k)τ̂1

]
, (29)

where 1̂ is a 2 × 2 unit matrix and τ̂i (i = 1,2,3) are the Pauli
matrices in Nambu space. The renormalized dispersion and
order parameter as well as the renormalization function are
given by

ζ n
μ(ε,k) = ζμ(k) + �R

n (ε,k) + �̃R
n (ε,k)

2
, (30)

�n(ε,k) = �n
k + �R

n (ε,k), (31)

Zn(ε,k) = 1 − �R
n (ε,k) − �̃R

n (ε,k)

2(ε + ıδ)
, (32)

using the fact that in our case �R
n = �̃R

n . Note that the real part
of the dynamical susceptibility is determined by a Kramers-
Kronig analysis only up to a constant. This would lead to
energy-independent contributions to ζ n

μ and �n. However,
any such contribution can be thought about as absorbed into
the band structure and �n

k, which enter in our approach as
phenomenological parameters. Finally, by inverting Eq. (29)
numerically the spectral function is obtained from the first
diagonal element of Eq. (27),

A(ε,k) = − 1

π
Im

∑
m

GR
mm(ε,k). (33)

For analytic properties of the self-energies and a sum rule we
refer to Appendix D. The density of electrons is given in terms
of the spectral function by

ρ = 2

V

∫
dε

∫
d3k

(2π )3
f (ε)A(ε,k). (34)

When switching on the interactions, it must be ensured that the
chemical potential is adjusted such that the electronic density
stays constant.

We calculate the convolutions in Eqs. (24) and (25)
numerically by a fast Fourier transform using bare Green’s
functions (a procedure supported by the numerical studies
in Ref. 43) with a broadening parameter of δ = 4 meV.
For this we use a very fine 512 × 512 × 8 k mesh and
128 points in energy space. In addition a high-energy
cutoff of ωc = 200 meV was introduced in the spectrum of
spin excitations. The exact value of this is, however, less
important, as any change in the high-energy part contributes
only to an additional renormalization factor ZHE, which we
address next.

B. High-energy cutoff and high-energy renormalization

As already mentioned, we use a high-energy cutoff ωc =
200 meV in the spin excitation spectrum. The precise value
of this cutoff is, however, not essential. To see this, let us
assume that we change the high-energy cutoff from the value
ωc to ωc + �ω. Accordingly, the self-energy will have two
terms, which we call the low-energy and the high-energy
parts, i.e., �R

ε,k = �LE
ε,k + �HE

ε,k . For sufficiently large cutoff
ωc, the high-energy part contributes at low energies (well
below ωc) mostly to the real part and is linear in energy,
i.e., �HE

ε,k ≈ �′HE
ε,k ≈ −bn ε (bn ∈ R) (see Appendix C). We

exploit this fact to define an energy independent high-energy
renormalization factor ZHE

n = 1 − �′
HE/ε = 1 + bn.

The new Green’s functions and self-energies corresponding
to the cutoff ωc + �ω are determined by the assignments
ζ n
μ → ζ n

μ/ZHE
n , �n → �n/ZHE

n , and Zn → 1 + (Zn − 1)/
ZHE

n in the expression for [ĜR
mn]−1, and [ĜR

mn]−1 →
ZHE

n [ĜR
mn]−1. These relations simplify further for equal

coupling constants for all orbitals, in which case ZHE
n ≡ ZHE

is independent of the orbital index n, and ĜR
mn → ĜR

mn/ZHE.
We treat ZHE as a free parameter, which is of order

1 and modestly temperature dependent. This temperature
dependence might be at first view a bit surprising, as from
Fermi liquid theory one is used to temperature variations of

064528-6



EFFECT OF SPIN FLUCTUATIONS ON THE ELECTRONIC . . . PHYSICAL REVIEW B 86, 064528 (2012)

FIG. 3. (Color online) The high-energy renormalization factor
ZHE, showing a linear dependence in temperature.

the high-energy vertices that are negligible. However, one
should remember that in our case the susceptibility is strongly
temperature dependent in the normal state, which includes
temperature-dependent shifts of spectral weight between low
and high energy. This is manifestly non-Fermi-liquid behavior.

We fix the high-energy renormalization factor above a
certain reference temperature Tref (which we chose as 50 K)
in the normal state Z

Tref
HE = 1, and we determine ZT

HE for
lower temperatures so that the superconducting and the normal
state dispersion merge for high energies, as observed in
experiment.22,24 Our numerical solutions show that ZT

HE varies
slowly in the temperature range T = 10 − 50 K. (Figure 3
shows an example for g2χ0 = 1.17 × 103 μ2

B eV K.) We
underline that this additional high-energy renormalization
applies only for energies well below the spin-fluctuation
cutoff ωc.

We note that the thus determined ZHE is lower than one
below a temperature of 50 K. In general, the renormalization
function due to the entire spin-fluctuation spectrum must be
larger than one for zero energy.44 However, this refers to the
sum of our model spectrum and the correction due to the high-
energy cutoff. Our model susceptibility overestimates the
high-energy contributions, so that a negative correction at high
energies is in place, leading to negative values for bn; the sum
Zn + bn at zero energy is, however, always larger than one.

IV. SELF-ENERGY EFFECTS

In this section we discuss effects resulting from the self-
energies, Eqs. (24) and (25). We start with the diagonal
self-energies, which determine the quasiparticle scattering rate
and the quasiparticle band renormalization, and proceed then
with the off-diagonal self-energies, which renormalize the
superconducting order parameter.

All results in this section are for g2χ0 = 1.17 ×
103 μ2

B eV K.

A. Scattering rate and band renormalization

The imaginary part of the diagonal self-energy, �R
n (ε,k),

determines the scattering rate of electronic quasiparticles. In
the presence of a renormalization factor Zn(ε,k), Eq. (32), the
scattering rate is renormalized and is given in the normal state

FIG. 4. (Color online) Momentum dependence of the low-energy
scattering rate �n(ε → 0,k) in the dyz (n = yz) and the dxy (n = xy)
channels at T = 31 K [(a) and (b)], as well as the momentum
dependence of the renormalization factor Zn(ε → 0,k) for the
respective orbitals n [(c) and (d)].

for the respective orbital n = dxz, dyz, dxy by

�n(ε,k) = − Im
{
�R

n (ε,k)
}

Re {Zn(ε,k)} . (35)

The influence of the spin resonance mode on electronic
quasiparticles is most pronounced in the vicinity of the
Fermi surface. Therefore the scattering rate should exhibit
characteristics of the Fermi surface topology. In Figs. 4(a)
and 4(b) we show the kx and ky dependence of the low-energy
dyz,xy scattering rate in the kz = 0 plane and we show the
quasiparticle renormalization factor Re{Zn} in Figs. 4(c)
and 4(d).

In the case of the dxz,yz orbitals [Figs. 4(a) and 4(c)], both
feature a two-hump structure in the middle of the Brillouin
zone and a even larger peak at K yz = (±π,0) and K xz =
(0,±π ). As we demonstrate in Fig. 5, the hump structure is a
clear signature of the respective dxz,yz orbital contribution on
the Fermi surface. In Figs. 5(b) and 5(d), we have shifted the
partial spectral functions shown in Figs. 1(a) and 1(c) by the
antiferromagnetic wave vector Q1 in the case of the dyz orbital
and by Q1 and Q2 in the case of the dxy orbital. It can be seen
that the two-hump-structure in Fig. 5(a) corresponds to the
dyz contributions of the β1 pockets which lie opposite and well
separated. On the other hand, the peak feature at K yz = (±π,0)
occurs due to the holelike Fermi surface sheets at the α pockets
where the dyz contributions enclose the � = (0,0) point. The
scattering rate is broadened compared to the Fermi surface
contributions simply because the susceptibility is broadened
in momentum space. Looking at the dxy orbital in Figs. 5(c)
and 5(d) we essentially observe the same characteristics. The
broader peak at the � point results from the β pockets and the
sharp ones at the K 1

xy = (±π,0) and K 2
xy = (0,±π ) points

originate from the γ Fermi surface sheets at (±π,±π ).
In the superconducting state the opening of a particle-hole

excitation gap leads to a suppression of the particle decay
below ε < 2�̆(T ). However, the appearance of the resonance
allows for scattering processes below the continuum threshold.
As a consequence, inelastic scattering sets in above the
resonance energy, i.e., ε > �T

res, as depicted in Fig. 6, where
the scattering rates �dyz

and �dxy
are shown for T = 15 K.

064528-7



ANDREAS HEIMES, ROLAND GREIN, AND MATTHIAS ESCHRIG PHYSICAL REVIEW B 86, 064528 (2012)

FIG. 5. (Color online) Intra-orbital scattering channels: The
significant features in the dyz and dxy scattering rates, shown in
(a) and (c), correspond to the different orbital contributions to the
Fermi surface. We show in (b) and (d) the contributions of the dyz and
the dxy orbitals to the Fermi surface like in Fig. 1 but shifted by the
scattering vector Q1 in the case of dyz and Q1 and Q2 in the case of
dxy . The scattering rate reflects the underlying structure of the Fermi
surface shifted by the antiferromagnetic wave vectors.

The largest contributions to scattering arise from states near
the Fermi surfaces. This means that the resonance imprint is
most significant at an energy of �res + �Q , where for each
considered Fermi surface wave vector, k, �Q denotes the gap
averaged over a region of diameter ξ−1

r around each of the
points k ± Q1/2 (which are close to another Fermi surface
nested to the original one) [Fig. 6(b)]. An additional peak
appears in the dxy scattering rate at an energy of �res + Eγ

which is due to the van Hove singularity at the γ pockets

FIG. 6. (Color online) Scattering rate �n at T = 15 K: Energy-
momentum dependence along the cut {ky ∈ [−π : π ), kx = kz = 0}
in the dyz and dxy channels [(a) and (c)]. Energy dependence of the
scattering rate at fixed momentum as indicated at the left-hand side
by the dotted blue and full black lines, respectively [(b) and (d)].
Scattering sets in at energy �res. Peaks appear at energies �res + �Q

and �res + Eγ , which are due to the coupling of the resonance to
excitations at the Fermi surface and the van Hove singularities at the
hole pockets centered at (π,π,z), respectively.

[Fig. 6(d)]. In the following, we will refer to �res + �Q as the
kink energy. In Appendix A we present similar investigations
of the diagonal self-energies in Eqs. (30) and (32).

B. The superconducting order parameter

The origin of the pairing instability may well be related
to the spin-fluctuation continuum, as demonstrated by recent
FLEX calculations.45 Our model is restricted to the low-energy
region in the spin excitation spectrum. Consequently, we have
to include the high-energy incoherent part, which considerably
contributes to pairing, separately. The energy range of interest
(|ω| < ωc = 200 meV) gives only a partial contribution (about
40–50%) to the value of the superconducting order parameter.
Thus, we must add an additional contribution �n

k resulting
from the high-energy incoherent spin fluctuations.

According to theoretical calculations the order parameter
dominantly has a s± symmetry,8,36,41,46 which follows approx-
imately the form

�±
k = �0 cos(kx) cos(ky). (36)

For our model we have chosen as a first initial guess �n
k = �±

k ,
which is independent of the orbital character. In the absence
of detailed experimental data, we resort to the temperature
dependence �0(T ) = �0(0)

√
1 − T/Tc, which is true in

the BCS limit in the vicinity of Tc but deviates from the true
value at much lower temperatures. ARPES measurements re-
solve a superconducting gap of �(15 K) ≈ 12 meV at the inner
holelike α pocket as well as at the nested electron pockets.15

We choose �0(0) = 18.1 meV so that the renormalized gap
matches the experimental one at the particular points in the
Brillouin zone.

The low-energy spin fluctuations then lead to an orbital-
dependent part, �n, according to Eq. (25). We plot these and
the s± gap in Fig. 7. From Fig. 7(c) it can be seen that in the
dxz,yz channel the coupling via the Q1,2 = (±π,0), (0,±π )
wave vector favors an order parameter with opposite sign on
the α and the β1,2 pockets. The corresponding analysis for the
dxy channel in Fig. 7(d) shows that the presence of the holelike
pockets at (π,π,z) strongly support pairing with opposite
signs between the holelike γ pockets and the electronlike β1,2

pockets and with equal signs between the α1,2 and γ pockets.
Taken together, all three orbitals promote an order parameter
of the form of Eq. (36).

According to Eq. (29), the renormalized gap is given by

�̄R
n (ε,k) = �±

k + �R
n (ε,k)

Zn(ε,k)
. (37)

In Fig. 7 we compare the high-energy contribution �±
k , the

off-diagonal self-energy �n
k, and the renormalized gap given

by Eq. (37). We find that the spin-fluctuation spectrum in the
energy range |ω| � 200 meV contributes nearly 40–50% to
the observed order parameter. To see this, note that at the
�-point Zdyz

equals approximately 2 [see Fig. 4(c)], thus the
low energy contribution �dyz

must be of the same order as �±

to arrive at the �̄dyz
shown in Figs. 7(b) and 7(e). Furthermore,

the superconducting gap originating from the low-energy part
of the spin-fluctuation spectrum supports an s± state. We
performed additional calculations for an extended s-wave
contribution [cos(kx) + cos(ky)] to the order parameter ansatz
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FIG. 7. (Color online) Momentum dependence of the supercon-
ducting gap at ε = 0 eV and T = 15 K as calculated with the
ansatz in Eq. (36) for the high-energy contributions: (a) s± gap.
(c) and (d) show the off-diagonal self-energies in the dyz and dxy

channels. (b) compares �± and the renormalized order parameter
�̄n = (�± + �R

n )/Zn along the cut {kx ∈ [−π : π ), ky = kz = 0}.
(e) and (f) show the renormalized order parameter �̄n in the dyz

and dxy channels.

in Eq. (36). According to our findings, a large extended s-wave
contribution would imply a nodal structure in the partial
density of states (for its definition see Sec. V B4). ARPES13

and quasiparticle interference (QPI) experiments47,48 however
show a fully gapped order parameter. For our purpose it is
sufficient to use the ansatz in Eq. (36).

In Appendix A we also discuss the energy and momentum
dependence of the off-diagonal self-energy, Eq. (31).

V. THE ELECTRONIC SPECTRAL FUNCTION

Self-energies are measurable via their effect on the line
shape of the spectral function and the associated dispersive
features. The spectral function can be measured by ARPES
techniques. In this section we will apply procedures to our
theoretically obtained spectral function that routinely have
been applied in ARPES experiments. This allows us to
compare our results directly with experimentally observed
quantities, such as effective self-energies extracted from
ARPES measurements. In addition we will present results that
can be compared with other spectroscopic experiments such
as c-axis tunneling through superconductor-insulator–normal
metal and superconductor-insulator-superconductor junctions.

A. Normal state dispersion, Fermi surfaces,
and chemical potential

Dispersions obtained by ARPES experiments usually differ
from density functional calculations by a renormalization
factor of roughly 1.5–2.49–52 We show that this renormalization
can be well accounted for by the incoherent high-energy spin-
fluctuation spectrum coupling to the electronic excitations. In
Fig. 8 we compare the spectral function obtained from the
bare electronic structure with the one obtained after coupling
to the spin-fluctuation continuum at T = 50 K. As can be
seen, there is a pronounced energy broadening of the spectral
function at high energies, whereas it remains sharp in the
vicinity of the Fermi surface. The high-energy broadening
increases with excitation energy. Furthermore, the figure shows
that the energy bands are strongly renormalized, in particular
near the X and M points. By choosing the coupling constant
g to be the same for all orbitals we are able to reproduce the
experimentally observed shallow electron pocket near the X
point.37,49

The Luttinger theorem requires that the volume of the
Fermi surfaces must stay constant as a consequence of particle
conservation. In Fig. 9(a) the chemical potential δμ necessary
to maintain a constant particle number is shown. By shifting

FIG. 8. (Color online) Spectral function along the cut in the first Brillouin zone as indicated in the inset. Here, T = 50 K (which corresponds
to the normal state reference temperature we have used for analyzing the spectral functions in the superconducting states as discussed in the text)
and g2χ0 = 1.17 × 103 μ2

B eV K. The black wide-dashed lines present the bare band structure. Zero energy corresponds to the unrenormalized
chemical potential (μ0, for the bare band structure), and the shift of the chemical potential, δμ, for the renormalized band structure is indicated
as a second dashed line.
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FIG. 9. (Color online) (a) Dependence of the chemical potential
δμ on the coupling constant g2χ0. Shown is the result after the first,
second, third, and fourth iterations at T = 50 K. (b) The electronic
density of states for different coupling parameters g2χ0 = 0.08 ×
103 μ2

B eV K and 1.17 × 103 μ2
B eV K at T = 50 K. (c) Fermi surfaces

in a quarter of the Brillouin zone at kz = 0 for g2χ0 = 0 and δμ = 0
and for g2χ0 = 1.17 × 103 μ2

B eV K and δμ = 22 meV, at T = 50 K.

the bands, ζ (k,μ0) = ζ ′(k) − μ0 → ζ (k,μ) = ζ ′(k) − μ, the
density of electrons ρ, given by Eq. (34), is fixed. In the
following, we denote by Aμ the spectral function calculated
for chemical potential μ and for self-energies �̂[Aμ]. For
the unperturbed band structure μ0 = −50 meV as chosen in
Sec. II B in order to simulate hole doping.

To obtain the correct chemical potential we need to find μ

such that ρ[Aμ] = ρ0 with Aμ = A[μ,�0(μ)], where �0(μ) is
calculated from the unperturbed spectral functions, A(0)

μ , with
chemical potential μ. In a first step we calculate self-energies
�0(μ0) = �0[A(0)

μ0
]. We then, in a next step, calculate Aμ0 =

A[μ0,�0(μ0)] and from this ρ1 = ρ[Aμ0 ]. In order to obtain
a first approximation to the chemical potential, we linearize
its functional form as function of the charge carrier density,
defining

μ1 = μ0 + ρ1 − ρ0

∂ρ/∂μ
. (38)

The partial derivative is obtained by making a second calcula-
tion for a shifted potential μ = μ0 + �μ with �μ = 5 meV
and repeating the procedure above, leading to ρ∗

1 = ρ[Aμ] and

∂ρ

∂μ
≈ ρ∗

1 − ρ1

�μ
. (39)

We then repeat these steps: �0(μ1) = �0[A(0)
μ1

] → Aμ1 =
A[μ1,�0(μ1)] → ρ2 = ρ[Aμ1 ] → μ2 = μ1 + ρ2−ρ1

∂ρ/∂μ
, and so

forth until convergence.
In Fig. 9(a) we show δμj = μj − μ0 for j = 1,2,3 as a

function of g2χ0. In Fig. 9(b) we compare the density of states

for two different coupling strengths for T = 50 K. Finally,
in Fig. 9(c) we show the Fermi surface for g2χ0 = 0 and
for g2χ0 = 1.17 × 103 μ2

B eV K as obtained from the above
procedure. The main effect is that all Fermi surface sheets
shrink with increasing interaction, whereby a redistribution
of populated states from the electronlike band to the holelike
bands takes place near the Fermi surfaces. This has the most
pronounced effect on the small hole pockets at the M points.
We speculate that for sufficiently strong spin fluctuations a
Lifshitz transition is triggered with an interaction-induced
collapse of the entire hole pocket.

Experimentally, it was shown that a shift of the chemical
potential corresponds to a linear change in doping,37,38 mean-
ing that in the weak-coupling regime the coupling strength is
linear to the doping level. This observation would correspond
in our calculations to solutions that are already to a good
approximation reached after the first iteration, μ1 ≈ μ. Our
results support this picture for the weak-coupling regime,
g2χ0 < 1 × 103 μ2

B eV K; however, they show pronounced
deviations at stronger coupling.

B. Angle-resolved photoemission

In photoemission experiments the intensity of photoelec-
trons is proportional to f (ε)A(ε,k), where f is the Fermi
distribution function and A is the spectral function. In this
section we discuss our results for the spectral function A(ε,k)
obtained from Eq. (33). For this purpose we follow a procedure
commonly used to analyze ARPES data: The superconducting
state dispersion is compared to that of a reference dispersion
in the normal state (at a temperature well above Tc) and
renormalization effects are directly inferred by quantifying the
differences. In addition, a linewidth analysis gives information
about the imaginary parts of the diagonal self-energies. These
procedures give naturally not as precise information as an
orbitally resolved measurement. The reason is that the spectral
function is obtained from the orbital-dependent self-energies
via a matrix inversion [see Eqs. (29) and (33)], and all
orbital contributions to the self-energy mix with each other
when considering the spectral function. In other words, the
self-energies are not diagonal in the band index, whereas the
renormalized tight binding bands are not diagonal in the orbital
index. This refers also to orbital-resolved photoemission
experiments, as each orbital component of the spectral function
is obtained by the same matrix inversion, Eq. (29), thus
mixing orbital components of the self-energies. Nevertheless,
it is possible to compare theoretical and experimental data
when applying identical procedures to the theoretically and
experimentally obtained spectral functions. We call the related
quantities effective self-energies. All results in this section are
for g2χ0 = 1.17 × 103 μ2

B eV K.

1. Effective self-energies: Dispersions and linewidth

Motivated by experimental findings, we use a fitting
procedure for our theoretically obtained spectral functions
as discussed in the following. For fixed energy the momen-
tum dependence of the spectral function (MDC: momentum
distribution curve)53 is peaked and often well approximated
by a Lorentzian. In addition to MDCs, also the energy
dependence for fixed momentum (EDC: energy distribution
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curve) can be useful to analyze the dispersion anomalies of
superconductors that arise from coupling to bosonic modes.
Whereas in the cuprates the EDCs exhibit a pronounced
dip-hump structure,21,32 there is no such pronounced behavior
for iron-based superconductors.24 Here the self-energy effects
are best extracted by examining the MDC-derived dispersions.

When concentrating on such a Lorentzian peak centered at
momentum k and energy εk for a certain band well separated
from all other bands, we consider the immediate region around
this point in energy-momentum space. The energy dispersion
εk of the considered band in relation to the bare band dispersion
defines an effective �′ via the relation

εk = ζk + �′
LE(εk,k). (40)

This equation is motivated by the analogous equation for a
single-band system, where �′

LE describes the true low-energy
part of the self-energy, and where the above equation represents
an implicit equation for the renormalized dispersion εk. In the
present case, we instead calculate the renormalized dispersion
using the true self-energies, and then we define the effective
self-energy �′

LE via Eq. (40).
By assuming that �′

LE is nearly constant in the momentum
region over which the Lorentzian describing the MDC spectral
function is spread, the MDC spectral function can be written
in the form

A(ε,k) = 1

π

�̃′′
LE(ε,k)

{ṽε(k − kε)}2 + {�̃′′
LE(ε,k)}2

, (41)

where kε is obtained from ε = ε̃kε
≡ εkε

/ZHE and

�̃′′
LE = �′′

LE/ZHE, (42)

(ε̃k − ε)|k≈kε
≈ dε̃k

dk

∣∣∣∣
k=kε

(k − kε) ≡ ṽε (k − kε), (43)

and the group velocity is related to the effective self-energy by

ṽε = 1

ZHE

{
∂ζk/∂k + ∂�′

LE/∂k
1 − ∂�′

LE/∂εk

}
k=kε

. (44)

The bare dispersion ζk cannot be measured. However, it is
temperature independent, such that the quantity

�′(ε) ≡ ε̃T
kε

− ε̃
Tref
kε

(45)

gives a measure of the self-energy effects only, �′(ε) =
�̃′

LE(ε,kε)T − �̃′
LE(ε,kε)Tref . It can be extracted experimentally

by taking the difference between two MDC dispersions at fixed
kε . Here Tref is a reference temperature that should be chosen
deep in the normal state.

Another interesting quantity, which determines the quasi-
particle lifetime and is accessible by Eq. (41), is the linewidth
function �̃′′(ε) = �′′

LE(ε,kε)/ZHE, which we obtain by de-
termining the full width at half maximum (FWHM) of the
Lorentzian in reciprocal space, |δkε |, and the group velocity
ṽε in the direction of δkε ,

�̃′′(ε) = ṽεδkε . (46)

The procedure explained above is illustrated in Fig. 10.
We choose Tref = 50 K. Because the exact value of ZHE is
unknown, we fix it at this temperature, ZTref

HE = 1, and determine
ZHE in the superconducting state so that the dispersions merge
with the normal state reference at high energies. In Fig. 10 the

FIG. 10. (Color online) Effective self-energies: Illustration of the
procedure used to extract self-energy effects from the electronic
spectral function A(ε,k) at Tref = 50 K. The width of A(ε,k) for fixed
energy determines the scattering rate �′′, whereas the difference of
two dispersion relations at different temperatures gives the real part
of the effective self-energy, �′.

reference dispersion is shown along a cut in the first Brillouin
zone for kz = 0. In the extracts (a) and (b) we present the
dispersion branches of the α1,2 and the β1 bands. Below the
Fermi energy we fitted the MDC dispersion to the spectral
functions, which are shown by the black dots, and calculated
the linewidth by the procedure explained above.

2. Quasiparticle lifetime in the normal state

The imaginary part of the effective self-energy exhibits
a linear dependence at high energies, �′′(ε) ∝ ε (Fig. 11),
consistent with marginal Fermi liquid theory.54 This results
from the coupling to the spin-fluctuation continuum, in
particular from the slow decay toward high energies. The linear
in energy contribution increases in magnitude with decreasing
temperature, consistent with the temperature dependence of
the spin-fluctuation continuum. It persists at high binding
energies in the superconducting state. As we will see in the
following section, in the superconducting state the appearance
of the spin resonance leads to an additional feature at low
energy, a small bump in the imaginary part of the self-energy
seen in Fig. 11 for T = 24 K and, more pronounced, for
T = 13 K.

3. The superconducting state and the “kink” feature

Upon entering the superconducting state the low-energy
resonance in the dynamic magnetic susceptibility appears
below the particle-hole continuum. In this section we want
to extract the effect of this resonance feature on the elec-
tronic structure. For this we compare the normal state and
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FIG. 11. (Color online) (a) Temperature dependence of the
imaginary part �′′ of the effective self-energy at the α1 band extracted
from the cut in Fig. 10(a). The black solid curve corresponds to the
normal state at T = 50 K. The dashed blue, green, and red curves
correspond to T = 13, 24, and 31 K, respectively. The difference of
the imaginary parts of the effective self-energy, �′′(T ) − �′′(50 K),
at T = 13, 24, and 31 K is shown in the bottom. (b) The same as in
(a) along the cut at the β1 band, which is depicted in Fig. 10(b).

superconducting state dispersions and extract both the real
part as well as the imaginary part of the effective self-energy
from those. The influence of the resonance on the dispersion
relation can be quantified using, e.g., Eq. (45), where we
obtain the renormalized dispersion relation ε̃

T <Tc
k by fitting the

Lorentzian in Eq. (41) to the theoretically obtained spectral
function in Eq. (33). That is a good approximation even in
the superconducting state for energies not too close to the
superconducting gap.

Now the electronic dispersions ε̃T
k = εT

k /ZT
HE at the α1,2

bands and the β1 band can be determined. In Fig. 12 the
temperature dependence of the real part of the effective
self-energy is shown as obtained in Eq. (45). The appearance

FIG. 12. (Color online) (a) and (b) The temperature dependence
of the real part �′ of the effective self-energy extracted from the
dispersion cuts shown in Figs. 10(a) and 10(b).

of the bosonic resonance leads to an effect on the electronic
dispersion which is characterized by the development of a
peak in the real part of the effective self-energy, �′(ε) (see
Fig. 12), as well as a hump feature in the imaginary part of
the effective self-energy �′′(ε) ≡ �̃′′(ε,kε) (Fig. 11), which
we see is even more pronounced by having a look at the
difference �′′(T ) − �′′(Tref) [Figs. 11(a) and 11(b) at the
bottom]. Both effects follow the temperature dependence of
the bosonic resonance. The coupling feature is situated at
energies �Q + �T

res, where �Q is the gap at the corresponding
Fermi surfaces that are approximately (i.e. on the scale ξ−1

r )
nested by an antiferromagnetic wave vector Q. The broad max-
imum in �′ which moves around ≈50 meV at all temperature
is the result of coupling to the particle-hole continuum.

The fact that the above-discussed kink feature results
from coupling to the spin-fluctuation resonance was already
predicted in ARPES experiments by Richard et al.24 There
the authors show that the coupling feature follows an
order-parameter-like temperature dependence which is
consistent with the temperature dependence of the neutron
resonance observed by inelastic neutron scattering.11 By
comparing the electronic dispersion in the superconducting
state with the one in the normal state (see the illustration in
Fig. 10) they clearly show that the low-energy kink is emerging
in the superconducting phase. Within our calculations we
are able to reproduce the shape and the absolute value of the
real and imaginary parts of the effective self-energy with a
coupling strength of g2χ0 = 1.17 × 103 μ2

B eV K.
On the other hand, Koitzsch et al.23 performed a detailed

analysis of the temperature dependence of the electronic
dispersion relation deep into the normal state. The authors
stress that there exists a bump feature at ∼25 meV in the normal
state which does not modify at temperatures below 100 K, con-
tinuously moves to higher energies at higher temperatures, and
finally disappears above 200 K. Although a kink between 25
and 40 meV would be consistent with the phonon spectrum55

this would not explain the mentioned temperature dependence.
However, there is a natural explanation of these observations
within our model. Note that the spin-fluctuation continuum
modeled by Eq. (11) and motivated by neutron scattering
experiments10 exhibits a maximum at ω = �T

max. This moves
to higher energies with increasing temperature whereas the
amplitude of Eq. (11) continuously vanishes. According to
that, the observations of Koitzsch et al. can be understood as the
fingerprint of the spin-fluctuation continuum, which persists
in the normal state and weakens with increasing temperature.
Energy scale, magnitude, and the temperature dependence are
all consistent with this interpretation. The additional change
of the kink feature when crossing Tc, as, e.g., clearly observed
in the experiments by Richard et al.,24 was not resolved in the
experiments of Koitzsch et al.

4. EDCs in the superconducting state

Recent FLEX calculations have shown that the EDCs show
a well-pronounced dip-hump feature.45 This would essentially
lead to a break in the dispersion relation, which is not the case
for iron-based superconductors. In this section we want to take
a look at the EDCs calculated in our model.
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FIG. 13. (Color online) Energy distribution curves at the α1,2

(a) as well the β1 pocket (b). We compare the EDCs at T = 15 K
(left) and T = 31.0 K (right). The respective cuts are indicated in the
inset.

In Figs. 13(a) and 13(b) we compare the EDCs at different
cuts in the first Brillouin zone and at the two temperatures T =
15 K and T = 31.0 K. As we have seen in the previous chapter,
the less pronounced resonance feature at higher temperatures
is also less pronounced in the effective self-energies (Fig. 11).
Accordingly, we expect anomalous features, which can be
related to the resonance, to appear at T = 15 K but to be
absent at T = 31 K. Actually, for the higher temperature the
EDCs on the right-hand side of Figs. 13(a) and 13(b) show a
smooth shape that should be compared to the left-hand side
corresponding to the lower temperature. Here the electronic
spectral function shows particular variations of this smooth
lineshape, namely, small kinks (indicated by arrows).

In Fig. 14 the superconducting spectral function along
the �-X direction is shown. The maxima of the curves
in Figs. 13(a) and 13(b) give the EDC-derived dispersions
indicated by the black triangles. We determine the supercon-
ducting gap at the pockets by the maxima of this dispersion,
as illustrated in Fig. 14. The superconducting gap is nearly
constant along the Fermi surface sheets with �α1 ≈ 11.6 meV,
�α2 ≈ 8 meV, and �β1 ≈ 12 meV.

Another quantity of interest is the partial density of states
(PDOS). Here the spectral function is integrated over a cut
that crosses the Fermi surface, as we have illustrated in the
inset of Fig. 15, i.e., PDOS(ε) = ∑

kx∈[ π
2 ,π] Ak(ε)|kz=0. There

we present the PDOS curves at different ky values at the β1

pocket. For T = 15 K they clearly exhibit a dip feature at an
energy of �res + �Q ∼ 25−30 meV, which is absent at the
higher temperature T = 31 K.

In order to enhance the coupling feature a common
procedure is to take the derivative of the partial density of
states. This quantity is shown in Fig. 16 and we see that
dPDOS(ε)

dε
exhibits a clear maxima at T = 15 K which is absent

at T = 31 K. The difference of this peak (at 25.5 meV) and the
quasiparticle peak (here 12.6 meV) gives ≈ 12.9 meV, which
corresponds to the resonance energy �T =15 K

res ≈ 12 meV.
In conclusion, EDCs are not best suited to examine

anomalies that arise due to the spin-fluctuation resonance

FIG. 14. (Color online) Superconducting state spectral function at
T = 15 K along the �-X direction as well as the maxima of the EDC
curves (black triangles). The superconducting gaps are determined
as illustrated in the insets (�α1 ≈ 11.6 meV, �α2 ≈ 8 meV, and
�β1 ≈ 11.6 meV).

because the features that can be referred to the mode are too
small. However, they are essentially more pronounced in the
partial density of states [PDOS(ε)], as was already seen in
experiment,24 and its derivative ( dPDOS(ε)

dε
).

FIG. 15. (Color online) Partial density of states, i.e., the added
spectral function

∑
kx∈[ π

2 ,π ] Ak(ε)|kz=0. We present the PDOS at
different ky values at the β1 band, as illustrated by the inset. The
order of the PDOS curves from top to bottom corresponds to the
order along the arrow in the inset. At T = 15 K the curves exhibit a
dip at ∼25−30 meV which is absent at T = 31 K.
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FIG. 16. (Color online) PDOS(ε) curves as in Fig. 15 at T = 15 K
(left) and at T = 31 K (right) and its derivative dPDOS(ε)

dε
. The dip in the

PDOS leads to a peak in its derivative which is absent at T = 31 K.

C. Tunneling spectra and density of states

Another useful tool to obtain information about the density
of states (DOS) is scanning tunneling spectroscopy (STS).

We are interested in the spin-conserving tunneling current
when applying a voltage V . The tunneling current in this case
is given by

I (eV ) = |T0|2
∫ ∞

−∞

dε

2π
ν1(ε)ν2(ε + eV ) [f (ε) − f (ε + eV )],

(47)

where ν1,2(ε) = ∑
k A1,2(ε,k) are the densities of states

computed from the spectral functions A1,2 of the two materials
in contact, and f is the Fermi distribution function. We assume
here for simplicity an isotropic tunneling matrix element T0.

For a superconductor-insulator–normal metal (SIN) tunnel-
ing junction the energy dependence of the normal metal density
of states in the vicinity of the Fermi energy, εF, is negligible. In
this case one defines the matrix element |M0|2 = |T0|2 νN (εF),

FIG. 17. (Color online) SIN tunneling conductance at different
temperatures in the range 13–37 K in the superconducting state for
the coupling constant g2χ0 = 1.17 × 103 μ2

B eV K. The curves show
no clear hint of a coupling to spin excitations, such as a dip feature
in the case of cuprate superconductors.

where νN is the local density of states in the normal metal. The
SIN tunneling conductance is then given by

ρSIN(eV ) = dISIN

d V

= e|M0|2
∫ ∞

−∞

dε

2π

νS(ε)

4kBT cos2(eV/2kBT )
, (48)

with the density of states νS(ε) = ∑
k AS(ε,k), where AS is

the spectral function of the superconductor. For the coupling
strength g2χ0 = 1.17 × 103 μ2

B eV K, which is the value we
obtain from our comparison with ARPES experiments, we
present the tunneling conductance ρSIN(ε) in Fig. 17 for
different temperatures.

Van Hove singularities at specific points in the Brillouin
zone can cause an intensified scattering with spin excitations,
leading, e.g., to a well-pronounced break feature in the spectral
function and therefore a suppression of the density of states in
the affected energy range in cuprate superconductors.21,29,32,56

This however is absent in our calculations.
Our spectra show a strong particle-hole asymmetry that has

been also seen in experimental data.57

Nevertheless, it is interesting to investigate how the
tunneling conductance is modified by changes of the cou-
pling strength and when significant features appear at low
energies that can be attributed to the effect of spin fluc-
tuations. Therefore we calculated the differential tunneling
conductance dI/dV for different coupling strengths g2χ0 =
(0.68, . . . ,2.42) × 103 μ2

BeV K for a SIN as well as a SIS
junction.

Both ρSIN and ρSIS are presented in Fig. 18. The SIN
tunneling spectra show the development of a dip-hump feature
for increasing coupling strength, as in the case for cuprate
superconductors. As can be seen from Fig. 18, for SIN
tunneling the coupling predominantly influences the occupied
side, whereas the unoccupied side remains nearly unaffected.
In contrast, the SIS spectra are symmetric and therefore the
dip feature appears on both sides. For a coupling strength of
g2χ0 = 3.44 × 103 μ2

B eV K we see a clear dip at ≈30 meV
that can be traced back to the resonance in the spin-fluctuation
spectrum.

VI. SUMMARY AND CONCLUSIONS

In this work we presented a model of spin fluctuations cou-
pling to electrons in the normal as well as the superconducting
state. We find that the high-energy spin-fluctuation continuum
provides important contributions to the pairing interaction,
leads to a linear in energy broadening of the quasiparticles,
and contributes to the renormalization effects of the dispersion
both in the normal and in the superconducting state. In the
normal state it leads to a broadened kink feature in the
dispersion, similar to that observed in experiments by Koitzsch
et al.23 In the superconducting state, it leads to a sharper kink
feature as experimentally observed by Richard et al.24 and by
Wray et al.22

The superconducting gap originating from the low-energy
(<200 meV) part of the dynamic susceptibility supports an s±
state, as proposed earlier.36 The investigation of the scattering
rate of quasiparticles and spin fluctuations shows that the
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FIG. 18. (Color online) SIN (top) and SIS (bottom) tunneling
conductance for different coupling constants g2χ0 =
(0.68, . . . ,3.44) × 103 μ2

B eV K in units of e|M0|2 and e|T0|2,
respectively, at temperature T = 15 K.

renormalization effects are strongest at the approximately
nested Fermi surface sheets and exhibit characteristics of these.

The sharper kink feature at certain energies in the electronic
dispersion in the superconducting state is due to the low-
energy resonance in the spin-excitation spectrum. It can be
quantified following experimental procedures to extract them
directly from the spectral function. A comparison with the
ARPES experiment by Richard et al.24 enables us to estimate
the strength of the coupling between electrons and spin
fluctuations. We find an intermediate value, certainly smaller
than an analogous analysis in the cuprate yields.

We discuss the renormalization of the Fermi surface and
find that coupling to spin fluctuations leads to a shift of the
chemical potential to higher values by ≈20 meV, accompanied
by a shrinking of all Fermi surfaces. The relation between the
chemical potential and the charge carrier density is linear for
small to moderate values, and non-linear for higher coupling
strengths.

Investigating the energy dependence of the spectral function
as well as the partial density of states and the differential
tunneling conductance we find that for the coupling strength

necessary to reproduce the self-energies of the ARPES
experiments, there are no such pronounced coupling features
in the tunneling spectra as observed in the case of cuprate
superconductors. However, in the partial density of states,
obtained when integrating the spectral functions perpendicular
to the Fermi surface, coupling features are clearly visible.

We conclude that the coupling between spin fluctuations
and electronic excitations provides an important mechanism
for superconductivity in iron pnictides.
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APPENDIX A: ENERGY AND MOMENTUM DEPENDENCE
OF THE DIAGONAL AND OFF-DIAGONAL

SELF-ENERGIES

In this Appendix we discuss the diagonal self-energies
entering Eqs. (30) and (32). The energy and momentum
dependence of the renormalization function Z is presented
in Fig. 19. At low energies, the renormalization function takes

FIG. 19. (Color online) Energy and momentum dependence of
the real part of the renormalization function Zn and of the real part
of the dispersion correction according to Eq. (30), (ζ n

μ − ζμ)/Zn =
(�R

n + �̃R
n )/2Zn, at T = 15 K. The energy dependence is shown

along the momentum cut {ky ∈ [−π : π ), kx = kz = 0}.
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FIG. 20. (Color online) Energy and momentum dependence of
the real and imaginary parts of the off-diagonal self-energy �n at
T = 15 K along the cut {kx ∈ [−π : π ), ky = kz = 0}.

values of about 2 (yz channel) and 4 (xy channel), and at
higher energies it takes values of about 1.5 (yz channel) and 2
(xy channel). Results for the xz channel are analogous to the
results for the yz channel.

Also shown in Fig. 19 is the particle-hole asymmetric part
of the diagonal self-energy, corresponding to Eq. (30). Looking
at the xy channel of the real part we see a drastic change for
energies |ε| > |�res + Eγ | at (kx, ky, kz) ≈ (0,±π ,0). This
corresponds to the appearance of the shallow electron pocket
at the β bands.

In Figs. 20 and 21 the energy dependence of the real and
imaginary parts of the off-diagonal self-energy as well as the
renormalized gap is shown. The gap function, shown in Fig. 21,
is real in the energy range <15 meV, given by the energy
of the magnetic resonance. The gap itself is of comparable
magnitude. Above this energy range, the gap function acquires
a considerable imaginary part, which is of the same order of
magnitude as the order parameter itself. Note that these effects
are very small in the yz channel near k = (±π,0,kz), i.e., at
the electron pockets, and in the xy channel near k = (0,0,kz),
i.e., at the large hole pockets. Thus, strong coupling features
in the gap function are almost purely in the xy channel for the
electron pockets and in the xz and yz channel for the large hole
pockets. The resonance imprints at energies �res + �Q and
�res + Eγ also are indicated in Fig. 6 (�T =15 K

res ≈ 12 meV).
This effect is most pronounced in �n; however, due to the
enhancement of the renormalization function Zn at these ener-
gies (see Fig. 19) the renormalized gap �̄n weakly varies, as is
especially seen in the yz channel in the upper panel of Fig. 21.

FIG. 21. (Color online) Energy and momentum dependence of
the real and imaginary parts of the renormalized order parameter
�̄n = (�± + �R

n )/Zn at T = 15 K along the cut {kx ∈ [−π : π ),
ky = kz = 0}.

APPENDIX B: LOCAL SUM RULE

In this Appendix we shortly review a sum rule that holds
for the two-point correlation function 〈Sα

m(t,Ri) S
β
n (t ′,Rj )〉,

where Sα
m(t,Ri) denotes the spatial α = x, y, z component of

the spin at site Ri and in orbital m. Then the spin structure
factor is defined by

Sα,β (ω,q) =
∫ ∞

−∞
dt e−ıωt

× 1

N

∑
ij

∑
mn

〈
e−ıq·(Ri−Rj )Sα

m(t,Ri)S
β
n (0,Rj )

〉
.

Integrating this quantity over frequency yields the static spin
structure factor

Sα,β (q) =
∫ ∞

−∞

dω

2π
Sα,β (ω,q) = 1

N

∑
mn

〈
Sα

m(q)Sβ
n (−q)

〉
.

Further integrating out the momentum and taking the trace
gives

∑
α

∫
d3q

(2π )3
Sαα(q) = 1

N

∑
α,i

∑
mn

〈
Sα

m(Ri) Sα
n (Ri)

〉

= 1

N

∑
i

〈S(Ri) · S(Ri)〉

= S(S + 1).
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Here we defined the spin S(Ri) = ∑
m Sm(Ri) on each

site i. The last equality only holds for a system of equal
spins. This is realized in the Heisenberg limit, where the
hopping of electrons between the different sites is suppressed.
However, in more itinerant systems (metallic regime) cor-
relations between the spins are reduced and the integrated
weight should be smaller. However, it was proven in ex-
periment that the sum rule also holds in the case of iron
pnictides.10

APPENDIX C: HIGH-ENERGY
RENORMALIZATION FACTOR

Starting from Eq. (41) we have introduced a high-energy
renormalization factor ZHE = 1 − �′

HE(ε)/ε in order to treat
the renormalization originating from the high-energy incoher-
ent part of the spin fluctuation spectrum. In the procedure
explained above we obtained a linear temperature dependence
ZHE = α + β T . In this section we provide a motivation for
such a temperature dependence.

By introducing a high-energy cutoff ωc in the bosonic
spectrum, the self-energies consist of two contributions,
�R

n (ε,k) = �LE
n (ε,k) + �HE

n (ε,k). Whereas the low-energy
contribution can be calculated exactly, we have to treat �HE

phenomenologically. As we have seen in Sec. II B, the sum
rule for the susceptibility implies that

∫ ∞
−∞ dω

∫
d3qS(ω,q)

remains constant and temperature independent. As we as-
sumed in our model identical weights for the orbital
contributions χn(ω,k), the sum rule applies to each of
them separately. Introducing the high-energy cutoff we
obtain ∫

d3q
(∫

|ω|<ωc

dω
Imχn(ω,q)

1 − exp(−ω/T )

+
∫

|ω|>ωc

dω
Imχn(ω,q)

1 − exp(−ω/T )

)
= ILE + IHE = I = const. (C1)

Whereas the low-energy behavior of the susceptibility is
motivated by recent experiments,10 the high-energy spectrum
is unknown. On phenomenological grounds we expect it to
be broadened in momentum and to decay at high energies.
Furthermore, the temperature under consideration is small
compared to the energy cutoff, i.e., ωc/T � 1, and therefore∫ ∞

ωc

dω Imχn(ω) ≈ I − ILE = I −
∫

d3q
∫

|ω|<ωc

× dω
Imχn(ω,q)

1 − exp(−ω/T )
. (C2)

By numerically integrating the second term on the right-hand
side we find a linear dependence in temperature, ILE = ηLE −
γLET (see Fig. 22), implying that∫ ∞

ωc

dω Imχn(ω) ≈ I − ηLE + γLET . (C3)

Let us now consider the high-energy contribution of the
self-energy. We start from an expression for the electronic
self-energy58 of electrons coupling to the spin fluctuation mode

(in real gauge),

�̂R
n (ε,k) = −2g2

∑
k′

′ ∑
ω,ζ

ImĜR
nn(ζ,k′)Imχn(ω,k − k′)

ε − ω − ζ + ı0

×
[

tanh

(
ζ

2T

)
+ coth

(
ω

2T

)]

with the abbreviations
∑′

k′ ≡ ∫
d3 k′
(2π)3 ,

∑
ω ≡ ∫ ∞

−∞
dω
2π

, and∑
ζ ≡ ∫ ∞

−∞
dζ

2π
. We are interested in the high-energy contri-

bution of the spin susceptibility, for |ω| > ωc, and therefore
restrict the integration over ω in the expression above to this
range. At high energies the spin-fluctuation contribution will
become more and more local, so that it is well approximated
by a momentum eigenfunction expansion with a few eigen-
functions ηs(k) resulting from close neighbors. At the same
time, we relax the approximation that the spin susceptibility
only depends on q = k − k′. Thus, we write

χn(ω,k − k′) → χn(ω,k,k′) =
∑

s

ηs(k)χn,s(ω)ηs(k′)∗

with χn,s(ω) = ∑′
k,k′ ηs(k)∗χn(ω,k,k′)ηs(k′). The eigenfunc-

tions can be classified according to the irreducible representa-
tions of the point group, and they are assumed to be orthogonal
and normalized,

∑′
k ηs(k)∗ηs ′ (k) = δss ′ , and built to a com-

plete set,
∑

s ηs(k)ηs(k′)∗ = δk,k′ . Thus, the corresponding
components of the self-energy, �̂R

n,s(ε) = ∑′
k ηs(k)∗�̂R

n (ε,k),
are given by

�̂HE
n,s (ε) = −2g2

∑
ω,ζ

ImĜR
nn,s(ζ )Imχn,s(ω)

ε − ω − ζ + ı0

×
[

tanh

(
ζ

2T

)
+ coth

(
ω

2T

)]
· ϑ(|ω| − ωc)

with ĜR
nn′,s(ζ ) = ∑′

k′ ηs(k′)∗ĜR
nn′ (ζ,k′). With the partial den-

sity of states νn,s(ζ ) = − 1
π

ImGR
nn,s(ζ ) we obtain

�HE
n,s (ε) = g2

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dζ

νn,s(ζ )Imχn,s(ω)

ε − (ω + ζ ) + ı0

×
[

tanh

(
ζ

2T

)
+ sign(ω)

]
ϑ(|ω| − ωc). (C4)

The second line in this expression ensures that |ω + ζ | is
always of order ωc, as it mostly contributes for ζ > −2T

FIG. 22. Value of the low-energy integrated weight ILE = ηLE −
γLET as a function of temperature T , showing a linear dependence.
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for positive ω and ζ < 2T for negative ω. As ωc � T , for
|ε| � ωc this allows us to expand the denominator in the first
line in ε, leading to

�HE
n,s (ε) = −g2

∫ ∞

ωc

dω

2π
Imχn,s(ω)

∫ ∞

−∞
dζ

×
[

tanh
(

ζ

2T

) + 1

ω + ζ

(
νn,s−(ζ ) + νn,s+(ζ )

ε

ω + ζ

)]

with νn,s±(ζ ) = [νn,s(ζ ) ± νn,s(−ζ )]/2, and where we used
Imχn,s(−ω) = −Imχn,s(ω). The ζ integral gives up to second
order in a power expansion in temperature

2
∫ ∞

0
dζ

[
νn,s−(ζ )

ω + ζ
+ νn,s+(ζ ) ε

(ω + ζ )2

]

−αT 2

[
ν ′

n,s(0)

ω
− 2νn,s(0)ε

ω3

]

with a numerical constant α of order 1. We see that the
temperature-dependent terms are small compared to the
temperature-independent terms. The terms independent of ε

contribute to the band renormalization. If all orbitals would
contribute equal, it would correspond to a constant shift of the
bands. The leading contribution is

ζ HE
n,s = −4g2

∫ ∞

ωc

dω

2π
Imχn,s(ω)

∫ ∞

0
dζ

νn,s−(ζ )

ω + ζ
. (C5)

For different orbital contributions to the spin susceptibility,
this quantity would lead to orbital-dependent band shifts, and
thus to a slightly temperature-dependent renormalization of
bands. The temperature-independent part can be absorbed in
the definition of the tight binding bands and the orbital as
well as Brillouin zone average in the temperature-dependent
chemical potential. The remaining contributions are neglected
in this paper.

The terms linear in energy contribute to the high-energy
renormalization factor ZHE

n,s . We can write in leading order

ZHE
n,s = 1 + 4g2

∫ ∞

ωc

dω

2π
Imχn,s(ω)

∫ ∞

0
dζ

νn,s+(ζ )

(ω + ζ )2
. (C6)

For our calculation we restrict with regard to the diagonal
self-energy contributions to the Brillouin zone averages [cor-
responding to the basis function s = 0 with η0(k) ≡ 1], and
we define the orbital average ZHE = 〈ZHE

n,0〉n. According to that
the temperature dependence of the high-energy contribution
ZHE is determined by the temperature dependence of χ ′′

HE,
leading to

ZHE = 1 + g2(η̃ + γ̃ T ). (C7)

APPENDIX D: KRAMERS-KRONIG RELATIONS

For the diagonal self-energies in Eq. (24) we obtain the
following Kramers-Kronig relation:

Re
[
�R

n (ε,k) − �R
n (∞,k)

] = 1

π
P

∫ ∞

−∞
dε′ Im�R

n (ε′,k)

ε′ − ε
,

which implies

Re
[
�R

n (0,k) − �R
n (∞,k)

] = 1

π
P

∫ ∞

−∞
dε′ Im�R

n (ε′,k)

ε′ .

Here, P denotes the principle value integral, and �R
n (∞,k) ≡

lim|ε|→∞ �R
n (ε,k). With the definition

�±
n (ε,k) = [

�R
n (ε,k) ± �R

n (−ε,k)
]/

2

we can write down corresponding relations for the renormal-
ization function and band renormalization,

ReZn(ε,k) = 1 − 2

π
P

∫ ∞

0
dε′ Im�+

n (ε′,k)

ε′2 − ε2
,

Reζ n
μ(ε,k) = ζμ(k) + Re�R

n (0,k)

+ 2ε2

π
P

∫ ∞

0

dε′

ε′
Im�−

n (ε′,k)

ε′2 − ε2
.

Note that Im�+
n (ε,k) < 0 for all ε and k (whereas Im�−

n can
have either sign), and consequently

ReZn(0,k) = 1 − 2

π

∫ ∞

0
dε′ Im�+

n (ε′,k)

ε′2 � 1,

lim
|ε|→∞

ReZn(ε,k) = 1 + 2

πε2

∫ ∞

0
dε′ Im�+

n (ε′,k) � 1.

Finally, for completeness we also present relations for the band
renormalization,

Reζ n
μ(0,k) = ζμ(k) + Re�R

n (0,k),

lim
|ε|→∞

Reζ n
μ(ε,k) = ζμ(k) + Re�R

n (0,k)

− 2

π

∫ ∞

0
dε′ Im�−

n (ε′,k)

ε′ .

In our case, Im�−
n is predominantly positive, leading to

negative corrections at large energies. Finally, we have the
sum rule∫ ∞

−∞
dε′ε′A(ε′,k) =

∑
μ

∑
n

∣∣an
μ(k)

∣∣2
lim

|ε|→∞
Reζ n

μ(ε,k)

=
∑

μ

ζμ(k) +
∑

n

Re�R
n (∞,k).
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