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Charge and spin collective modes in a quasi-one-dimensional model of Sr2RuO4
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Given that Sr2RuO4 is a two-component p-wave superconductor, there exists the possibility of well defined
collective modes corresponding to fluctuations of the relative phase and spin orientation of the two components
of the order parameter. We demonstrate that at temperatures much below Tc, these modes have energies small
compared to the pairing gap scale if the superconductivity arises primarily from the quasi-1D (dxz and dyz)
bands, while it is known that their energies become comparable to the pairing gap scale if there is a substantial
involvement of the quasi-2D (dxy) band. Therefore the orbital origin of the superconductivity can be determined
by measuring the energies of these collective modes.
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I. INTRODUCTION

The layered perovskite material Sr2RuO4 has attracted
strong interest for over a decade because of experiments
indicating that it is a spin-triplet superconductor1–4 with
spontaneously broken time-reversal symmetry.5,6 The only
state that possesses both of these properties in a tetragonal
system with spin-orbit coupling is the chiral p-wave state, the
electronic analog of 3He-A.7,8 In a single-band, quasi-two-
dimensional system, this state is expected to be a topological
superconductor: it is fully gapped and has topologically
protected Majorana fermion zero modes in vortex cores and
along its edge.

However, the observation of power laws in specific heat9

and NMR,10 the absence of electric currents along edges and
domain walls,11 and the absence of a split transition in the pres-
ence of an in-plane magnetic field12 are sharply inconsistent
with the theoretically expected properties of a simple chiral
superconductor. Motivated by these inconsistencies, three of
us13 proposed that the multiband nature of the material is
essential.

The electronic structure of this system is derived from the
Ru t2g electrons (dxz,dyz, and dxy). These orbitals produce three
Fermi surfaces, denoted α, β, and γ . The α and β surfaces
are derived from the {dxz,dyz} orbitals and are quasi-one-
dimensional (1D), whereas the γ surface is derived primarily
from the dxy orbital and is quasi-two-dimensional (2D) (see
Fig. 1). Because of the strong differences in character between
the different bands, superconductivity in this system is likely
derived primarily from either the dxy , or {dxz,dyz} orbitals: in
either scenario the “active” electrons induce superconductivity
in the remaining “passive” subset via the proximity effect.14

However, to the extent that the proximity effect is weak,
there is a range of circumstances in which the experimental
observations reflect superconducting properties of mainly the
active orbitals.

There are sharp distinctions between the two possibilities
for the active electrons. For example, the px + ipy state ob-
tained only from the α,β bands is topologically trivial because
the α and β bands form, respectively, a hole and electron
pocket leading to a net zero Chern number.13 If these were the
active electrons, the system behaves as a topologically trivial
system near Tc. At T = 0, superconductivity occurs on all three

bands and is therefore topologically nontrivial; however, the
size of the induced gap on the passive γ Fermi surface can be
substantially smaller than those on the α,β surfaces, making it
difficult to experimentally detect the topologically nontrivial
character of the ground state. This scenario could explain,
for instance, the absence of any detectable edge currents in
the system.11 By contrast, when γ is the active band, the
system behaves as a topological superconductor even near Tc.
Recently, it was shown that there is an intrinsic Kerr response
near Tc only when {α,β} are the active bands.15,16 In this
paper, as part of a further exploration of the experimentally
accessible properties that could distinguish between the two
cases, we study the qualitative differences in the character of
the charge and spin collective modes.

In forming the α and β bands, the dxz and dyz orbitals are
coupled to each other only via spin-orbit coupling and second-
neighbor hopping terms, both of which are relatively weak17 in
Sr2RuO4. The limit in which these orbital mixing terms vanish
defines a multicritical point at which the superconducting state
breaks a higher [SO(3)spin × U (1)charge]2 symmetry. Proximate
to this multicritical point, i.e., for weak orbital mixing, there
are low-energy “almost Goldstone modes” associated with
fluctuations of the relative phase and spin orientation of the x

and y components of the superconducting order parameter. By
contrast, the same collective modes have18,19 energies of order
�0 when γ is the active band.

This paper is organized as follows. In Sec. II, we discuss the
general physics of the collective modes in a multicomponent
superconductor at a qualitative level and describe the general
form of the nonlinear sigma model (NLSM) of the system. In
Secs. III–V, we derive the NLSM from the microscopic physics
of the quasi-1D model and obtain the gaps of the collective
modes. Lastly, we discuss schemes for detecting the modes
and consider their broader implication for the superconducting
properties of the system.

II. COLLECTIVE MODES IN MULTI-COMPONENT
SUPERCONDUCTORS

A. Qualitative discussion

A superconductor described by a multicomponent order
parameter (px and py in the present context) will have
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FIG. 1. (Color online) Schematic view of the Ru dxz and dyz

orbitals in the Ru-O plane. The wave-function overlap is larger along
the direction of the black arrows than along the direction of the gray
arrows, giving us t � t ′, and therefore the quasi-1D nature of the
bands originating from these orbitals.

collective mode excitations associated with the relative phase
difference, φ− ≡ θx − θy . At zero temperature, such a mode
would be expected to have a frequency h̄ω0 ∼ √

J /χ , where
χ ∼ N (0) is the compressibility[N (0) is the density of states
at the Fermi energy] and J is the second derivative of
the condensation energy with respect to φ−. Given that the
condensation energy ∼N (0)|�0|2, where |�0| is the root mean
squared gap magnitude, this generally means that h̄ω0 ∼ |�0|.
Similar considerations apply to fluctuations in the relative
orientation of the spins (i.e., the d vector) in a two-component
triplet superconductor.

By contrast, if the two components of the order parameter
are associated with different orbitals, i.e., the px component
with the dxz and the py with dyz orbitals, respectively,
and if mixing between the different orbitals were absent,
then collective fluctuations of the relative phase and spin-
orientation would be gapless. The orbital-mixing terms, which
we schematically denote as δH (and which we discuss in
detail below), result in a nonvanishing dependence of the
condensation energy on φ−. As a result, if the supercon-
ductivity arises primarily from the quasi-1D bands, then the
relative phase mode is expected to have an energy h̄ω0 ≈ γ�0,
where γ vanishes continuously as δH tends to zero. Naturally,
similar considerations apply to the relative spin orientational
fluctuations. As we explain below, since appreciable orbital
mixing occurs only where the bands cross one another, γ � 1
even when the characteristic scale associated with δH � |�0|.

B. Nonlinear sigma model

To analyze the low-lying collective modes in a two-band
spin-triplet superconductor, we consider the nonlinear sigma
model (NLSM) valid deep inside the superconducting phase.
We express the order parameter as

�α;ss ′ (k) = �fα(k)eiθα (iσ2d̂a · σ )ss ′ , (1)

where α = x, y labels the two components of the order
parameter, s,s ′ the spin indices of the two electrons forming
the Cooper pair, � the order parameter amplitude, fα(k) the
pair wave-function which is determined by the microscopic
form of the pairing interaction, and d̂α a real unit vector in
spin space. In an N -orbital basis, fα(k) (and consequently

�α,ss ′ ) are N × N matrices which transform as the x and y

components of a vector of the tetragonal point group.
The NLSM action is obtained by holding � and fα(k) fixed,

and focusing on the long-wave-length fluctuations of θα and
d̂α:

L = 1

2

∑
α

[W|∂tθα|2 + M(∂t d̂α) · (∂t d̂α) + · · ·]

−J [θx − θy,d̂x · d̂y] + · · ·
−

∑
α

0
(
d̂α · d̂α/3 − d̂z

αd̂z
α

) + · · · . (2)

Here, the first line contains the terms which respect the
symmetry of the multicritical system. The “ · · ·′′ includes
terms proportional to spatial derivatives and higher powers
of time derivatives. Our interest is in the long wavelength limit
and we shall neglect spatial derivatives; however, these terms
are the only ones that reflect the underlying tetragonal lattice
symmetry.

The second line includes terms derived from interorbital
mixing without spin-orbit coupling, and the third line in-
cludes spin-orbit coupling terms. Again, derivative terms
are neglected. Here, J [φ,x] = J [φ + π,x] = J [−φ,x] =
J [φ, − x]. Note that there is no Goldstone mode resulting
from fluctuations of the overall phase φ+ ≡ θxz + θyz due to
the Anderson-Higgs mechanism.

In the next section, we define a microscopic model of the
superconductivity on the quasi-1D bands and from it derive
estimates of the various couplings that appear in Eq. (2):
estimates forW andM, both of which are of order 1/N (0), are
discussed below Eq. (9). To first order in the (spin rotationally
invariant) orbital mixing terms, the form J is found in
Eqs. (13) and (16) to be

J [φ−,d̂ · d̂ ′] = J0 cos(2φ−)[2(d̂ · d̂ ′)2 − 1] (3)

and an estimate of J0 is presented in Eq. (17). Finally, an
expression for 0 to second order in the spin-orbit coupling is
given in Eq. (19).

Because J0 > 0, the orbital mixing term is minimized
either when d̂x is parallel to d̂y and φ− = π/2, which
corresponds to the chiral superconducting state analogous to
the A phase of 3He, or when d̂x is perpendicular to d̂y and
φ = 0 or π , which corresponds to the time-reversal invariant
superconducting analog of the B phase of 3He. The degeneracy
between these two phases is exact (at mean-field level) in
the absence of spin-orbit coupling; this observation and the
various periodicity conditions impose general constraints on
the form of J , which are satisfied by our present result. The
degeneracy between the A and B phases is lifted by spin-orbit
coupling: for 0 > 0(0 < 0), the A(B) phases have larger
condensation energy. We now proceed to show explicitly
how these qualitative considerations apply in a simple, but
physically motivated microscopic model of Sr2RuO4.

III. QUASI-1D MODEL OF Sr2RuO4

SUPERCONDUCTIVITY

As a microscopic representation of the problem of the
pairing in the quasi-1D bands, we consider an idealized form of
the Bougoliubov-de Gennes Hamiltonian for the quasiparticles
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in a p-wave superconducting state,

HBdG = Hmulti + δH. (4)

Here, Hmulti represents the multicritical point model, in
which there is no orbital mixing or spin-orbit coupling, and
δH (assumed small) represents terms that break the higher
symmetry of the multicritcal point.

A. The multicritical point Hamiltonian

Hmulti is the mean-field Bogoliubov-de Gennes Hamiltonian
for decoupled xz and yz orbitals:

Hmulti =
∑

a=xz,yz

∑
ks

ξa(k)c†akscaks + 1

2

∑
a=xz,yz

∑
α=x,y

∑
k;ss ′

× [
�

(a)
α;ss ′ (k)c†a,k,sc

†
a,−k,s ′ + H.c.

]
, (5)

where caks is the annihilation operator for an electron with the
momentum k, orbital index a = xz,yz and spin polarization s,
ξa(k) = εak − μ, the chemical potential μ is set so that these
bands are two-third filled,17,20 and �

(a)
α;ss ′ is the appropriate or-

bital diagonal matrix element of the pair field defined in Eq. (1).
We further simplify the model by taking the band structure in
the absence of orbital mixing to be strictly one dimensional,
εak = −2t cos ka and the x and y components of the order
parameter to originate entirely on the corresponding 1D band,
�

(xz)
y,ss ′ = �

(yz)
x,ss ′ = 0, �(xz)

x;ss ′ (k) = � sin(kx)eθx [iσ2d̂x · 	σ ]ss ′ and

�
(yz)
y;ss ′ (k) = � sin(ky)eθy [iσ2d̂y · 	σ ]ss ′ . While this simplified

band and gap structure simplifies the explicit calculations, the
qualitative results we have obtained are not affected by the
inclusion of moderate transverse (but still orbital-diagonal)
components of the hopping matrix.

Because the two bands are related by rotation by π/2, Hmulti

respects the tetragonal symmetry of the material even though
each band is one dimensional. From the fact that �x lives
entirely on the dxz band and �y on the dyz band, it further
follows that Hmulti respects a full [SO(3)spin × U (1)charge]2

symmetry, so there is no dependence of the free energy on
θα or d̂α . In particular, note that the quasiparticle spectrum
is fully gapped not only in the A phase (e.g., for d̂x · d̂y = 1
and θx − θy = π/2) and B phase (e.g., for d̂x · d̂y = 0 and
θx − θy = 0), but also for a px±y (e.g., d̂x · d̂y = 1 and
θx − θy = 0,π ), which might otherwise have been expected
to posses gap nodes.

B. Orbital mixing and spin-orbit coupling

δH contains all permissible terms in the quasiparticle
Hamiltonian that break the [SO(3)spin × U (1)charge]2 symmetry
of the multicritical point of which the most important are
band-structure terms that mix the two orbitals:

δH =
∑

ks

λk(c†xz,k,scyz,k,s + H.c.)

+ η
∑

a,b=xz,yz

∑
k;ss ′

�z
ab σ z

ss ′c
†
akscbks ′ , + · · · , (6)

where the first term reflects second-neighbor hopping between
the xz and yz orbitals—therefore λk ≡ 2δt sin kx sin ky—and
the second term represents the Ru atomic spin-orbit coupling

with �c
ab = iεabc being the spin-1 matrices representing the

effective orbital angular momentum of the t2g orbitals and σa

being the usual Pauli spin matrices. We can see that if we
include the xy orbital, the atomic spin-orbit term will include
the additional terms �xσ x + �yσ y . These terms, however, do
not alter any of our qualitative results, except those we discuss
in Sec. IV C and Appendix B.

A more detailed model of the electronic structure of
Sr2RuO4 might include additional terms in δH (indicated
by · · ·) but we will show that these terms are certainly smaller
than the terms we have kept and therefore do not qualitatively
effect the outcome of the calculations, so long as we focus on
the limit

t � |δt | ∼ |η| � |�|. (7)

Equation (6) omitted the interobital interaction terms of the
form

δHint = V
∑
iσσ ′

d
†
xz,iσ d

†
yz,iσ ′dyz,iσ ′dxz,iσ (8)

that are local and therefore play a role everywhere in
momentum space. However, in the BCS ground state, such
interactions cause scattering only in the Cooper channel, and
therefore play an appreciable role only in momentum points
where the bands cross. Additional interaction terms such as the
interorbital singlet-pair hopping terms do not play a role in the
spin-triplet superconductor. Among higher-order interaction
processes, only those terms proportional to the interorbital
susceptibility (vanishingly small in the present case) affect the
interorbital modes. Thus we are led to the same conclusion:
the mixing between the different orbitals whether it be due to
tunneling or to interactions, is weak.

IV. DERIVATION OF THE NLSM

In this section, we will compute the terms in the NLSM in
Eq. (2) from the microscopic model in Eqs. (4)–(6).

A. Kinetic terms W and M
Firstly, we derive expressions for the time-derivative terms

in Eq. (2), which do not involve mixing of the orbitals or
spin-orbit coupling; to leading order, these terms can be
computed in the limit δH = 0 and �0 = 0. Because the
number density is canonically conjugate to the phase of
the superconducting order, these terms ultimately reflect the
energy cost of shifting electrons from one orbital to another or
from one spin polarizing to the other. To quadratic order, the
cost in energy per unit volume associated with a transfer of
charge δn per unit cell from one band to the other and with a
spin density Sa in band a is

K[δn,Sa] = 1

4χc

(δn)2 + 1

2χsp

∑
a

(
Sa

h̄

)2

, (9)

where χc = N (0) and χsp = N (0)/4 are the density and spin
susceptibilities for each quasi-1D band. In the standard fash-
ion, spin-triplet Cooper pairing gives rises to the commutation
relations21–23

[δn,eiφ− ] = −4ieiφ− ,
[
Si

a,d̂
j

b

] = ih̄εijkδabd̂
k
b ; (10)
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thus we can regard K as the “kinetic” energy density of φ−
and d̂a . By using the Heisenberg equations of motions ∂tφ =
i[φ,K]/h̄ and ∂t d̂a = i[d̂a,K]/h̄, we obtain

K[φ,d̂a] = h̄2χc

16
(∂tφ)2 + h̄2χsp

2

∑
a

(∂t d̂a)2. (11)

This is equivalent to the first line of the NLSM action of Eq. (2).

B. Relative Josephson coupling J
The leading contribution to the interorbital Josephson

coupling J can be computed in the η = 0 limit. As a warm
up, we first calculate the ground-state energy for the spinless
case where the relative phase between the condensate of two
components of the order parameter is set to φ− = θx − θy . The
ground-state energy can be computed as

E0(φ−) = −
∑
αk

[Eαk(φ−) − ξαk]/2, (12)

where Eαk(φ−)’s are the eigenenergies of the spin “up”
quasiparticles in HBdG in Eq. (5) with d̂x = d̂y = ẑ and λ = 0.
As we show in Appendix A 1, the local stability of the
chiral state follows from the fact that E ′

0(φ− = ±π/2) = 0
and E ′′

0 (φ− = ±π/2) > 0. Indeed, since in the limit of weak
mixing, we know the dependence of the energy on φ− must
be approximately harmonic, it follows that E ′′

0 is related to
the value of the Josephson coupling. Time reversal symmetry
implies that E0(φ−) = E0(−φ−) and the fact that �α transforms
like a vector under rotations by π/2 implies that E0(φ−) =
E0(π − φ−). Thus

E0(φ−) ≈ const + J0 cos(2φ−), (13)

where

J0 = 1

4
E ′′

0

(
φ− = π

2

)
= −1

8

∑
αk

E′′
αk

(
φ− = π

2

)
. (14)

We have computedJ0 by numerically diagonalizing the model
in Eq. (4) with η = 0 (see Fig. 2 and Appendix A 1).

It is straightforward to generalize the above result to the
spinful case and obtain J of Eq. (2). From the definition of
the d vector,20,23

[
�α↑↑ �α↑↓
�α↓↑ �α↓↓

]
≡ �fα(k)eiθα d̂α ·

[
−êx + iêy êz

êz êx + iêy

]
,

(15)

it follows that it is always possible to chose the spin
quantization axis, êz, to be perpendicular to both d̂x and d̂y ,
in which case all pairing is between like spins (�α↑↓ = 0).
Thus, for η = 0, the Josephson coupling is a sum of two equal
contributions from spin-up and spin-down pairs:

E0(φ↑↑, φ↓↓) = J0(cos 2φ↑↑ + cos 2φ↓↓), (16)

where θ↑↑ = θx − θy + α + π , θ↓↓ = θx − θy − α, and
cos α = d̂x · d̂y . A small exercise in trigonometry thus leads to
this result from Eq. (3) with Eq. (14) for J0.
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FIG. 2. (Color online) The left panel shows as the black solid
curves a schematic plot of the Fermi surface originating from the
quasi-1D bands that derive primarily from the Ru dxz and dyz orbitals;
it was computed from the microscopic model of Sec. II. (The blue
dotted curve represents the Fermi surface of the quasi-2D band
arising from the Ru dxy orbitals, which are not included explicitly
in the model.) The avoided crossings in the red circled regions
reflect the (clearly small) effects of the orbital mixing terms on the
Fermi surface structure. The right panel shows the intercomponent
Josephson coupling, J0, defined in Eq. (3) as a function of the
interorbital coupling energy, δt , computed by numerically performing
the integral in Eqs. (14) and (A7) in Appendix A 1 with �0/t = 0.002
(blue), 0.004 (purple), 0.008 (red), and η = 0; the result confirms an
approximate linear dependence of J0 on |δt |�2

0, as in Eq. (17).

We have numerically evaluated the integral over k in
Eq. (14) to obtain the results for J0 shown in Fig. 2. It is
clear that J0 scales as

J0 ∼ |δt | �2
0

t2
∼ |δt |

t
N (0)�2

0, (17)

where N (0) = 16π/(
√

3t) is the density of states for each
quasi-1D orbital; this can be also obtained through analytic
approximation presented in Appendix A 1. As promised, J0 is
parametrically smaller than the condensation energy per unit
volume, N (0)�2

0/2.
A few points are worth noting. Firstly, this result is nonana-

lytic in δt , from which one concludes that it is nonperturbative.
In Appendix A 2, we compute J0 perturbatively in powers of
δt , in which limit we obtain J0 ∼ N (0)(δt)4/(t�0), which
is an analytic function of δt , but nonanalytic in �0. This
reflects the fact that the perturbative expression is valid only
for |δt | � �0, a physically unreasonable restriction. The
perturbative expression does, however, match smoothly to the
nonperturbative one when |δt | ∼ �0. The origin of Eq. (17)
can be understood intuitively as arising from the quasi-1D
character of the bands. The contribution to the condensation
energy from the portions of the bands away from the crossing
points (enclosed by red circles in Fig. 2) is largely insensitive
to orbital mixing—only in a neighborhood of width ∼|δt/t |
about the crossing points is orbital mixing significant, but there
it makes an O(1) change in the condensation energy. These
considerations lead to the proposed scaling expression of
Eq. (17). On the other hand, if the chiral pairing originated from
the nearly circular 2D Fermi surface, changes in the relative
phase of the px and the py components of the pair-field affect
the pairing gap magnitude over most of the Fermi surface, so
J0 (or more properly, E ′′

0 ) must be in the order of the total
condensation energy.18,24,25
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C. Spin-orbit term �0

The xy orbital does not play a direct role in our analysis, but
does contribute to the intra-orbital d-vector locking 0. While
we will not consider the superconductivity in this orbital, it
does affect the pairing interaction in the quasi-1D orbitals.
It is due to the spin-orbit coupling involving the xy orbitals
that we have anisotropy in the spin channel of the pairing
interaction. More specifically, in both quasi-1D orbitals, the
effective pairing interaction for d̂ ‖ ẑ will be stronger than
the effective pairing interaction for d̂ ⊥ ẑ. This difference in
the pairing interaction can be estimated as δV/V ∝ (η/t)2 as
it is due to the electrons having intermediate states in the xy

orbitals (see Appendix B for derivation). Now, from the BCS
self-consistency condition ln(t/�) ∝ t/V , the pairing gap will
change by

δ�

�
∝ tδV

V 2
=

(
η

t

)2

ln
t

�
(18)

for small δV . Therefore the condensation energy for the case
d̂ ‖ ẑ should be slightly larger by

0 ≡ 1

2
N (0)δ(�2) ∝

[(
η

t

)2

ln
t

�

]
N (0)�2 (19)

than that of the case d̂ ⊥ ẑ; this is the origin of the intraorbital
d-vector locking in Eq. (2). We emphasize that the energy scale
of this locking is much smaller than that of the condensation
energy, which is consistent with the c-axis Knight shift
experiment.26,27 However, this small d-vector locking, unlike
the small J , is not a characteristic unique to the quasi-1D
model, as the pairing interaction anisotropy in the 2D orbital
is also due to the same physics.

V. NORMAL MODES

In the usual fashion, we can obtain an understanding of
the low-energy collective modes from the equations of motion
derived from the nonlinear sigma model22 in Eq. (2). The
d-vector dynamics are those of coupled pendulums, while the
relative phase, φ− executes familiar Josephson oscillations.
Looking at these modes in the limit that k → 0 (spatially
homogeneous modes) and for small amplitude deviations from
the A-phase ground state in which φ− = 0 and d̂x = d̂y = ẑ,
we find

h̄2χc

16
∂2
t φ− = 4J0φ−,

h̄2χsp

2
∂2
t

[
δd̂x

δd̂y

]
= −

[
0 + 4J0 −4J0

−4J0 0 + 4J0

] [
δd̂x

δd̂y

]
, (20)

where δd̂a · êz = 0. The above equation of motion tells us that
for the small value of J0, the quasi-1D model gives us more
soft collective modes than the 2D model. From this, we can
deduce the gaps (or “masses”) of three distinct normal modes,
all of which vanish in the limit δH → 0, i.e., at the multcritical
point,

mc = 8
√
J0/χc = (γc)�0,

ms+ = √
20/χsp = (γs+)�0, (21)

ms− = √
2(0 + 8J0)/χsp = (γs−)�0,

where for the relative phase mode, γc ∼ |δt |/t , for the in-
phase spin-wave mode, γs+ ∼ (η/t)2, while for the relative
d-vector orientation mode, γs− ∼ max(γc,γs+). We also see,
as is natural, that the in-phase spin-wave mode is unaffected
by the interorbital coupling.

VI. DISCUSSION

Most studies to date have worked with the assumption
that γ is the active band. From an experimental perspective,
heat capacity measurements28 showed that the fraction of
density of states at the Fermi level that was depleted at Tc is
consistent with the contribution from the γ band. However, the
balance is delicate, as the contribution from {α,β} to the total
density of states is similar to the contribution from γ . From
a theoretical perspective, asymptotically exact calculations in
the weak-coupling limit involving all three Fermi surfaces lead
inevitably to the conclusion that the dominant pairing strength
occurs among the 1D bands.13 However, when stronger
electron correlations are present, the validity of these results is
unclear. In this regard, it is important to consider experimental
signatures that may help to discriminate between the two
possibilities for the active orbitals. This has been the primary
motivation for carrying out the present analysis.

We have shown that if the chiral p-wave superconductivity
in Sr2RuO4 arises from the quasi-1D bands, this implies that
the collective properties are controlled by the existence of
a nearby multicritical point at which there is an enlarged
emergent order parameter symmetry and correspondingly a
set of anomalously soft “almost Goldstone” soft collective
modes.

Because of the relatively weak spin-orbit coupling in
Sr2RuO4, the in-phase spin-wave mode is expected to have
energy small compared to the superconducting gap. An
estimate of the in-phase spin-wave gap can be obtained on
the basis of experiments on the c-axis Knight shfit,26 from
which it follows that γs+ = ms+/�0 is less than 0.01. This
result implies an extremely small value of 0 in Eq. (2), but
does not distinguish between different microscopic origins of
the pairing. We have therefore focused, in particular, on the
gap (mass) of the relative phase and relative d-vector orien-
tational modes, which are analogues of the “clapping modes”
familiar from studies of 3He-A24,25 and also investigated
in the chiral d-wave superconductor.29 The corresponding
mode frequencies have been computed in the context of the
quasi-2D bands, leading to the prediction that they would
have an energy

√
2�0 (γc = γs− = √

2).18,19 We recover
their result from our NLSM if we extrapolate the results
to the case of strong intercomponent Josephson coupling,
where J0 is comparable to the condensation energy density.
However, because interorbital mixing is relatively weak, the
corresponding modes are expected to have parametrically
lower energy if the superconductivity arises in the quasi-1D
bands, hence, Eq. (21). (For more on this correspondence, see
Appendix D.)

The various collective modes in Sr2RuO4 can, in principle,
be detected using methods that have already been discussed in
the literature for the 2D model, which includes, among others,
electron spin resonance30,31 (see Appendix C), ultrasound
attenuation, and Raman scattering.19 However, we can expect
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the interorbital “nearly Goldstone” modes to have much lower
energy if the pairing originates primarily on the quasi-1D
bands, than if it arises on the quasi-2D band.

Our analysis has potential implications for various existing
experimental puzzles concerning the properties of Sr2RuO4

near Tc. If the phase transition exhibits mean-field behavior, an
inescapable consequence is that the transition must be split by a
field applied in the basal plane. The fact that this does not occur
in Sr2RuO4 suggests that fluctuations may play a significant
role in the transition. The higher emergent symmetry of the
proximate multicritical point would be an obvious source of
anomalously strong fluctuations. In this regard, it is worth
noting that in two dimensions, a nonzero (Kosterliz-Thouless)
transition is still possible, despite the existence of gapless
spin-wave-like modes, but for an order parameter with a larger
continuous symmetry, such fluctuations necessarily reduce the
transition temperature to T = 0, or to a low temperature at
which explicit symmetry breaking terms, or three-dimensional
couplings cutoff these fluctuations. These issues will be
investigated in depth in a future publication.
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APPENDIX A: DERIVATION OF INTERORBITAL
JOSEPHSON COUPLING

1. BdG formalism

Since the sum of the quasiparticle eigenenergy gives us the
total ground-state energy, the most straightforward method
to obtain the ground-state energy at a phase φ between
two orbitals is through diagonalizing the BdG Hamiltonian
with the interorbital relative phase of φ. We can compute
these eigenenergies from diagonalizing the spinless BdG
Hamiltonian,

HBdG(φ−)

=

⎡
⎢⎢⎢⎣

ξxk λk �0 sin kx 0

λk ξyk 0 eiφ−�0 sin ky

�0 sin kx 0 −ξxk −λk

0 e−iφ−�0 sin ky −λk −ξyk

⎤
⎥⎥⎥⎦ ,

(A1)

where our basis is (uxk,uyk,vxk,vyk)T , the elements of which
represent the dxz orbital particle, the dyz orbital particle, the
dxz orbital hole, and the dyz orbital hole wave functions,
respectively. This gives us the eigenenergies of

Ek±(φ−) = 1√
2

√
Ak ±

√
Bk(φ−), (A2)

where

Ak ≡ ξ 2
xk + ξ 2

yk + �2
0(sin2 kx + sin2 ky) + 2λ2

k,

Bk(φ−) ≡ [(
ξ 2
xk − ξ 2

yk

) + �2
0(sin2 kx − sin2 ky)2

]2

+ 4λ2
k

[
(ξxk + ξyk)2 + �2

0(sin2 kx + sin2 ky)
]

− 8λ2
k�

2
0 sin kx sin ky cos φ−. (A3)

The ground-state energy has minima at φ− = ±π/2 and
therefore can be approximated by Eq. (13). To see this, note
that the total ground-state energy

E0(φ−) = const − 1

2

∑
k

[Ek+(φ−) + Ek−(φ−)], (A4)

when differentiated by φ gives us

E ′
0(φ−) = sin φ−

∑
k

λ2
k�

2
0 sin kx sin ky

Ek+(φ−)Ek−(φ−)[Ek+(φ0) + Ek−(φ−)]

(A5)

for which we used

E′
k±(φ−) = ± 2λ2

k�
2
0 sin kx sin ky

Ek±(φ−)
[
E2

k+(φ−) − E2
k−(φ−)

] sin φ−. (A6)

E ′
0(φ−) vanishes at φ = ±π/2, as Ek±(φ = ±π/2)’s are even

in kx and ky . These extrema at φ− = ±π/2 are minima as the
second derivative

E ′′
0 (φ− = π/2) = 2

∑
k

λ4
k�

4
0 sin2 kx sin2 ky

(Ek+Ek−)2(Ek+ + Ek−)

×
[

1

Ek+Ek−
+ 1

(Ek+ + Ek−)2

]
φ−=± π

2

,

(A7)

is clearly positive. Lastly, we note that E0(φ−) is π periodic in
φ−, as Eq. (A3) shows that each eigenenergy is invariant under
the combination of φ− → π − φ− and π/2 rotation in the k

space.
We now need to evaluate Eq. (A7). Since the main

contributions will come from the four crossing points of
the 1D orbitals, we take the following expansion around
(kx,ky) = (2π/3,2π/3):

E± =
√[

v(kx + ky − 4π/3)

2
±

√
v2(kx − ky)2

4
+ λ2

]2

+ �̄2

= λ

√(
qx ±

√
q2

y + 1
)2 + �̄2

λ2
, (A8)

where v = √
3t/2, λ = 3|δt |/2, �̄ = �0| sin 2π/3|, and qx =

v(kx + ky − 4π/3)/2λ,qy = v(kx − ky)/2λ. We also note the
following two points: (i) min(E±) = �̄ and (ii) when E+ (E−)
is at its minimum, E−(+) ∼ λ � �̄ so min(E+ + E−) ∼ λ.
This leads to the following approximation:

J0 = 1

4
E ′′

0 (φ− = π/2) ≈ 1

2

∑
k

λ4
k�

4
0 sin2 kx sin2 ky

(Ek+Ek−)3(Ek+ + Ek−)

= λ4�̄4

8π2

2λ2

v2

∫
d2q

1

(Ek+Ek−)3(Ek+ + Ek−)
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≈ 2�̄4

π2λv2

∫
d2q

[(
qx +

√
q2

y + 1
)2 + �̄2

λ2

]− 3
2

×
[(

qx −
√

q2
y + 1

)2 + �̄2

λ2

]−3

≈ �̄4

8π2λv2

∫
dq̃xdqy

1(
q̃2

x + �̄2/λ2
) 3

2
(
q2

y + 1
)2

= �̄4

8π2λv2

2λ2

�̄2

π

2

= 3

16π

|δt |
t

�2
0

t
. (A9)

We obtained the same dependence on parameters as in Fig. 2,
though the coefficient came out about an order of magnitude
larger.

2. Perturbation method

We show here that once we ignore the spin-orbit coupling,
due to the C4 symmetry, this interorbital Josephson coupling
is zero for the lowest order. To see this, we note that from the

second-order perturbation theory,

E (1)
J (φ−) =

∑
ks

〈λkc
†
xkscyksλ−kc

†
x,−kscy,−ks + H.c.〉

−Exk − Eyk

= −(δt)2
∑

ks

sin2 kx sin2 ky

Exk + Eyk

�∗
xk;ss

Exk

�yk;ss

Eyk

+ c.c. = 0, (A10)

where Eak ≡
√

ξ 2
ak + |�ak|2, and we used

〈ca,−k,s ′ca,k,s〉 = −�ak;ss ′

2Eak
; (A11)

this result is due to �x(y)k being odd, and Ex(y)k being even, in
sin kx(y).

Therefore it is from the second-order interorbital Josephson
coupling that gives rise to the dependence of the energy on
the relative phase φ and the spin state d̂xz,yz. Given that we
have completely decoupled opposite spins, we only need to
consider the process that tunnels two spin up-up pairs and
two spin down-down pairs. This can be calculated from the
fourth-order perturbation theory:

E (2)
J (φ−) =

∑
k′k;s

〈λkc
†
xkscyksλk′c

†
xk′scyk′sλ−kc

†
x,−kscy,−ksλ−k′,sc

†
x,−k′,scy,−k′,s + H.c.〉

× 1

(−Exk − Eyk)

1

(−Exk − Eyk − Exk′ − Eyk′ )

(
1

−Exk − Eyk
+ 1

−Exk′ − Eyk′

)

=
∑
k′k;s

λkλ−kλk′λ−k′

[(
�∗

xk;ss

2Exk

) (
�yk;ss

2Eyk

) (
�∗

xk′;ss

2Exk′

)(
�yk′;ss

2Eyk′

)
+ c.c.

]

× (1 − δk′k)(1 − δk′,−k)
1

(−Exk − Eyk)

1

(−Exk − Eyk − Exk′ − Eyk′ )

(
1

−Exk − Eyk
+ 1

−Exk′ − Eyk′

)

=
∑

ks

λ4
k/8

(Exk + Eyk)3

[(�∗
xk′;ss�yk′;ss)2 + c.c.]

(ExkEyk)2
, (A12)

which gives us

J0 =
∑

k

λ4
k/4

(Exk + Eyk)3

�4
0(sin kx sin ky)2

(ExkEyk)2
∼ (δt)4

t2�
. (A13)

Note that this result is consistent with our BdG calculation, for
it is qualitatively the same as taking the first term of Eq. (A7),
which is much larger than the second term in the |�| � |δt |
limit.

APPENDIX B: d-VECTOR LOCKING

To see why we need the spin involving the xy orbital to
lock the d vector along the c axis, we need to examine the
spin-orbit coupling part—with the xy orbital included—of the
orbital hybridization of Eq. (6):

δHkin = η
∑
a,b

∑
k;ss ′

�ab · σ ss ′c
†
akscbks ′ . (B1)

This means that when we only include the spin-orbit coupling
between the 1D orbitals, Sz will remain a good quantum

number while Sx,y will not. Therefore it is energetically
more favorable to have an equal-spin pairing with the spin
quantization axis along the z direction, which equivalent to
the d vector lying in the xy plane. For the same reason, the
spin-orbit coupling between the xz and xy orbital will favor
the d vector lying in the yz plane and that between the yz

and xy orbital the d vector lying in the xz plane. We therefore
conclude that the d vector is locked to the c axis because the
spin-orbit couplings involving the xy orbital have larger effect
than the spin-orbit coupling involving only the 1D orbitals.

We will now show that the pairing interaction anisotropy
in the normal state is proportional to η2. To do so, we will
calculate the normal state pair-field susceptibility, which is
proportional to the normal state pairing interaction. To account
for the effect of the spin-orbit coupling, what we will calculate
is the interorbital susceptibility of the intraorbital pairs. Since
the form of the spin-orbit coupling is the same for any pair of
orbitals, we can expect the dependence on η to be the same.
Therefore we will only look at the triplet pair susceptibility
involving one pair in the xz orbital and another pair on the yz
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orbital:

χ d̂
tSC;x−y(k,i�) =

∑
αβγλ

∫ β

0
dτei�τ 〈Tτ c

†
x,k,α(τ )c†x,−k,β (τ )yx,−k,γ (0)cy,k,λ(0)〉(iσ2d̂ · σ )αβ(−id̂ · σσ2)γ λ, (B2)

ignoring the xy orbital. In this case, Sz is a good quantum number, so we obtain

χ
‖
tSC;x−y(k,i�) = 1

β

∑
iωn

∑
σ=↑,↓

Gyσ ;xσ (−k, − iωn − i�)Gyσ ;xσ (k,iω),

(B3)

χ ẑ
tSC;x−yl(k,i�) = 1

β

∑
iωn

∑
σ=↑,↓

Gyσ ;xσ (−k, − iωn − i�)Gyσ̄ ;xσ̄ (k,iω),

for the d vector in and out of plane, respectively. When we take into account that the Green function is diagonal not in the orbital
basis but in the band basis, we can write

χ
‖
tSC;x−y(k,i�) = 1

β

∑
iωn

∑
σ=↑,↓

∑
μν

〈y, − k,σ |μ, − k,σ 〉〈μ, − k,σ |x, − k,σ 〉
−iωn − i� − ξ̃μ(−k)

〈y,k,σ |ν,k,σ 〉〈ν,k,σ |x,k,σ 〉
iωn − ξ̃ν(k)

,

(B4)

χ ẑ
tSC;x−y(k,i�) = 1

β

∑
iωn

∑
σ=↑,↓

∑
μν

〈y, − k,σ |μ, − k,σ 〉〈μ, − k,σ |x, − k,σ 〉
−iωn − i� − ξ̃μ(−k)

〈y,k,σ̄ |ν,k,σ̄ 〉〈ν,k,σ̄ |x,k,σ̄ 〉
iωn − ξ̃ν(k)

,

where μ,ν are band indices and ξ̃k’s are the normal state eigenenergies. Using the fact that
∑

μ〈yk|μk〉〈μk|x,k〉 = 0 and, in an
appropriate basis, 〈aσ̄ |μσ̄ 〉 = 〈aσ |μσ 〉∗, a being the orbital label, we obtain the anisotropy

�χtSC;x−y(k,i�) ≡ χ ẑ
tSC;x−y(k,i�) − χ

‖
tSC;x−y(k,i�)

= 2

β
[|〈yk↑|αk↑〉〈αk↑|xk↑〉|2 − Re(〈yk↑|αk↑〉〈αk↑|xk↑〉)2]

×
∑
iωn

[
1

−iωn − i� − ξ̃α(−k)
− 1

−iωn − i� − ξ̃β(−k)

] [
1

iωn − ξ̃α(k)
− 1

iωn − ξ̃β(k)

]
. (B5)

It is the transformation matrix between the orbital and the band basis that gives rise to the η2 dependence.
To see this, note that the first quantized form of the normal state Hamiltonian can be written as

hkin + δhkin = ξx + ξy

2
+ ξ̃α − ξ̃β

2

[
cos ρ iσ sin ρ

−iσ sin ρ − cos ρ

]
(B6)

when ignoring the spin conserving orbital hybridization, with tan ρ = 2η/(ξx − ξy). This gives us 〈y↑|α↑〉 = e−iπ/4 sin(ρ/2)
and 〈α↑|x↑〉 = e−iπ/4 cos(ρ/2), so we obtain

|〈y↑|α↑〉〈α↑|x↑〉|2 − Re(〈y↑|α↑〉〈α↑|x↑〉)2 = 2 cos2(ρ/2) sin2(ρ/2) = η2/2

(ξx − ξy)2/4 + η2
, (B7)

and the pair-field anisotropy at the zero temperature and frequency is

�χtSC;x−y(k,i� = 0)|T =0 = −1

2

η2

[η2 − ξx(k)ξy(k)][ξx(k) + ξy(k)]
. (B8)

APPENDIX C: EXPERIMENTAL DETECTION

Most of the possible experimental signature of the collective
modes can be classified as either the resonant response to a
effective driving force or the relaxation of other excitations in
Sr2RuO4 due to the collective mode.

We will first discuss the resonant response. Any ac field that
couples linearly to our collective modes can serve as a driving
force. One well-known case is the ac Zeeman field,21 which
couples through the Zeeman energy term HZ = −(μB/h̄)H ·∑

a Sa (where μB is the Bohr magneton). To see this, note
that we can approximate, for a small H , Sa ≈ χsp ẑ × (∂t d̂a),

giving us the spin equations of motion

χsp

2
∂2
t

[
δd̂x

δd̂y

]
+

[
 + 4J −4J

−4J  + 4J

] [
δd̂x

δd̂y

]

= −2μBχsp

h̄
ẑ × ∂tH

[
1
1

]
, (C1)

which are just those of a pair of driven coupled harmonic
oscillators. The sharp difference between the quasi-1D and
the 2D model is that the former has a double resonance peak
whereas the latter has only a single peak just like that of the
longitudinal NMR in 3He A.32 The charge analog for this
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would be a uniaxial AC strain u along the a(b) axis. This will
give rise to a chemical potential difference between the xz,yz

orbitals, we expect the energy cost to be proportional to uδN .
This can act as a driving force for the relative phase mode, as
δN ≈ h̄χc∂tφ/2 for a small u. The order of magnitude estimate
for these resonance frequencies are ∼0.1Tc ∼ 10 GHz.

We note that the layered structure of Sr2RuO4 will make
these resonances easier to detect. Note that since we expect
the d vectors to point at the c axis in the equilibrium, the
Zeeman field will be applied along the ab plane. Given the
long penetration length (∼152 nm) for this in-plane field, we
do not expect the Meissner screening to be significant. Also,
because the lower critical field is very small, we can actually
induce a nearly uniform magnetic field.

The interorbital collective modes can also be detected
through relaxation processes. For instance, the phonon modes
involving displacement of the next-nearest neighbor Ru atoms
will modulate the interorbital coupling and hence can decay
into the interorbital collective modes. Another is the NQR
relaxation of the Ru atoms due to the relative phase mode,
which gives rise to oscillating electric quadrupole moments on
the Ru atoms as it involves oscillation of Cooper pair numbers
between the Ru dxz and the Ru dyz orbitals. These electric
quadrupole moments will relax the Ru nuclear quadrupole
moments through the Ru atomic spin-orbit coupling.

APPENDIX D: RELATION TO COLLECTIVE
MODES OF THE 2D MODEL

We show here how our collective modes are related to the
collective modes studied for the 2D model. For every branch
of collective modes in the 2D model, we can find its symmetry
equivalent in the quasi-1D model. However, there are energy
degeneracies in the 2D model which we expect would be
broken in the quasi-1D model. We will show how this gives
rise to the possibility of having soft collective modes in the
quasi-1D model.

By generalizing the results from 3He A,24 one can see
that there should be 12 branches of collective modes in a 2D
chiral p-wave superconductors.18,30 Six of them involve no
fluctuation of the orbital degrees of freedom, while the other
six involves the relative fluctuation of the px and py pairings
(termed “clapping” modes).

The spectra of the six branches involving no orbital
fluctuation remain essentially the same regardless of whether
we take the quasi-1D or the 2D model. They consist of the
overall phase modes, the overall amplitude (Higgs) modes, the
two branches of total spin modes, and also the two branches
of condensate polarization modes. Regardless of the model,
only the total spin modes can be soft; the overall amplitude
and polarization modes have gaps equal to the pair-breaking
frequency 2�0, while the overall phase modes are gapped by
the plasmon frequency.

On the other hand, the spectra of the px-py relative
modes are strongly affected by how close the system is to
being rotationally invariant. There consist of six branches: the
relative phase modes, the relative amplitude modes, the two
branches of the relative spin modes, and the two branches the
spin relative amplitude mode (the relative amplitude oscillation
out of phase by π between the spin up-up and down-down
pairs). When the system is rotationally invariant, the relative
phase modes and the relative amplitude modes are related
by π/4 rotation around the c axis due to the combined
U (1) symmetry of the overall phase and the orbital rotation.
Therefore, up to the spin-orbit coupling, all six branches have
the same gap, which is calculated to be

√
2�0.18,19 However,

when the rotational invariance is broken, this degeneracy
between the relative phase and the relative amplitude mode is
completely broken. Since the px and the py pairings are nearly
decoupled in the quasi-1D model, the relative phase mode is
nearly Goldstone while the relative phase mode have a gap that
is almost same as the overall amplitude mode. Due to the same
reason, the relative spin modes are nearly Goldstone, while the
spin relative amplitude modes have a gap close to 2�0.
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